畜牧兽医学报  2021, Vol. 52 Issue (2): 488-497. DOI: 10.11843/j.issn.0366-6964.2021.02.021    PDF    
广州市农贸市场猪肉源伦敦沙门菌的流行情况及耐药性分析
高远, 王兰茜, 张丽娜, 符颖, 张建民, 廖明, 瞿孝云     
华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 广东省动物源性人兽共患病预防与控制重点实验室, 农业部人畜共患病重点实验室, 广州 510642
摘要:本研究旨在探究广州市2016年5—10月农贸市场猪肉源伦敦沙门菌的流行和耐药情况。从广州市农贸市场采集样品198份,分离得到28株猪肉源伦敦沙门菌,用K-B法测定其对18种抗菌药物的耐药性,用PCR方法鉴定其所携带的耐药基因。结果表明,市场猪肉样品中沙门菌的阳性率为74.2%(147/198),伦敦沙门菌的分离率为19%(28/147),其对磺胺异唑、四环素的耐药率分别为78.6%和75.0%;其次为链霉素、复方新诺明、氨苄西林、庆大霉素、氯霉素和氟苯尼考,耐药率依次为71.4%、67.9%、67.9%、67.9%、46.4%和42.8%;对萘啶酸(3.6%)和多黏菌素B(3.6%)耐药水平较低。有71.4%(20/28)的菌株对3种及3种以上抗菌药物耐药。氨基糖苷类耐药基因检出率为100%,aadA2(7.1%)、strA(37.9%)、aadB(100%);酰胺醇类耐药基因检出率为42.6%,cat1b(39.3%)、floR(39.3%);磺胺类耐药基因检出率为67.9%,sul1(60.7%)、sul2(60.7%);四环素类耐药基因的检出率为78.6%,均同时携带tetAtetB;β内酰胺类耐药基因blaTEM检出率为10.7%;喹诺酮耐药基因qnrAoqxABaac(6’)-lb-cr检出率为3.6%、10.7%和7.1%;黏菌素耐药基因mcr-1检出率为3.6%。伦敦沙门菌在广州农贸市场猪肉中是主要流行血清型之一,其对传统抗菌药物磺胺异唑、四环素、链霉素、复方新诺明、氨苄西林等耐药性严重,携带多种耐药基因,且具有多种多重耐药表型。这提示人们需要对市场沙门菌进行常态化检测与监测,加强对抗生素使用的监管,确保公共卫生和食品安全。
关键词广州市    伦敦沙门菌    猪肉    耐药性    
Characterization of Prevalence and Antimicrobial Resistance of Salmonella Enterica Serovar London from Markets in Guangzhou
GAO Yuan, WANG Lanqian, ZHANG Lina, FU Ying, ZHANG Jianmin, LIAO Ming, QU Xiaoyun     
National Engineering Laboratory for Control and Prevention Biologicals of Zoonoses, Key Laboratory of Zoonoses Prevention and Control Animal-borne Zoology of Guangdong Province, Key Laboratory of Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
Abstract: This study aims to explore the prevalence and drug resistance of Salmonella London from pork at the market in Guangzhou from May to October 2016. One hundred and ninety-eight samples were collected from the market in Guangzhou. Twenty-eight strains of S. London from pork were isolated. The KB method was used to test the drug resistance, and the drug-resistant genes were identified by PCR. The results showed that the positive rate of Salmonella from pork was 74. 2% (147/198), the isolation rate of S. London was 19% (28/147). The drug sensitivity test of S. London showed that they were resistant to sulfisoxazole (78.6%) and tetracycline (75.0%), followed by streptomycin (71.4%), compound sulfamethoxazole (67.9%), ampicillin (67.9%), gentamicin (67.9%), chloramphenicol (46.4%) and florfenicol (42.8%), respectively. Also, the antibiotic resistance to nalidixic acid (3.6%) and polymyxin B (3.6%) is rare. And 71.4% (20/28) of the strains were resistant to three or more antimicrobial agents. The detection rate of β-lactam resistance gene blaTEM is 10.7%; the detection rates of quinolone resistance genes qnrA, oqxAB and aac(6')-lb-cr are 3.6%, 10.7% and 7.1%, respectively. Only 3.6% of the isolates carried colistin resistance gene mcr-1. It was found that S. London was one of the major epidemics in pork from markets in Guangzhou. It is highly resistant to traditional antimicrobials such as sulfisoxazole, tetracycline, streptomycin, compound sulfamethoxazole, ampicillin, carrying multiple drug-resistant genes, and has multi-drug resistant phenotypes. These results suggest that we need to conduct normalized detection and monitoring of Salmonella in the market, strengthen the supervision of the use of antibiotics, and ensure public health and food safety.
Key words: Guangzhou    Salmonella London    pork    drug resistance    

沙门菌(Salmonella)为革兰阴性杆菌,是一种重要的人兽共患致病菌,其分布广泛,种类繁多,不仅可以感染多种畜禽动物,甚至可以通过食品引起人类的食物中毒。每年感染沙门菌的病例超过9 300万例,死亡达15.5万人,其中,85%都与食物有关[1]。现今,沙门菌感染已成为国际上重要的公共卫生问题[2-5]

迄今为止,沙门菌在世界范围内已经发现并鉴定出超过2 600多种血清型,绝大部分能导致人类和动物发病[6]。我国约有75%食源性疾病的暴发是由沙门菌引起的,其中,90%的与食物中毒和摄入污染畜禽肉及其相关制品有关[7]。广东省是畜牧生产和消费大省,猪肉也是沙门菌的主要贮库,畜禽产品的安全尤其是猪肉的安全直接关系到消费者健康[8]。伦敦沙门菌在20世纪40年代被发现,目前,成为沙门菌中排名前十的优势血清型,但在食品流通环节尤其是农贸市场中猪肉源菌株的研究鲜有报道。国内研究者曾在新生儿和食物中毒病人中有过报道,新加坡的研究在1名儿童体内检出多重耐药伦敦沙门菌[9-12]。因此,本研究旨在调查2016年5—10月广州农贸市场猪肉中伦敦沙门菌的流行与耐药情况,为临床中合理应用抗菌药物以及保障食品安全提供数据支撑。

1 材料与方法 1.1 主要材料

1.1.1 菌株来源   2016年5—10月,从广州市农贸市场采集分离伦敦沙门菌。药敏试验质控菌株为大肠埃希菌ATCC25922,购自中国兽医药品监察所。

1.1.2 主要试剂   木糖-赖氨酸-硫酸四癸钠琼脂(XLT4 Agar)、LB(Luria Bertani)营养琼脂、LB肉汤购自广东环凯微生物科技有限公司;DNA Marker DL1000,DNA Marker DL2000,rTaq DNA聚合酶(Premix Taq)购自日本TaKaRa公司;Goldview核酸染料,购自美国Biotium公司。

1.1.3 药敏纸片   氨苄西林(ampicillin,AMP)、头孢他啶(ceftazidime,CAZ)、环丙沙星(ciprofloxacin,CIP)、阿莫西林-克拉维酸钾(amoxicillin/clavulanic acid,AMC)、头孢吡肟(cefepime,FEP)、头孢噻肟(cefotaxime,CTX)庆大霉素(gentamicin,GEN)、氟苯尼考(florfenicol,FFC)、氧氟沙星(ofloxacin,OFX)、氯霉素(chloramphenicol,CHL)、亚胺培南(imipenem,IPM)、多黏菌素B(polymyxin B,PB)、四环素(tetracycline,TET)、链霉素(streptomycin,STR)、阿米卡星(amikacin,AMK)、复方新诺明(SMZ+TMP,SXT)、磺胺异唑(sulfisoxazole,SUL)、萘啶酸(nalidixic acid,NAL)购自广州市迪景微生物科技有限公司。

1.2 方法

1.2.1 沙门菌的分离鉴定   将在农贸市场不同档口随机采集的猪肉样品装入无菌采样袋,在8 h内低温运送至实验室。将所有猪肉样品按每份25 g加入灭菌BPW 225 mL充分揉搓洗涤2 min后,置于37 ℃摇床中以100 r·min-1振荡6~8 h。取预增菌液体1 mL,转移至10 mL TTB内进行选择性增菌,温度为42 ℃,时间为18~24 h。再用接种环蘸取TTB增菌液划线接种于XLT4琼脂平板,37 ℃培养18~24 h。选取疑似沙门菌菌落(典型形态:色泽黑亮、周围有白色透明环)接种于沙门菌显色培养基上进行纯化,取纯化后的疑似菌落用沙门菌特异性基因invA进行聚合酶链式反应(PCR)鉴定,引物详见表 2[13-14]

表 1 药敏纸片种类及判定标准 Table 1 Criteria of drug sensitive test
表 2 试验中所用引物的相关信息 Table 2 Information of primers used in this study

1.2.2 血清学鉴定   按照泰国S&A公司提供的沙门菌血清诊断操作步骤对菌株进行血清型鉴定,查阅S&A公司沙门菌抗血清诊断附录,根据测定得到的抗原式确定沙门菌的血清型[12]

1.2.3 药物敏感性试验   使用K-B纸片扩散法对伦敦沙门菌进行抗菌药物敏感性试验,并根据CLSI(美国临床实验室标准化委员会)推荐的操作规程对结果进行解释。使用大肠杆菌ATCC 25922作为质控菌株。药敏试验判定标准见表 1

1.2.4 耐药基因检测   利用水煮法提取28株伦敦沙门菌基因组DNA。选取如下基因:氨基糖苷类耐药基因aadA2、aadBstrA;酰胺醇类耐药基因aphAI-IABcat1bcat2bfloR;磺胺类耐药基因sul1、sul2;四环素耐药基因tetAtetB;选择β内酰胺类、碳青霉烯类耐药基因blaTEMblaCTMblaOXAblaNDM;选择多黏菌素类耐药基因mcr-1;选择喹诺酮类耐药基因qnrAqnrBqnrCqnrDqnrSoqxABaac(6')-Ib-cr[15-17]。扩增后的产物进行琼脂糖凝胶电泳检测, 结果为阳性的PCR产物直接送广州市艾基生物技术有限公司测序。测序结果通过NCBI网站(https://www.ncbi.nlm.nih.gov)进行Blast分析, 与GenBank上对应基因序列进行比对。

2 结果 2.1 分离鉴定及血清型鉴定

从广州市5个农贸市场采集到猪肉样品198份,经分离鉴定后得到147份沙门菌阳性样品,阳性率为74.2%。通过血清型鉴定,共鉴定出17种血清型,其中,主要为鼠伤寒(34/147,23.1%)、罗森(34/147,23.1%)、德比(31/147,21.1%)和伦敦(28/147,19.0%),详见表 3

表 3 沙门菌血清型鉴定结果 Table 3 Serotype identification results of 147 strains of Salmonella
2.2 药敏试验

伦敦沙门菌对磺胺异唑(78.6%)、四环素(75.0%)耐药最为严重;其次,为链霉素、复方新诺明、氨苄西林、庆大霉素、氯霉素和氟苯尼考,耐药率依次为71.4%、67.9%、67.9%、67.9%、46.4%和42.8%;对萘啶酸(3.6%)和多黏菌素B(3.6%)耐药水平较低;对阿莫西林-克拉维酸钾、头孢噻肟、头孢他啶、头孢吡肟、阿米卡星、环丙沙星、氧氟沙星和亚胺培南完全敏感(表 4)。

表 4 28株伦敦沙门菌耐药情况 Table 4 Drug resistance of 28 strains of Salmonella London

多重耐药率为71.4%(耐3类及其以上的抗菌药物)。28株伦敦沙门菌共存在9种耐药谱型,其中AMP+CN+S+SXT+SUL+FFC+C+TE为优势谱型(28.6%),其次是AMP+CN+S+SXT+SUL+TE(25.0%)。有2株菌对9种药物耐药,耐药谱型分别为AMP+CN+S+SXT+SUL+FFC+C+NA+ TE(3.6%)和AMP+ CN+S+SXT+SUL+FFC+C+PB+TE(3.6%),详见表 5

表 5 28株伦敦沙门菌耐药谱 Table 5 Multiple antibiotic resistance profiles of 28 strains of S. London
2.3 耐药基因检测

通过对28株伦敦沙门菌进行耐药基因检测发现,β-内酰胺类类耐药基因blaTEM的检出率为10.7%(3/28),未检出blaCTX-MblaCTX-M耐药基因;氨基糖苷类耐药基因aadB的检出率为100.0%(28/28),未检出aadA1;酰胺醇类药物耐药基因cat1bfloR的检出率为39.2%(11/28),未检出cat2b;磺胺类耐药基因sul1、sul2的检出率均为60.7%(17/28);四环素类耐药基因tetAtetB的检出率均为78.6%(22/28);喹诺酮类耐药基因qnrA检出率为3.6%(1/28),oqxAB检出率为10.7%(3/28),aac(6')-Ib-cr检出率为7.1%(2/28);黏菌素类耐药基因mcr-1检出率为3.6%(1/28);未检出碳青霉烯类耐药基因blaNDM,详见表 6

表 6 28株伦敦沙门菌耐药基因检出结果 Table 6 Antimicrobial resistant genes of 28 strains of S. London
3 讨论

沙门菌可以通过食物链进入人体从而引起人食物中毒等症状。伦敦血清型不常见,1980年曾在匈牙利引起局部流行,2000年前后,韩国感染病例的增多趋势且出现产超广谱β内酰胺酶菌株[18-19]。国内关于伦敦沙门菌的报道主要集中在食物中毒的案例,特别是免疫功能不完善的新生儿和有慢性疾病的较易发病[20-21]。本研究发现在广州农贸市场售卖的猪肉中,伦敦沙门菌分离率高达19%,仅次于常见的鼠伤寒、罗森和德比血清型,为第四优势血清型。这提示广州市售猪肉中伦敦沙门菌污染较为严重,需及时对广州市农贸市场猪肉中伦敦沙门菌的流行与耐药情况进行检测与监测,这对广州地区的食品安全与公共卫生具有重要意义。

抗菌药物在治疗食源性沙门菌感染中发挥着重要作用,细菌耐药性和耐药趋势的发展一直受到关注。药敏试验结果显示,伦敦沙门菌对磺胺异唑、四环素、链霉素、复方新诺明、氨苄西林、庆大霉素等传统药物耐药率超过65%,对氯霉素和氟苯尼考耐药率超过40%,与此前报道食源性沙门菌对传统抗菌药物的耐药率基本相符[22-24]。由于喹诺酮类药物在畜禽促生长、预防疾病方面效果佳,其滥用后造成细菌的严重耐药,而本研究中的伦敦沙门菌对喹诺酮类抗菌药物基本敏感[25]。沙门菌对黏菌素较敏感,黏菌素作为治疗临床碳青霉烯类耐药革兰阴性菌相关疾病的最后一道防线,自2017年禁用以来,菌株耐药率呈明显下降[26-27]。但本研究发现1株多黏菌素B的耐药菌株,对该菌株的耐药机制亟待更深入的研究。

本研究在广州农贸市场中检出的高耐药率伦敦沙门菌的现象应引起重视。抗菌药物在畜禽养殖过程中的广泛使用及滥用,导致多重耐药菌株愈来愈多[28-29]。笔者发现伦敦沙门菌多重耐药率达到71.4%,其中优势耐药谱型为AMP-CN-S-SXT-SUL-FFC-C-TE,甚至有10株菌对5类以上的抗菌药物耐药,仅次于之前报道的多重耐药鼠伤寒沙门菌[30]

在抗菌药物的作用压力下,食源性耐药沙门菌不断出现,细菌耐药机制复杂,但耐药表型与耐药基因之间往往存在着密切联系[31]。28株伦敦沙门菌氨基糖苷类耐药基因aadB检出率为100.0%,高携带率可能是导致沙门菌对庆大霉素耐药的主要原因。78.6%的菌株同时携带tetA基因和tetB耐药基因,tetA基因携带率小幅增加,tetB基因携带率明显增加,说明这两种耐药基因可使伦敦沙门菌对四环素耐药性加强[31]OqxAB基因是编码多重耐药外排泵的常见基因,检出率为10.7%,aac(6')-Ib-cr基因可以编码灭活酶,检出率为7.1%,qnr家族的基因qnrAqnrBqnrCqnrD等能保护拓扑异构酶Ⅳ和促旋酶来降低药物敏感性,以上基因单独存在时可介导低水平的喹诺酮类药物耐药[32]。由于只有1株菌对传统药物萘啶酸耐药,所以喹诺酮类耐药基因检出率均较低。ESBLs基因是由质粒介导的水解酶,可以水解氨曲南等单环β-内酰胺类抗生素以及头孢他啶和头孢噻肟等第3代头孢菌素[33]。伦敦沙门菌对头孢类抗菌药物全部敏感,未检出blaCTX-MblaOXA,而blaTEM检出率为10.7%,可能部分菌株携带该耐药基因导致其对氨苄西林产生了耐药现象。mcr-1作为介导的黏菌素耐药基因,很少在沙门菌中检出,本研究发现有1株沙门菌携带mcr-1且对多黏菌素耐药,其是否为质粒介导的耐药性亟待人们进一步研究[34]。以上结果提示,在动物饲养过程中,抗菌药物的不合理使用可能是导致细菌对氨基糖苷类、四环素等常见抗生素产生高度耐药的重要原因。喹诺酮类和头孢类药物对沙门菌有很好的抗菌作用,可作为临床用药的选择依据。

本研究可为畜禽养殖临床用药提供理论指导,为防控食品安全做好预警工作,加强市售猪肉的安全管控,对保障公共卫生安全及其人类健康具有重要意义。

4 结论

广州市农贸市场的猪肉中沙门菌污染情况严重且血清型众多,伦敦沙门菌是主要的流行血清型之一。其对传统抗生素产生较为严重的耐药性,尤其对磺胺异唑、链霉素和氯霉素等,且大部分耐药表型与耐药基因之间关系紧密。这提示养殖业需要加强对抗生素使用管理,及时更换抗生素使用方案。

参考文献
[1] ENG S K, PUSPARAJAH P, AB MUTALIB N S, et al. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance[J]. Front Life Sci, 2015, 8(3): 284–293. DOI: 10.1080/21553769.2015.1051243
[2] BEHRAVESH C B, JONES T F, VUGIA D J, et al. Deaths associated with bacterial pathogens transmitted commonly through food: foodborne diseases active surveillance network (FoodNet), 1996-2005[J]. J Infect Dis, 2011, 204(2): 263–267. DOI: 10.1093/infdis/jir263
[3] Centers for Disease Control and Prevention. National Surveillance of Bacterial Foodborne Illnesses (Enteric Diseases): National Salmonella Surveillance[Z/OL]. (2018-05-23)[2020-06-20]. https://www.cdc.gov/nationalsurveillance/salmonella-surveillance.html.
[4] SUN J F, KE B X, HUANG Y H, et al. The molecular epidemiological characteristics and genetic diversity of Salmonella Typhimurium in Guangdong, China, 2007-2011[J]. PLoS One, 2014, 9(11): e113145. DOI: 10.1371/journal.pone.0113145
[5] WANG W, WANG L, SU J Y, et al. Antibiotic susceptibility, biofilm-forming ability, and incidence of Class 1 integron of Salmonella spp. , Escherichia coli, and Staphylococcus aureus isolated from various foods in a school canteen in China[J]. Foodborne Pathog Dis, 2020, 17(4): 269–275. DOI: 10.1089/fpd.2019.2694
[6] MA Y B, LI M, XU X B, et al. High-levels of resistance to quinolone and cephalosporin antibiotics in MDR-ACSSuT Salmonella enterica serovar Enteritidis mainly isolated from patients and foods in Shanghai, China[J]. Int J Food Microbiol, 2018, 286: 190–196. DOI: 10.1016/j.ijfoodmicro.2018.09.022
[7] WANG S J, DUAN H L, ZHANG W, et al. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005[J]. FEMS Immunol Med Microbiol, 2007, 51(1): 8–13. DOI: 10.1111/j.1574-695X.2007.00305.x
[8] JACKSON B R, GRIFFIN P M, COLE D, et al. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998-2008[J]. Emerg Infect Dis, 2013, 19(8): 1239–1244. DOI: 10.3201/eid1908.121511
[9] 胡玉琴, 张彬, 章乐怡, 等. 温州市伦敦沙门菌和德尔卑沙门菌耐药性和分子特征研究[J]. 中国卫生检验杂志, 2020, 30(9): 1056–1058.
HU Y Q, ZHANG B, ZHANG L Y, et al. Study on the antibiotic resistance and molecular characteristics of Salmonella London and Salmonella Derby in Wenzhou, China[J]. Chinese Journal of Health Laboratory Technology, 2020, 30(9): 1056–1058. (in Chinese)
[10] 游旅, 韦小瑜, 李世军, 等. 7株伦敦沙门菌药敏检测和分子分型分析[J]. 医学动物防制, 2019, 35(6): 517–520.
YOU L, WEI X Y, LI S J, et al. Drug resistance and molecular typing of 7 strains of Salmonella London[J]. Journal of Medical Pest Control, 2019, 35(6): 517–520. (in Chinese)
[11] 梁炎, 何燕, 王婷. 从业人员沙门氏菌的血清型分布调查[J]. 临床检验杂志(电子版), 2019, 8(2): 6–7.
LIANG Y, HE Y, WANG T. Investigation of serotype distribution of Salmonella in practitioners[J]. Clinical Laboratory Journal (Electronic Edition), 2019, 8(2): 6–7. (in Chinese)
[12] OCTAVIA S, CHEW K L, CHEW K L, et al. Multidrug-resistant Salmonella enterica serovar London carrying blaNDM-1 encoding plasmid from Singapore[J]. Clin Microbiol Infect, 2020, 26(7): 963–966. DOI: 10.1016/j.cmi.2020.01.033
[13] RAHN K, DE GRANDIS S A, CLARKE R C, et al. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella[J]. Mol Cell Probes, 1992, 6(4): 271–279. DOI: 10.1016/0890-8508(92)90002-F
[14] ZHANG L N, FU Y, XIONG Z Y, et al. Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China[J]. Front Microbiol, 2018, 9: 2104. DOI: 10.3389/fmicb.2018.02104
[15] SHAW K J, RATHER P N, HARE R S, et al. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes[J]. Microbiol Rev, 1993, 57(1): 138–163. DOI: 10.1128/MR.57.1.138-163.1993
[16] DALY M, VILLA L, PEZZELLA C, et al. Comparison of multidrug resistance gene regions between two geographically unrelated Salmonella serotypes[J]. J Antimicrob Chemother, 2005, 55(4): 558–561. DOI: 10.1093/jac/dki015
[17] WIESNER M, ZAIDI M B, CALVA E, et al. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains[J]. BMC Microbiol, 2009, 9: 131. DOI: 10.1186/1471-2180-9-131
[18] YONG D, LIM Y S, YUM J H, et al. Nosocomial outbreak of pediatric gastroenteritis caused by CTX-M-14-type extended-spectrum beta-lactamase-producing strains of Salmonella enterica serovar London[J]. J Clin Microbiol, 2005, 43(7): 3519–3521. DOI: 10.1128/JCM.43.7.3519-3521.2005
[19] LANTOS J, MARJAI E. In vitro transfer of multiple resistance observed in vivo during a Salmonella london epidemic[J]. Acta Microbiol Acad Sci Hung, 1980, 27(1): 47–53.
[20] 徐润琳, 罗万军, 王文娟, 等. 一起新生儿伦敦沙门菌感染流行病学调查及分析[J]. 中华医院感染学杂志, 2014, 24(1): 214–216.
XU R L, LUO W J, WANG W J, et al. Epidemiological analysis of one case of neonatal London Salmonella infection[J]. Chinese Journal of Nosocomiology, 2014, 24(1): 214–216. (in Chinese)
[21] 梁丽红, 王建全, 李艳红, 等. 一起伦敦沙门菌引起的食源性疾病调查及病原分析[J]. 中国卫生检验杂志, 2016, 26(7): 1046–1047, 1056.
LIANG L H, WANG J Q, LI Y H, et al. Investigation and etiological analysis of a food borne disease caused by Salmonella London[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(7): 1046–1047, 1056. (in Chinese)
[22] 杜雄伟, 张珂琪, 李焱, 等. 大连市零售猪肉中沙门氏菌的耐药性检测与分析[J]. 中国动物检疫, 2016, 33(10): 23–25, 30.
DU X W, ZHANG K Q, LI Y, et al. Antimicrobial susceptibility testing of Salmonella in retail pork in Dalian city[J]. China Animal Health Inspection, 2016, 33(10): 23–25, 30. DOI: 10.3969/j.issn.1005-944X.2016.10.006 (in Chinese)
[23] 李兵兵, 刘纯成, 刘靓, 等. 2015-2016年淮安市售禽畜肉中沙门菌污染及其病原学特征[J]. 卫生研究, 2018, 47(2): 260–265, 300.
LI B B, LIU C C, LIU L, et al. Prevalence and etiologic agent of Salmonella in livestock and poultry meats in Huai'an City during 2015-2016[J]. Journal of Hygiene Research, 2018, 47(2): 260–265, 300. (in Chinese)
[24] 林爱红, 夏俊杰, 梁焯南, 等. 2011-2017年深圳市食源性沙门菌血清分型及耐药分析[J]. 实用预防医学, 2019, 26(4): 495–496.
LIN A H, XIA J J, LIANG Z N, et al. Serotyping and drug resistance of foodborne Salmonella isolates in Shenzhen City, 2011-2017[J]. Practical Preventive Medicine, 2019, 26(4): 495–496. DOI: 10.3969/j.issn.1006-3110.2019.04.032 (in Chinese)
[25] XIONG Z Y, WANG S J, HUANG Y M, et al. Ciprofloxacin-Resistant Salmonella enterica Serovar Kentucky ST198 in broiler chicken supply chain and patients, China, 2010-2016[J]. Microorganisms, 2020, 8(1): 140. DOI: 10.3390/microorganisms8010140
[26] WANG Y, XU C Y, ZHANG R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study[J]. Lancet Infect Dis, 2020, 20(10): 1161–1171. DOI: 10.1016/S1473-3099(20)30149-3
[27] BISWAS S, LI Y, ELBEDIWI M, et al. Emergence and dissemination of mcr-Carrying clinically relevant Salmonella typhimurium monophasic clone ST34[J]. Microorganisms, 2019, 7(9): 298. DOI: 10.3390/microorganisms7090298
[28] 杨保伟, 盛敏, 席美丽, 等. 沙门氏菌抗生素抗性机理研究进展[J]. 微生物学通报, 2008, 35(9): 1479–1484.
YANG B W, SHENG M, XI M L, et al. Progress on studies of mechanism of antibiotic resistance of Salmonella[J]. Microbiology China, 2008, 35(9): 1479–1484. DOI: 10.3969/j.issn.0253-2654.2008.09.024 (in Chinese)
[29] VO A T T, VAN DUIJKEREN E, FLUIT A C, et al. Distribution of Salmonella enterica Serovars from humans, livestock and meat in Vietnam and the dominance of Salmonella Typhimurium phage type 90[J]. Vet Microbiol, 2005, 113(1-2): 153–158.
[30] 段瑶, 李杰, 阚飙, 等. 2006-2016年我国畜禽动物源性沙门菌血清型分布及其耐药特征[J]. 疾病监测, 2019, 34(4): 296–302.
DUAN Y, LI J, KAN B, et al. Serotype distribution and drug resistance characteristics of livestock-borne Salmonella in China, 2006-2016[J]. Disease Surveillance, 2019, 34(4): 296–302. (in Chinese)
[31] 侯雪娇, 吴科敏, 莫国东, 等. 食源性沙门氏菌耐药表型与耐药基因的研究[J]. 食品科学, 2016, 37(19): 166–170.
HOU X J, WU K M, MO G D, et al. Evaluation of drug-resistant phenotypes and genes in foodborne Salmonella isolates[J]. Food Science, 2016, 37(19): 166–170. DOI: 10.7506/spkx1002-6630-201619028 (in Chinese)
[32] YASSINE I, RAFEI R, OSMAN M, et al. Plasmid-mediated quinolone resistance: mechanisms, detection, and epidemiology in the Arab countries[J]. Infect Genet Evol, 2019, 76: 104020. DOI: 10.1016/j.meegid.2019.104020
[33] FALGENHAUER L, GHOSH H, GUERRA B, et al. Comparative genome analysis of IncHI2 VIM-1 carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany[J]. Vet Microbiol, 2017, 200: 114–117. DOI: 10.1016/j.vetmic.2015.09.001
[34] HU Y J, NGUYEN S V, LIU C, et al. Complete genome and plasmid sequences of seven isolates of Salmonella enterica subsp. enterica harboring the mcr-1 gene obtained from food in china[J]. Microbiol Resour Announc, 2019, 8(31): e00114–19.