2. 河北省牛羊胚胎技术创新中心, 保定 071000
2. Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071000, China
氨气(NH3)是一种剧毒的环境污染物,被美国环境保护署(environmental protection agency, EPA)确认为环境应激源[1]。在不同国家和地区,工作人员8小时工作日和生活环境中氨的接触限值不同,例如法国接触限值为7 mg·m-3[2],欧盟为18 mg·m-3[3]。在集约化大型畜禽舍中,空气中氨气的浓度范围为1.4~60.9 mg ·m-3[4]。大气中的氨有助于微粒形成并降低空气能见度,影响人类健康和寿命[5]。Beker等[6]研究表明,长时间暴露于低至15.2 mg ·m-3 的氨水平下,会对家禽健康产生负面影响。Reeb-Whitaker等[7]和郭艳等[8]研究表明,环境中高浓度的氨会增加器官和组织中的氨浓度,导致代谢紊乱、组织和器官受损,引发组织病变,降低动物的生长和生产性能。Zhang等[9]和Yi等[10]研究还表明,高浓度的氨气会诱导基因和蛋白质表达的改变,这些基因和蛋白质与脂质代谢、细胞凋亡、细胞结构和生长、免疫反应及氧化应激有关。
1 氨气对呼吸系统的影响氨气是一种常见空气污染物,是霾(PM2.5)的组成部分。Brautbar等[11]和George等[12]认为,氨气对人或动物的危害往往首先表现在呼吸道,尤其是上呼吸道区域,如鼻腔,它是氨气进入人和动物体内的第一途径。Beker等[6]和Zhang等[13]研究表明,高浓度氨气对鸡鼻腔和眼睛的损伤最显著。Jones等[14]研究发现,长期暴露于28 mg·m-3的氨气环境下,会影响猪的嗅觉灵敏度,并导致不可逆的干扰。除鼻腔外,随暴露时间的增加,氨气还会进一步危害气管、支气管、肺等下呼吸道组织。Wang等[15]和Perkins等[16]研究发现,氨气破坏气管黏膜纤毛和肺泡,导致支气管和气管水肿,上皮坏死,并在肺泡腔中发现由纤维蛋白、血液和大量炎性细胞组成的渗出液,表明接触氨气会损伤气管结构的完整性,损害免疫功能,并伴有更高的呼吸道气管炎风险。Phillips等[17]对支气管肺泡灌洗抽样分析表明,氨气通过增加巨噬细胞活性和中性粒细胞百分率诱导肺部炎症。
氨气主要通过以下3个途径影响呼吸系统:1)呼吸紊乱在氨气引起的呼吸毒性中起中心作用,造成严重的继发性影响,甚至可能导致死亡。氨气溶于水会转化为氢氧化铵,吸附于呼吸道黏液,增加黏液的pH,影响黏液在纤毛上的黏度和功能,腐蚀纤毛并使气管无法正常启动免疫反应[18-21]。暴露后气管纤毛排列紊乱[22],将捕获的细菌引向气囊和肺部并最终引起感染[13, 22-24]。同时,呼吸道的形态和结构将发生一系列变化,包括平滑肌增生、肺纤维化、基底层增厚以及细胞组成改变,并伴有炎性细胞浸润,引起周围组织损伤甚至坏死[18]。Kim和Patterson[24]研究还表明,氨气胁迫会增加S100A家族的表达水平,S100A与EGFR结合会导致仔猪呼吸道黏液含量增加,阻塞呼吸道。2)氨气对动物最直接的损害是气管炎症反应,炎症损伤是气管氨气毒性损伤的标志[22]。Wang等[25]研究发现,氨气能促进嗜中性粒细胞分泌各种促炎因子(IL-1β和IL-6)和炎性小体(NLRP3、ASC和Caspase1)。Braissant等[26]和Royes等[27]研究表明,吸入体内的氨气以铵根离子的形式存在,会导致机体氧化应激。Shi等[28]和Singleton等[29]在气管中观察到细胞色素P450同工酶(CYP)和抗氧化酶mRNA表达上调和下调,CYP450酶系统中的CYP1C1,CYP2A1,CYP2C8和CYP17A1,FOXP3和HSP都在NH3的刺激下增加。CYP1B则促进ROS产生,加速Treg / Th1的失衡,并激活Th2和Th17的免疫反应,导致气管损伤发炎[28, 30]。当鸡气管组织中的下游炎症基因暴露于NH3时,NF-κB被激活,炎症反应损伤加剧。3)高浓度的氨会影响有害细菌的定殖率,从而导致呼吸系统损害甚至肺炎。鼻腔微生物的构成可以反映整个呼吸道的菌群结构[31-32]。高浓度氨会影响有害细菌的定殖率,使有害细菌占主导地位。鼻腔菌群失衡会导致呼吸道黏膜免疫功能紊乱[15, 33-34]。Lanaspa等[34]研究表明,猪舍中的氨气对猪鼻腔微生物群有直接影响,并与呼吸系统疾病密切相关。Hamilton等[35]研究发现,仔猪暴露于15.2 mg ·m-3氨气下,会引起萎缩性鼻炎,并使鼻腔中巴斯德芽孢杆菌显著增加。Maliselo和Nkonde[36]研究表明,高浓度氨引起的呼吸道黏膜损伤,增加了禽类对细菌性呼吸道感染的敏感性,尤其是大肠杆菌。莫拉氏菌和链球菌是肺炎患者肺组织中常见的致病菌[37]。Wang等[15]和Gutbier等[38]发现,莫拉菌和链球菌在暴露于19 mg ·m-3氨气的猪的鼻腔中显著增加,并且鼻腔中的莫拉菌能在呼吸过程中进入肺泡,从而引起肺部炎症并导致猪阻塞性肺炎。
2 氨气对神经系统的影响氨气是一种神经毒性物质,影响从鱼类到人类的所有物种[19]。动物长期暴露于高浓度的氨气中,氨气会通过肺泡上皮进入血液,过量的氨无法全部转化为NH4+,环境氨气浓度超过7.6 mg ·m-3则会引起血液中的氨浓度和尿素氮浓度增加[15]。氨气吸入后随血液流至全身组织,透过血脑屏障进入大脑[39],并导致脑氨摄入过多引起神经功能障碍[40],包括脑病、癫痫、共济失调和昏迷等[20]。暴露于高浓度氨气环境中甚至会导致死亡[41-43]。随着血液中血氨浓度的增多,神经细胞的新陈代谢活动受到严重阻碍[44]。在19 mg ·m-3氨气环境下,畜禽神经退行性疾病的基因表达量显著增加,刺激脑神经中枢并引起神经退行性疾病[41]。如果人体吸入氨气量过大,会对神经系统造成过度刺激,导致大脑失去意识或者心脏缺血性骤停[45]。氨气主要通过以下3种途径影响神经系统。
2.1 干扰大脑组织的能量代谢氨可导致线粒体通透性转换孔(mPTP)开放程度加大,使其通透性增加,线粒体基质肿胀,氧化磷酸化不完全及ATP合成阻断[46-47], 还会抑制三羧酸(TCA) 循环中α-酮戊二酸脱氢酶和丙酮酸脱氢酶的活性[48]。Lindell和Jacobs[21]研究表明,进入大脑的NH3可通过摄入α-酮戊二酸、NADH和ATP来减少大脑组织中能量物质的产生,从而使大脑处于抑制状态。氨对脑组织中神经元、小胶质细胞和星形胶质细胞都具有很强的破坏作用[49],星形胶质细胞是氨毒性的主要靶标[46]。Jayakumar等[50]、Rangroo Thrane等[51]和Rama等[52]研究表明,高血氨对星形胶质细胞的神经毒性作用导致氧化代谢途径的改变,随后,糖酵解增加、脑乳酸水平升高、ATP生成减少。氨通过激活氨基酸的谷氨酸受体(N-甲基-达斯巴酸(NMDA))经脑能量代谢途径影响脊椎动物的中枢神经系统。这些受体负责控制突触可塑性和记忆功能。这些受体的激活导致神经元立即去极化和中枢神经系统内的细胞死亡。
2.2 引起大脑中神经递质的变化NH3在谷氨酸合成酶催化下与谷氨酸(Glu)向谷氨酰胺转化是NH3在在脑组织的主要解毒途径,大脑将氨转化为谷氨酰胺的能力有限,高血氨导致大脑氨和谷氨酰胺升高,大脑功能异常,包括脑积水增多、离子运输和神经递质功能异常[53]。Ott等[54]研究发现,高血氨可导致大脑兴奋性神经递质(谷氨酸)过度减少,抑制性神经递质(谷氨酰胺)增多,引起中枢神经系统障碍,神经精神症状的严重程度与脑内氨解毒剂谷氨酰胺浓度呈正相关。Rama Rao和Norenberg[55]研究也表明,氨的毒性作用与谷氨酰胺的产生直接相关。NH3与谷氨酸生成的过多谷氨酰胺[56],在线粒体内降解回谷氨酸和氨,导致线粒体通透性转变,内部线粒体膜电位降低,从而干扰线粒体功能,ATP合成失败并产生额外的自由基[56-57]。
2.3 影响pH和电解质平衡NH3和NH4+可以通过质膜的传播机制传播,并直接影响pH,这可能会影响神经细胞的功能。氨中毒时所引起的各种脑功能、代谢及结构改变有可能通过细胞内钙稳态失调机制实现[56]。氨会损害星形胶质细胞的钙信号传导而导致其功能异常,并且NH4+与K+具有相似的水合离子半径,会与K+竞争转运蛋白通道,直接影响膜电位,破坏K+动态平衡[58-61]。胞外氨和钾的快速增加引起γ-氨基丁酸(GABA)平衡电位的去极化转化,从而导致机体神经元抑制还原[60]。
3 氨气对繁殖性能的影响氨在生殖活动中起着极其重要的作用。环境中高浓度的氨气会导致吸收到动物体内的氨增加,进而损害动物的生殖功能[62-64]。高浓度NH3会降低鸡只的产蛋量、繁殖性能和繁殖率, 且随着氨气浓度的升高,影响越显著[65]。前期研究表明,氨气浓度范围为23.4-200 mg ·m-3时,蛋鸡的产蛋率显著下降[66-68]。李振[69]也发现,蛋鸡产蛋性能随氨气浓度的升高而骤降。氨气环境下所产鸡蛋蛋白高度较低,蛋白pH和蛋白稠度较高,蛋形更大[70]。高浓度的氨气还会对胚胎发育造成危害[62],且显著降低大小鼠的产仔量、仔鼠的初生重、仔鼠的离乳率及胎次间隔[71]。高水平的氨对发育中的胚胎/胎儿有毒,这是由于:1)氨使谷氨酸脱离谷胱甘肽的合成而产生谷氨酰胺并造成氧化应激,从而降低卵巢中孕酮的产生和释放;2)氨与质子结合形成铵离子,从而增加细胞内pH;3)氨从尿素循环中吸取α-酮戊二酸形成谷氨酸,破坏其循环并降低了ATP的产生;4)氨导致的谷氨酰胺增加抑制了内皮细胞从精氨酸产生NO,从而减少了血流量(包括子宫胎盘血流量)和营养物质的输送,导致子宫分泌减弱以及缺氧。这些变化导致胚胎/胎儿存活、生长和发育受阻。
同时,NH3是可以与空气颗粒物结合的空气污染物[72]。许多研究表明,其可能对精子活力和雄性生育能力产生不利影响[73-79]。Pentikäinen等[80]研究表明,NH3可通过破坏精子发生,降低精子浓度20%~40%和使生育率降低20%~30%。另有研究表明,NH3可以降低公猪的精子活力[63, 81-84]。高水平的氨对精子的运动有毒性,这是由于:1)血浆尿素氮和血氨水平升高会增加生殖道的pH,并降低精子的运动性和存活率[85];2)NH3会破坏睾丸中与内分泌有关的蛋白质,从而损害细胞膜完整性,扰乱能量平衡,抑制细胞生长,破坏氧化还原系统。
4 氨气对生长性能的影响许多研究表明,高浓度氨直接危害家禽的呼吸道和免疫功能[86-87],影响家禽的健康和生长性能[88-91],导致多种疾病[22, 92]。Yahav[89]和Sa等[93]将鸡舍氨浓度从0增加到75 mg·kg-1,结果显示,ADFI和ADG数值呈线性下降。Tao等[94]发现,暴露于氨气中,可使鸭体重和脾重量降低,并且随氨气浓度升高,损害加大。Miles等[90]研究表明,暴露于38 mg ·m-3和57 mg ·m-3氨浓度下的肉鸡42日龄体重分别比0 mg ·m-3下的肉鸡降低6%和9%,并且57 mg ·m-3氨浓度下鸡的死亡率要高于0 mg ·m-3。其原因在于以下几个方面。
4.1 影响采食和活动高浓度氨气会强烈刺激畜禽眼部和鼻腔的黏膜[8],引起动物眼睛红肿流泪,导致视力障碍,呼吸困难,影响其觅食和摄食,并随着NH3浓度的增加,摄取食物的频率和时间减少[95],行走和站立的时间增加[96],频繁的活动会增加维持能量的需求并减轻重量[97-98]。而且高浓度的氨影响脑神经中枢的pH[60],对呼吸活动产生明显抑制作用,减少能量需求,减少饲料摄入,影响生长和生产。
4.2 影响机体健康前期试验表明,高浓度氨气可导致肺、肝、胸腺及卵巢等组织损伤[94, 99]。氨暴露可通过激活细胞色素P450酶(CYP)诱导氧化应激[100-102],产生大量ROS,例如H2O2、OH-、O22-[103-104],导致抗氧化系统失调[105-107],引起炎症[105]。抑制与抗氧化剂相关基因(GPx和GST4)的表达并增加鸡胸腺中炎症相关基因(IL-1β,IL-6,IL-8和iNOS)的mRNA表达[99],导致不可逆的细胞损伤。氨气还会导致细胞凋亡,凋亡与疾病的发生直接相关[108]。Shah等[109]试验表明,暴露于氨气会显著增加肉仔鸡法氏囊凋亡细胞,并且凋亡相关基因(如Caspase 3,Caspase 9,Bcl-2和Bax)的mRNA和蛋白质表达显著改变。
4.3 影响肠道消化功能肠道也是空气污染的目标器官,Dybdahl等[110]研究表明,暴露于柴油机排气颗粒会导致结肠黏膜中的DNA链断裂,凋亡和蛋白质氧化。高浓度氨会导致肝疾病,影响肠道免疫力和组织形态[9]。Zheng等[111]和Wang等[15]研究表明,NH3可破坏刷状缘的完整性,减少空肠的内表面积,导致空肠组织中微绒毛的异常缺乏和粘性聚集,并引起空肠组织中SLC(SLC7A9,SLC51A,SLC10A2,SLC26A3和SLC6A19)的异常表达。此外,Tao等[94]研究发现,氨会导致盲肠菌群在属水平发生变化,且随浓度和暴露时间的增加变化增大。肠道功能和内部异常环境必将影响营养物质的利用,从而降低生产性能[112]。
4.4 影响正常代谢前期研究表明,暴露在高浓度的氨气环境中可改变肉鸡的体脂分布[113],影响脂肪合成与分解关键酶活性及其相关基因与蛋白质表达,影响脂肪代谢相关通路[114-115],从而调控机体脂代谢[116]。姜庆林等[117]试验表明,鸭PARα信号途径在氨气应激状态下抑制机体脂代谢。Wang等[15]研究表明,随着氨浓度的增加,猪的脂肪和氨基酸代谢活动加强,但能量和碳水化合物代谢降低,这可能说明,在暴露于低水平氨气的猪中,脂肪和氨基酸比碳水化合物更优先利用。另外,环境氨气浓度过高必然导致机体血氨浓度异常,间接影响脑神经细胞和肌肉细胞的正常代谢,导致畜禽氨气中毒,使生物组织器官对氨的解毒活动加强。黏膜细胞更新,消耗大量由肠细胞供应的氨基酸,且能量需求远高于正常水平,导致原本用于生长的能量被利用,生长性能受到影响。
5 小结氨气是畜禽舍气体污染的主要来源,对畜禽的生产和生殖性能均有负面影响。但其机理研究尚不全面,且单面性强,需更深层次更系统的研究。今后,研究方向应围绕氨气对呼吸、神经、生殖系统及生产特性等方面的影响综合展开,并从分子机理方面探索其作用关键点。
[1] | YE H, XIAO S J, WANG X Q, et al. Characterization of spleen transcriptome of Schizothorax prenanti during Aeromonas hydrophila infection[J]. Mar Biotechnol (NY), 2018, 20(2): 246–256. DOI: 10.1007/s10126-018-9801-0 |
[2] | NIMMERMARK S, LUND V, GUSTAFSSON G, et al. Ammonia, dust and bacteria in welfare-oriented systems for laying hens[J]. Ann Agric Environ Med, 2009, 16(1): 103–113. |
[3] | BURTON D J. Using the NIOSH pocket guide to chemical hazards[J]. Occup Health Saf, 2001, 70(4): 20. |
[4] | VAN DER HEYDEN C, DEMEYER P, VOLCKE E I P. Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: state-of-the-art and perspectives[J]. Biosyst Eng, 2015, 134: 74–93. DOI: 10.1016/j.biosystemseng.2015.04.002 |
[5] | BAUER S E, TSIGARIDIS K, MILLER R. Significant atmospheric aerosol pollution caused by world food cultivation[J]. Geophys Res Lett, 2016, 43(10): 5394–5400. DOI: 10.1002/2016GL068354 |
[6] | BEKER A, VANHOOSER S L, SWARTZLANDER J H, et al. Atmospheric ammonia concentration effects on broiler growth and performance[J]. J Appl Poultry Res, 2004, 13(1): 5–9. DOI: 10.1093/japr/13.1.5 |
[7] | REEB-WHITAKER C K, PAIGEN B, BEAMER W G, et al. The impact of reduced frequency of cage changes on the health of mice housed in ventilated cages[J]. Lab Anim, 2001, 35(1): 58–73. DOI: 10.1258/0023677011911381 |
[8] |
郭艳, 张进良, 李小平, 等. 不同质量浓度氨气对肉鸡生长性能和免疫功能的影响[J]. 河南师范大学学报: 自然科学版, 2020, 48(5): 93–98.
GUO Y, ZHANG J L, LI X P, et al. Effects of different concentrations of ammonia on growth performance and immune function of broiler chickens[J]. Journal of Henan Normal University: Natural Science Edition, 2020, 48(5): 93–98. (in Chinese) |
[9] | ZHANG J Z, LI C, TANG X F, et al. High concentrations of atmospheric ammonia induce alterations in the Hepatic Proteome of Broilers (Gallus gallus): an iTRAQ-based quantitative proteomic analysis[J]. PLoS One, 2015, 10(4): e0123596. DOI: 10.1371/journal.pone.0123596 |
[10] | YI B, CHEN L, SA R N, et al. High concentrations of atmospheric ammonia induce alterations of gene expression in the breast muscle of broilers (Gallus gallus) based on RNA-Seq[J]. BMC Genomics, 2016, 17: 598. DOI: 10.1186/s12864-016-2961-2 |
[11] | BRAUTBAR N, WU M P, RICHTER E D. Chronic ammonia inhalation and interstitial pulmonary fibrosis: a case report and review of the literature[J]. Arch Environ Health: Int J, 2003, 58(9): 592–596. DOI: 10.3200/AEOH.58.9.592-596 |
[12] | GEORGE A, BANG R L, LARI A R, et al. Liquid ammonia injury[J]. Burns, 2000, 26(4): 409–413. DOI: 10.1016/s0305-4179(99)00141-2 |
[13] | ZHANG J Z, LI C, TANG X F, et al. Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia[J]. Proteome Sci, 2015, 13: 9. DOI: 10.1186/s12953-015-0067-4 |
[14] | JONES J B, WATHES C M, PERSAUD K C, et al. Acute and chronic exposure to ammonia and olfactory acuity for n-butanol in the pig[J]. Appl Anim Behav Sci, 2001, 71(1): 13–28. DOI: 10.1016/s0168-1591(00)00168-4 |
[15] | WANG T X, HE Q Y, YAO W L, et al. The variation of nasal microbiota caused by low levels of gaseous ammonia exposure in growing pigs[J]. Front Microbiol, 2019, 10: 1083. DOI: 10.3389/fmicb.2019.01083 |
[16] | PERKINS M W, WONG B, TRESSLER J, et al. Adverse respiratory effects in rats following inhalation exposure to ammonia: respiratory dynamics and histopathology[J]. Inhal Toxicol, 2017, 29(1): 32–41. DOI: 10.1080/08958378.2016.1277571 |
[17] | PHILLIPS C J C, PINES M K, LATTER M, et al. The physiological and behavioral responses of steers to gaseous ammonia in simulated long-distance transport by ship[J]. J Anim Sci, 2010, 88(11): 3579–3589. DOI: 10.2527/jas.2010-3089 |
[18] | Toxicological profile for ammonia[R]. Atlanta: Agency for Toxic Substances and Disease Registry (ATSDR), 2004: 2-6. |
[19] | GEISER T. Idiopathic pulmonary fibrosisa disorder of alveolar wound repair?[J]. Swiss Med Wkly, 2003, 133(29-30): 405–411. |
[20] | HIGASHIYAMA H, YOSHIMOTO D, OKAMOTO Y, et al. Receptor-activated Smad localisation in bleomycin-induced pulmonary fibrosis[J]. J Clin Pathol, 2007, 60(3): 283–289. DOI: 10.1136/jcp.2006.037606 |
[21] | LINDELL K O, JACOBS S S. Idiopathic pulmonary fibrosis[J]. Am J Nurs, 2003, 103(4): 32–42. DOI: 10.1097/00000446-200304000-00016 |
[22] | ZHOU Y, LIU Q X, LI X M, et al. Effects of ammonia exposure on growth performance and cytokines in the serum, trachea, and ileum of broilers[J]. Poult Sci, 2020, 99(5): 2485–2493. DOI: 10.1016/j.psj.2019.12.063 |
[23] | DONE S H, CHENNELLS D J, GRESHAM A C J, et al. Clinical and pathological responses of weaned pigs to atmospheric ammonia and dust[J]. Vet Rec, 2005, 157(3): 71–80. DOI: 10.1136/vr.157.3.71 |
[24] | KIM W K, PATTERSON P H. Effect of minerals on activity of microbial uricase to reduce ammonia volatilization in poultry manure[J]. Poult Sci, 2003, 82(2): 223–231. DOI: 10.1093/ps/82.2.223 |
[25] | WANG D X, ZHANG Y M, CHI Q R, et al. Ammonia exposure induced abnormal expression of cytokines and heat shock proteins via glucose metabolism disorders in chicken neutrophils[J]. Environ Sci Pollut Res, 2019, 26(11): 10529–10536. DOI: 10.1007/s11356-019-04516-4 |
[26] | BRAISSANT O, MCLIN V A, CUDALBU C. Ammonia toxicity to the brain[J]. J Inherit Metab Dis, 2013, 36(4): 595–612. DOI: 10.1007/s10545-012-9546-2 |
[27] | ROYES L F F, GABBI P, RIBEIRO L R, et al. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability[J]. Amino Acids, 2016, 48(6): 1373–1389. DOI: 10.1007/s00726-015-2164-1 |
[28] | SHI Q X, WANG W, CHEN M H, et al. Ammonia induces Treg/Th1 imbalance with triggered NF-κB pathway leading to chicken respiratory inflammation response[J]. Sci Total Environ, 2019, 659: 354–362. DOI: 10.1016/j.scitotenv.2018.12.375 |
[29] | SINGLETON K D, SERKOVA N, BECKEY V E, et al. Glutamine attenuates lung injury and improves survival after sepsis: role of enhanced heat shock protein expression[J]. Crit Care Med, 2005, 33(6): 1206–1213. DOI: 10.1097/01.ccm.0000166357.10996.8a |
[30] | VEITH A C, BOU ARAM B, JIANG W W, et al. Mice lacking the cytochrome P450 1B1 gene are less susceptible to hyperoxic lung injury than wild type[J]. Toxicol Sci, 2018, 165(2): 462–474. DOI: 10.1093/toxsci/kfy154 |
[31] | YAN M L, PAMP S J, FUKUYAMA J, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage[J]. Cell Host Microbe, 2013, 14(6): 631–640. DOI: 10.1016/j.chom.2013.11.005 |
[32] | ZEINELDIN M M, LOWE J F, GRIMMER E D, et al. Relationship between nasopharyngeal and bronchoalveolar microbial communities in clinically healthy feedlot cattle[J]. BMC Microbiol, 2017, 17: 138. DOI: 10.1186/s12866-017-1042-2 |
[33] | KORTEN I, RAMSEY K, MIKA M, et al. Nasal microbiota and respiratory tract infections: the role of viral detection[J]. Am J Respir Crit Care Med, 2019, 199(7): 919–922. DOI: 10.1164/rccm.201710-2020LE |
[34] | LANASPA M, BASSAT Q, MEDEIROS M M, et al. Respiratory microbiota and lower respiratory tract disease[J]. Expert Rev Anti Infect Ther, 2017, 15(7): 703–711. DOI: 10.1080/14787210.2017.1349609 |
[35] | HAMILTON T D C, ROE J M, HAYES C M, et al. Effects of ammonia inhalation and acetic acid pretreatment on colonization kinetics of toxigenic Pasteurella multocida within upper respiratory tracts of swine[J]. J Clin Microbiol, 1998, 36(5): 1260–1265. DOI: 10.1128/JCM.36.5.1260-1265.1998 |
[36] | MALISELO P S, NKONDE G K. Ammonia production in poultry houses and its effect on the growth of Gallus Gallus Domestica (broiler chickens): a case study of a small scale poultry house in riverside, Kitwe, Zambia[J]. Int J Sci Technol Res, 2015, 4(4): 141–145. |
[37] | RⅡSE G C, QVARFORDT I, LARSSON S, et al. Inhibitory effect of N-acetylcysteine on adherence of Streptococcus pneumoniae and Haemophilus influenzae to human oropharyngeal epithelial cells in vitro[J]. Respiration, 2000, 67(5): 552–558. DOI: 10.1159/000067473 |
[38] | GUTBIER B, FISCHER K, DOEHN J M, et al. Moraxella catarrhalis induces an immune response in the murine lung that is independent of human CEACAM5 expression and long-term smoke exposure[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(3): L250–L261. DOI: 10.1152/ajplung.00265.2014 |
[39] |
夏红玉. 急性氨气中毒46例的救治与护理[J]. 吉林医学, 2007, 28(2): 251.
XIA H Y. The treatment and nursing of 46 cases of acute ammonia poisoning[J]. Jilin Medicine, 2007, 28(2): 251. DOI: 10.3969/j.issn.1004-0412.2007.02.079 (in Chinese) |
[40] | ONG J P, AGGARWAL A, KRIEGER D, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy[J]. Am J Med, 2003, 114(3): 188–193. DOI: 10.1016/s0002-9343(02)01477-8 |
[41] | NORENBERG M D, RAMA RAO K V, JAYAKUMAR A R. Ammonia neurotoxicity and the mitochondrial permeability transition[J]. J Bioenerg Biomembr, 2004, 36(4): 303–307. DOI: 10.1023/B:JOBB.0000041758.20071.19 |
[42] | RAMA RAO K V, JAYAKUMAR A R, NORENBERG D M. Ammonia neurotoxicity: role of the mitochondrial permeability transition[J]. Metab Brain Dis, 2003, 18(2): 113–127. DOI: 10.1023/a:1023858902184 |
[43] | SKOWROŃSKA M, ALBRECHT J. Oxidative and nitrosative stress in ammonia neurotoxicity[J]. Neurochem Int, 2013, 62(5): 731–737. DOI: 10.1016/j.neuint.2012.10.013 |
[44] |
哈斯苏荣, 杜小燕, 蒋金书. 复方丁氨丙磷溶液对肉仔鸡生产性能和血液生理生化指标的影响[J]. 中国兽医杂志, 2004, 40(5): 12–14.
HASI S R, DU X Y, JIANG J S. Effect of compound butaphopan on performance and blood biochemical parmeters of broilers[J]. Chinese Journal of Veterinary Medicine, 2004, 40(5): 12–14. DOI: 10.3969/j.issn.0529-6005.2004.05.004 (in Chinese) |
[45] |
张福. 氨气对大鼠胸主动脉血管和心脏NO/cGMP信号通路等的影响[D]. 太原: 山西大学, 2017.
ZHANG F. Effects of ammonia on NO/cGMP passway in rat vessel and heart[D]. Taiyuan: Shanxi University, 2017. (in Chinese) |
[46] | ALVAREZ V M, RAMA RAO K V, BRAHMBHATT M, et al. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes[J]. Neurosci Res, 2011, 89(12): 2028–2040. DOI: 10.1002/jnr.22708 |
[47] | MALIK S G, IRWANTO K A, OSTROW J D, et al. Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver[J]. BMC Res Notes, 2010, 3: 162. DOI: 10.1186/1756-0500-3-162 |
[48] | NAKHOUL N L, ABDULNOUR-NAKHOUL S M, BOULPAEP E L, et al. Substrate specificity of Rhbg: ammonium and methyl ammonium transport[J]. Am J Physiol Cell Physiol, 2010, 299(3): C695–C705. DOI: 10.1152/ajpcell.00019.2010 |
[49] | COOPER A J, MCDONALD J M, GELBARD A S, et al. The metabolic fate of13N-labeled ammonia in rat brain[J]. J Biol Chem, 1979, 254(12): 4982–4992. DOI: 10.1016/S0021-9258(18)50550-0 |
[50] | JAYAKUMAR A R, LIU M L, MORIYAMA M, et al. Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling[J]. J Biol Chem, 2008, 283(49): 33874–33882. DOI: 10.1074/jbc.M804016200 |
[51] | RANGROO THRANE V, THRANE A S, CHANG J, et al. Real-time analysis of microglial activation and motility in hepatic and hyperammonemic encephalopathy[J]. Neuroscience, 2012, 220: 247–255. DOI: 10.1016/j.neuroscience.2012.06.022 |
[52] | RAMA RAO K V, VERKMAN A S, CURTIS K M, et al. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure[J]. Neurobiol Dis, 2014, 63: 222–228. DOI: 10.1016/j.nbd.2013.11.018 |
[53] | BUTTERWORTH R F. Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine[J]. Mol Genet Metab, 2014, 113(1-2): 113–117. DOI: 10.1016/j.ymgme.2014.06.003 |
[54] | OTT P, CLEMMESEN O, LARSEN F S. Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis[J]. Neurochem Int, 2005, 47(1-2): 13–18. DOI: 10.1016/j.neuint.2005.04.002 |
[55] | RAMA RAO K V, NORENBERG M D. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy[J]. Neurochem Int, 2012, 60(7): 697–706. DOI: 10.1016/j.neuint.2011.09.007 |
[56] |
仲月霞, 曹义战, 王伯良, 等. 急性氨气中毒16例的救治分析[J]. 西南国防医药, 2003, 13(6): 623–625.
ZHONG Y X, CAO Y Z, WANG B L, et al. Experience in rescuing patients with acute ammonia poisoning: report of 16 cases[J]. Medical Journal of National Defending Forces in Southwest China, 2003, 13(6): 623–625. DOI: 10.3969/j.issn.1004-0188.2003.06.023 (in Chinese) |
[57] | ALBRECHT J, NORENBERG M D. Glutamine: a Trojan horse in ammonia neurotoxicity[J]. Hepatology, 2006, 44(4): 788–794. DOI: 10.1002/hep.21357 |
[58] | BOSOI C R, ZWINGMANN C, MARIN H, et al. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease[J]. J Hepatol, 2014, 60(3): 554–560. DOI: 10.1016/j.jhep.2013.10.011 |
[59] | MARTINEZ-HERNANDEZ A, BELL K P, NORENBERG M D. Glutamine synthetase: glial localization in brain[J]. Science, 1977, 195(4284): 1356–1358. DOI: 10.1126/science.14400 |
[60] | DAM G, KEIDING S, MUNK O L, et al. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake[J]. Hepatology, 2013, 57(1): 258–265. DOI: 10.1002/hep.25995 |
[61] |
李夏青, 韩德五, 赵元昌. 氨对脑细胞胞浆游离钙含量的影响[J]. 中国应用生理学杂志, 2000, 16(2): 114–116.
LI X Q, HAN D W, ZHAO Y C. The effect of ammonia on the free calcium content of isolated brain cells[J]. Chinese Journal of Applied Physiology, 2000, 16(2): 114–116. DOI: 10.3969/j.issn.1000-6834.2000.02.006 (in Chinese) |
[62] | BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environ Sci Pollut Res, 2013, 20(11): 8092–8131. DOI: 10.1007/s11356-013-2051-9 |
[63] | DENG Z B, CHEN F, ZHANG M X, et al. Association between air pollution and sperm quality: a systematic review and meta-analysis[J]. Environ Pollut, 2016, 208: 663–669. DOI: 10.1016/j.envpol.2015.10.044 |
[64] | CAI L S, KOZIEL J A, LO Y C, et al. Characterization of volatile organic compounds and odorants associated with swine barn particulate matter using solid-phase microextraction and gas chromatography-mass spectrometry-olfactometry[J]. J Chromatogr A, 2006, 1102(1-2): 60–72. DOI: 10.1016/j.chroma.2005.10.040 |
[65] |
郝二英, 陈辉, 赵宇, 等. 不同浓度氨气对蛋鸡生产性能、蛋品质的影响[J]. 中国家禽, 2015, 37(19): 36–39.
HAO E Y, CHEN H, ZHAO Y, et al. Effect of different concentrations of ammonia on the production performance and egg quality of laying hens[J]. China Poultry, 2015, 37(19): 36–39. (in Chinese) |
[66] |
布仁, 红华. 环境因子对蛋鸡生产性能的影响[J]. 家畜生态, 2001, 22(2): 40–43.
BU R, HONG H. Study on the effect of environmental factors on the productivity in layers[J]. Ecology of Domestic Animal, 2001, 22(2): 40–43. DOI: 10.3969/j.issn.1673-1182.2001.02.009 (in Chinese) |
[67] | AMER A H, PINGEL H, HILLIG J, et al. Impact of atmospheric ammonia on laying performance and egg shell strength of hens housed in climatic chambers[J]. Archiv Fur Geflugelkunde, 2004, 68(3): 120–125. |
[68] | KILIC I, YASLIOGLU E. Ammonia and carbon dioxide concentrations in a layer house[J]. Asian-Australas J Anim Sci, 2014, 27(8): 1211–1218. DOI: 10.5713/ajas.2014.14099 |
[69] |
李振. 鸡舍有害气体的来源、危害及调控[J]. 兽医导刊, 2007(2): 41–42.
LI Z. Sources, hazards and control of harmful gases in chicken houses[J]. Veterinary Guide, 2007(2): 41–42. DOI: 10.3969/j.issn.1673-8586.2007.02.021 (in Chinese) |
[70] | CHARLES D R, PAYNE C G. The influence of graded levels of atmospheric ammonia on chickens.I.Effects on respiration and on the performance of broilers and replacement growing stock[J]. Br Poult Sci, 1966, 7(3): 177–187. DOI: 10.1080/00071668608415622 |
[71] |
徐磊, 高杰, 张道华, 等. 不同氨气浓度饲养环境对大小鼠繁育生长性能的影响研究[J]. 医学动物防制, 2016, 32(2): 183–186.
XU L, GAO J, ZHANG D H, et al. The effects of ammonia concentration on the breeding of mice and rats[J]. Journal of Medical Pest Control, 2016, 32(2): 183–186. (in Chinese) |
[72] | CAMBRA-LÓPEZ M, AARNINK A J A, ZHAO Y, et al. Airborne particulate matter from livestock production systems: a review of an air pollution problem[J]. Environ Pollut, 2010, 158(1): 1–17. DOI: 10.1016/j.envpol.2009.07.011 |
[73] |
谈立峰, 孙雪照, 李燕南, 等. 甲萘威农药生产职业暴露对男工精子和精液质量的影响[J]. 中华劳动卫生职业病杂志, 2005, 23(2): 87–90.
TAN L F, SUN X Z, LI Y N, et al. Effects of carbaryl production exposure on the sperm and semen quality of occupational male workers[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2005, 23(2): 87–90. DOI: 10.3760/cma.j.issn.1001-9391.2005.02.003 (in Chinese) |
[74] | ZHANG W, ZHAO Y, ZHANG P, et al. Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can Be inheritable[J]. Chemosphere, 2018, 194: 147–157. DOI: 10.1016/j.chemosphere.2017.11.164 |
[75] | BIRDSALL M A, PEEK J, VALIAPAN S. Sperm quality in New Zealand: is the downward trend continuing?[J]. N Z Med J, 2015, 128(1423): 50–56. |
[76] | FATHI NAJAFI T, LATIFNEJAD ROUDSARI R, NAMVAR F, et al. Air pollution and quality of sperm: a meta-analysis[J]. Iran Red Crescent Med J, 2015, 17(4): e26930. DOI: 10.5812/ircmj.17(4)2015.26930 |
[77] | HAMMOUD A, CARRELL D T, GIBSON M, et al. Decreased sperm motility is associated with air pollution in Salt Lake City[J]. Fertil Steril, 2010, 93(6): 1875–1879. DOI: 10.1016/j.fertnstert.2008.12.089 |
[78] | JÓŹWIK M, ÓŹWIK M, WOȽCZYŃSKI S, et al. Ammonia concentration in human preovulatory ovarian follicles[J]. Eur J Obstet Gynecol Reprod Biol, 2001, 94(2): 256–260. DOI: 10.1016/s0301-2115(00)00320-1 |
[79] | HAMMON D S, HOLYOAK G R, DHIMAN T R. Association between blood plasma urea nitrogen levels and reproductive fluid urea nitrogen and ammonia concentrations in early lactation dairy cows[J]. Anim Reprod Sci, 2005, 86(3-4): 195–204. DOI: 10.1016/j.anireprosci.2004.08.003 |
[80] | PENTIKÄINEN V, SUOMALAINEN L, ERKKILÄ K, et al. Nuclear factor-κB activation in human testicular apoptosis[J]. Am J Pathol, 2002, 160(1): 205–218. DOI: 10.1016/s0002-9440(10)64364-7 |
[81] | YANG L L, ZHAO Y, LUO S M, et al. Toxic effects and possible mechanisms of hydrogen sulfide and/or ammonia on porcine oocyte maturation in vitro[J]. Toxicol Lett, 2018, 285: 20–26. DOI: 10.1016/j.toxlet.2017.12.019 |
[82] | HINE C, HARPUTLUGIL E, ZHANG Y, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits[J]. Cell, 2015, 160(1-2): 132–144. DOI: 10.1016/j.cell.2014.11.048 |
[83] | NOWIK M, KAMPIK N B, MIHAILOVA M, et al. Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and ratsspecies differences and technical considerations[J]. Cell Physiol Biochem, 2010, 26(6): 1059–1072. DOI: 10.1159/000323984 |
[84] | CENTOLA G M, BLANCHARD A, DEMICK J, et al. Decline in sperm count and motility in young adult men from 2003 to 2013: observations from a U. S. sperm bank[J]. Andrology, 2016, 4(2): 270–276. DOI: 10.1111/andr.12149 |
[85] | YUAN L, LIU J G, ZHAO J, et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility[J]. Mol Cell, 2000, 5(1): 73–83. DOI: 10.1016/s1097-2765(00)80404-9 |
[86] | WEI F X, HU X F, XU B, et al. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers[J]. Genet Mol Res, 2015, 14(2): 3160–3169. DOI: 10.4238/2015.April.10.27 |
[87] | XIONG Y, TANG X F, MENG Q S, et al. Differential expression analysis of the broiler tracheal proteins responsible for the immune response and muscle contraction induced by high concentration of ammonia using iTRAQ-coupled 2D LC-MS/MS[J]. Sci China Life Sci, 2016, 59(11): 1166–1176. DOI: 10.1007/s11427-016-0202-8 |
[88] | SOLIMAN E S, MOAWED S A, HASSAN R A. Influence of microclimatic ammonia levels on productive performance of different broilers' breeds estimated with univariate and multivariate approaches[J]. Vet World, 2017, 10(8): 880–887. DOI: 10.14202/vetworld.2017.880-887 |
[89] | YAHAV S. Ammonia affects performance and thermoregulation of male broiler chickens[J]. Anim Res, 2004, 53(4): 289–293. DOI: 10.1051/animres:2004015 |
[90] | MILES D M, BRANTON S L, LOTT B D. Atmospheric ammonia is detrimental to the performance of modern commercial broilers[J]. Poult Sci, 2004, 83(10): 1650–1654. DOI: 10.1093/ps/83.10.1650 |
[91] | DONG X, LIU Q, KAN D, et al. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii[J]. Ecotoxicol Environ Saf, 2020, Feb; 189: 110046. DOI: 10.1016/j.ecoenv.2019.110046.Epub2019Dec10.PMID:31835043 |
[92] | HARRIS A N, LEE H W, OSIS G, et al. Differences in renal ammonia metabolism in male and female kidney[J]. Am J Physiol Renal Physiol, 2018, 315(2): F211–F222. DOI: 10.1152/ajprenal.00084.2018 |
[93] | SA R N, XING H, LUAN S J, et al. Atmospheric ammonia alters lipid metabolism-related genes in the livers of broilers (Gallus gallus)[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102(2): e941–e947. DOI: 10.1111/jpn.12859 |
[94] | TAO Z Y, XU W J, ZHU C H, et al. Effects of ammonia on intestinal microflora and productive performance of laying ducks[J]. Poult Sci, 2019, 98(5): 1947–1959. DOI: 10.3382/ps/pey578 |
[95] |
阿卜杜热合曼·达尼亚尔. 不同氨气浓度对黄麻羽肉鸡生产及抗氧化性能、血氨及尿酸的影响[D]. 石河子: 石河子大学, 2018.
ABUDUREHEMAN D. Effects of different ammonia concentration on the production and antioxidant properties, blood ammonia and uric acid of jute feather broiler[D]. Shihezi: Shihezi University, 2018. (in Chinese) |
[96] |
李东卫, 卢庆萍, 白水莉, 等. 模拟条件下鸡舍氨气浓度对肉鸡生长性能和日常行为的影响[J]. 动物营养学报, 2012, 24(2): 322–326.
LI D W, LU Q P, BAI S L, et al. Effects of ammonia concentration in poultry house on growth performance and conventional behavior of broilers under simulated conditions[J]. Chinese Journal of Animal Nutrition, 2012, 24(2): 322–326. DOI: 10.3969/j.issn.1006-267x.2012.02.019 (in Chinese) |
[97] |
刘明. 不同氨气浓度对肉牛生长性能以及生理生化指标的影响[D]. 杨凌: 西北农林科技大学, 2019.
LIU M. Effects of different NH3 concentration on growth performance, physiological and biochemical indexes of cattle[D]. Yangling: Northwest A&F University, 2019. (in Chinese) |
[98] |
曹进, 张峥. 封闭猪场内氨气对猪群生产性能的影响及控制试验[J]. 养猪, 2003(4): 42–44.
CAO J, ZHANG Z. The effect of ammonia gas on the performance of pig herd and its control experiment in closed pig farm[J]. Swine Production, 2003(4): 42–44. DOI: 10.3969/j.issn.1002-1957.2003.04.023 (in Chinese) |
[99] | CHEN D C, MIAO Z Y, PENG M Q, et al. The co-expression of circRNA and mRNA in the thymuses of chickens exposed to ammonia[J]. Ecotoxicol Environ Saf, 2019, 176: 146–152. DOI: 10.1016/j.ecoenv.2019.03.076 |
[100] | LIANG L X, AI L Y, QIAN J, et al. Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes[J]. Sci Rep, 2015, 5: 11763. DOI: 10.1038/srep11763 |
[101] | MOUSAVI S E, AMINI H, HEYDARPOUR P, et al. Air pollution, environmental chemicals, and smoking may trigger vitamin D deficiency: evidence and potential mechanisms[J]. Environ Int, 2019, 122: 67–90. DOI: 10.1016/j.envint.2018.11.052 |
[102] | DE PAULA RIBEIRO J, KALB A C, CAMPOS P P, et al. Toxicological effects of particulate matter (PM2.5) on rats: bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity[J]. Chemosphere, 2016, 163: 569–577. DOI: 10.1016/j.chemosphere.2016.07.094 |
[103] | MURTHY C R K, BENDER A S, DOMBRO R S, et al. Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes[J]. Neurochem Int, 2000, 37(2-3): 255–268. DOI: 10.1016/s0197-0186(00)00028-0 |
[104] | RAMA S, MANJABHAT S N. Protective effect of shrimp carotenoids against ammonia stress in common carp, Cyprinus carpio[J]. Ecotoxicol Environ Saf, 2014, 107: 207–213. DOI: 10.1016/j.ecoenv.2014.06.016 |
[105] | DAI H L, SONG D, XU J N, et al. Ammonia-induced Na, K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling[J]. Neurochem Int, 2013, 63(6): 610–625. DOI: 10.1016/j.neuint.2013.09.005 |
[106] | SINHA A K, ZINTA G, ABDELGAWAD H, et al. High environmental ammonia elicits differential oxidative stress and antioxidant responses in five different organs of a model estuarine teleost (Dicentrarchus labrax)[J]. Comp Biochem Physiol C: Toxicol Pharmacol, 2015, 174-175: 21–31. DOI: 10.1016/j.cbpc.2015.06.002 |
[107] | SU Y F, CHEN Z F, YAN L L, et al. Optimizing combination of liver-enriched transcription factors and nuclear receptors simultaneously favors ammonia and drug metabolism in liver cells[J]. Exp Cell Res, 2018, 362(2): 504–514. DOI: 10.1016/j.yexcr.2017.12.015 |
[108] | PU J N, TIAN G, LI B, et al. Trace mineral overload induced hepatic oxidative damage and apoptosis in pigs with long-term high-level dietary mineral exposure[J]. J Agric Food Chem, 2016, 64(8): 1841–1849. DOI: 10.1021/acs.jafc.5b05613 |
[109] | SHAH S W A, CHEN J Q, HAN Q, et al. Ammonia inhalation impaired immune function and mitochondrial integrity in the broilers bursa of fabricius: Implication of oxidative stress and apoptosis[J]. Ecotoxicol Environ Saf, 2020, 190: 1100788. |
[110] | DYBDAHL M, RISOM L, MØLLER P, et al. DNA adduct formation and oxidative stress in colon and liver of Big Blue® rats after dietary exposure to diesel particles[J]. Carcinogenesis, 2003, 24(11): 1759–1766. DOI: 10.1093/carcin/bgg147 |
[111] | ZHENG S F, JIN X, CHEN M H, et al. Hydrogen sulfide exposure induces jejunum injury via CYP450 s/ROS pathway in broilers[J]. Chemosphere, 2019, 214: 25–34. DOI: 10.1016/j.chemosphere.2018.09.002 |
[112] |
杨新宇, 崔嘉, 陈小风, 等. 应用Illumina-HiSeq高通量测序技术分析氨气对小鼠肠道菌群的影响[J]. 中国兽医学报, 2019, 39(5): 948–955.
YANG X Y, CUI J, CHEN X F, et al. Effects of ammonia on intestinal microbiota diversity of mice analyzed by Illumina-HiSeq high-throughput sequencing technology[J]. Chinese Journal of Veterinary Science, 2019, 39(5): 948–955. (in Chinese) |
[113] |
邢焕. 舍内氨气对肉鸡脂肪代谢的影响[D]. 北京: 中国农业科学院, 2015.
XING H. Effect of ammonia in houses on lipid metabolism of broilers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese) |
[114] | YI B, CHEN L, SA R N, et al. Transcriptome profile analysis of breast muscle tissues from high or low levels of atmospheric ammonia exposed broilers (Gallus gallus)[J]. PLoS One, 2016, 11(9): e0162631. DOI: 10.1371/journal.pone.0162631 |
[115] | TANG S, XIE J, WU W, et al. High ammonia exposure regulates lipid metabolism in the pig skeletal muscle via mTOR pathway[J]. Sci Total Environ, 2020, 740: 139917. DOI: 10.1016/j.scitotenv.2020.139917.Epub2020Jun3.PMID:32563870 |
[116] |
伊宝. 基于RNA-Seq的舍内氨气对肉鸡胸肌生长发育的分子机制[D]. 北京: 中国农业科学院, 2017.
YI B. The molecular mechanism of ammonia on growth and development of breast muscle in broilers based on RNA-Seq[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) |
[117] |
姜庆林, 王志国, 徐文娟, 等. 舍内氨气浓度对鸭肝脏PPARα、FABP1及LPL基因表达的影响[J]. 扬州大学学报: 农业与生命科学版, 2019, 40(6): 82–85.
JIANG Q L, WANG Z G, XU W J, et al. Effect of different ammonia concentration on the expression of PPARα, FABP1 and LPL genes in duck liver[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2019, 40(6): 82–85. (in Chinese) |