畜牧兽医学报  2021, Vol. 52 Issue (12): 3471-3479. DOI: 10.11843/j.issn.0366-6964.2021.012.014    PDF    
绵羊miR-200b对卵泡颗粒细胞周期和凋亡的影响
宋鹏琰, 锡建中, 张振红, 付强, 岳巧娴, 张配颖, 周荣艳     
河北农业大学动物科技学院, 保定 071001
摘要:旨在揭示miR-200b在绵羊卵泡颗粒细胞的作用。本研究利用在线工具(TargetScan、miRTarBase及miRDB)预测miR-200b的靶基因,并利用KOBAS对其进行GO和KEGG通路富集分析。将分离培养的绵羊卵泡颗粒细胞分为4组,分别转染miR-200b mimic、mimic NC、miR-200b inhibitor和inhibitor NC,每组6个重复。采用CCK8法分别检测转染24、48和72 h颗粒细胞的存活率;采用荧光定量PCR检测miR-200b、CDK4、CDK6、CCND1、CCND2、BaxBcl-2基因的表达水平。利用3种在线工具预测到25个miR-200b的共同靶基因,GO和KEGG通路富集分析发现这些基因富集在细胞的增殖分化、细胞周期及生殖发育过程;转染miR-200b mimic、miR-200b inhibitor和NC后,颗粒细胞存活率随时间延长呈“V”型趋势降低,且48 h达最低(P < 0.01);miR-200b inhibitor与inhibitor NC组相比,miR-200b表达量无显著差异(P>0.05);与mimic NC相比,miR-200b mimic组极显著促进miR-200b表达(P < 0.001),显著下调CDK4(P < 0.01)、CDK6(P < 0.001)和CCND1(P < 0.001)、CCND2(P < 0.05)和Bcl-2(P < 0.01)基因表达水平,Bax表达并无显著变化(P>0.05),且极显著下调Bcl-2与Bax比值(P < 0.001)。综上所述,miR-200b抑制绵羊卵泡颗粒细胞细胞周期和增殖并促进其凋亡。
关键词miR-200b    细胞周期    凋亡    颗粒细胞    绵羊    
Effects of Ovine miR-200b on Cell Cycle and Apoptosis of Follicular Granulosa Cells
SONG Pengyan, XI Jianzhong, ZHANG Zhenhong, FU Qiang, YUE Qiaoxian, ZHANG Peiying, ZHOU Rongyan     
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
Abstract: The aim of study was to reveal the effect of ovine miR-200b on the follicular granulosa cells. The predicted target genes of miR-200b by 3 online tools (TargetScan, miRTarBase and miRDB) were analyzed with KOBAS for GO and KEGG pathway enrichment. The isolated and cultured sheep follicular granulosa cells were divided into 4 groups transfected with miR-200b mimic, mimic NC, miR-200b inhibitor and inhibitor NC, respectively, with 6 replicates in each group. CCK8 was used to detect the proliferation of granulosa cells at 24, 48 and 72 h after transfection. The expression level of miR-200b, CDK4, CDK6, CCND1, CCND2, Bax and Bcl-2 genes were measured by fluorescence quantitative PCR. A total of 25 common target genes of miR-200b were predicted by 3 online tools. These predicted target genes were enriched in cell proliferation and differentiation, cell cycle and reproductive development by GO and KEGG enrichment analysis. The survival rate of granulosa cell with time was a "V" decreased trendency and reached the lowest at 48 h (P < 0.01) after transfection. There were no significant difference in miR-200b expression (P>0.05) between miR-200b inhibitor and inhibitor NC groups. Compared with mimic NC group, miR-200b mimic group significantly increased the expression of miR-200b (P < 0.001), significantly down-regulated the expression of CDK4 (P < 0.01), CDK6 (P < 0.001), CCND1 (P < 0.001), CCND2 (P < 0.05) and Bcl-2 (P < 0.01), while the expression of Bax did not significantly change (P>0.05), and extremely significantly decreased the ratio of Bcl-2 to Bax (P < 0.001). In summary, miR-200b can inhibit the cell cycle and proliferation, and promote the apoptosis of follicular granulosa cells in sheep.
Key words: miR-200b    cell cycle    apoptosis    granulosa cell    sheep    

颗粒细胞(granulosa cells,GCs)作为哺乳动物卵巢的主要功能细胞,在卵泡发育过程中发挥至关重要的作用。卵泡发育起始于颗粒细胞的发育,窦前卵泡发育后期,颗粒细胞开始表达FSHR,可使雄激素转变为雌激素,促进卵泡发育,形成优势卵泡[1]。研究发现,卵泡在不同发育阶段都存在卵泡闭锁[2],而卵泡闭锁受多种因素调节,其中卵泡颗粒细胞的凋亡就能够直接诱发卵泡闭锁[3-4]

microRNA(miRNA)是一种细胞内源性长度约22~24 nt的非编码RNA,通过调控靶基因参与多种细胞过程,如细胞凋亡、分化和增殖[5-6]。利用高通量测序技术从不同物种的卵巢组织中鉴定出大量miRNAs[7-12],研究发现其广泛参与原始卵泡募集[13-14]、优势卵泡选择[15]、颗粒细胞增殖分化[16]、甾体类激素的合成与分泌[17-19]、卵母细胞成熟[20]、排卵[21]以及黄体形成[22]等卵泡发育的各个环节[23]。miR-483-5p和miR-486-5p与人卵丘细胞的增殖和卵泡的发育相关[24],miR-145影响转化生长因子β受体2 (TGFBR2)基因的表达进而调控始基卵泡的募集[13],miR-150通过抑制类固醇合成急性调节蛋白(STAR)基因的表达影响类固醇激素的合成和分泌[17]。miR-214-3p可能通过靶向线粒体融合蛋白-2(MFN2) 和核受体5A1(NR5A1)调控猪颗粒细胞增殖和雌激素的合成[18]。因此,miRNA在动物卵巢周期性变化、激素合成和繁殖过程发挥重要调控作用。

miR-200家族包括miR-200a、miR-200b、miR-200c、miR-141和miR-429,且在脊椎动物高度保守[25]。miR-200a和miR-141可能通过靶向CD36和肿瘤坏死因子α刺激因子-6(TNFAIP6)调控山羊的卵泡发育[26],miR-200b可能通过下调GNAQ反馈调控GnRH的表达来调控绵羊的发情过程[27]。此外,敲除miR-200b和miR-429的雌性小鼠不排卵[28],敲除miR-429a、miR-200a和miR-200b显著降低斑马鱼的精子运动[29]。miR-200s参与动物卵泡发育、发情周期、排卵及精子运动等生物过程,由此可见其与动物生殖密切相关。本课题组前期研究发现,miR-200s在小尾寒羊发情期和间情期卵巢中差异表达[30]。研究证实,miR-200b可以通过直接靶向结合磷酸酶张力蛋白同源物(PTEN)3′UTR抑制卵巢颗粒细胞(KGN)增殖[31]。本试验以miR-200b为研究对象,初步探索其对绵羊卵泡颗粒细胞增殖凋亡过程的影响,为进一步研究miR-200b对绵羊卵泡发育的调控机制奠定基础。

1 材料与方法 1.1 材料

DMEM/F12培养基和胎牛血清FBS(Gibco,美国)购自赛默飞世尔科技(Thermo Fisher Scientific)有限公司;CCK8检测试剂盒购自日本同仁化学研究所(Dojindo,日本);HiPerFect Transfection Reagent购自QIAGEN。miR-200b mimic、miR-200b inhhibitor、mimic NC、inhibitor NC由广州锐博生物科技有限公司合成。

1.2 绵羊miR-200b的生物信息学分析

通过NCBI(https://www.ncbi.nlm.nih.gov/)及miRBase(http://www.mirbase.org/)数据库查找各物种miR-200b的成熟序列。利用在线工具TargetScan(http://www.targetscan.org/vert_72/)、miRDB(hwz ttp: //www.mirdb.org/index.html)和miRTarBase(http://mirtarbase.cuhk.edu.cn/php/index.php)分别对miR-200b进行靶基因预测,将数据进行分析整理,利用在线工具KOBAS 3.0(http://kobas.cbi.pku.edu.cn/kobas3/?t=1)对靶基因进行Gene Ontology(GO)和Kyoto Encyclopedia of Genes and Genomes(KEGG)分析。

1.3 绵羊卵泡颗粒细胞的分离培养

绵羊(小尾寒羊)卵巢采自保定瑞丽肉食品有限公司。将采集的卵巢置于37 ℃生理盐水(含1%双抗)中运回实验室。75%酒精润洗消毒后,预热生理盐水洗涤3次,剪去多余脂肪和系膜,转至超净台。PBS洗3次,利用无菌刀片在无血清培养基中轻轻划破卵泡(3~7 mm),使卵泡液混于培养基中。然后将混合液转移至15 mL离心管,1 500 r·min-1离心10 min,弃上清,PBS洗涤两次,加入2 mL DMEM/F12(1∶1)完全培养基(含10%胎牛血清,1%双抗和50 μg·mL-1丙酮酸钠)吹打混匀后接种于25 cm细胞培养瓶中,再加入3 mL完全培养基。最后置于37 ℃、5% CO2培养箱内预培养过夜。第2天清洗换液,继续培养至细胞汇合度达70%~90%时传代。

1.4 绵羊卵泡颗粒细胞的转染与增殖检测

转染前以每孔2×104的密度将颗粒细胞接种于96孔板,每孔100 μL细胞悬液,每组6个重复,37 ℃预培养。用opti-M分别稀释50 nmol·L-1 miR-200b mimic(过表达组)、mimic NC(mimic阴性对照组)和100 nmol·L-1 miR-200b inhibitor(抑表达组)、inhibitor NC(inhibitor阴性对照组),低速漩涡混匀,加入0.75 μL HiPerFect Transfection Reagent,低速漩涡混匀,室温静置10 min,形成转染复合体。然后将转染复合体逐滴加至96孔板中。分别在颗粒细胞转染24、48和72 h后,每孔加10 μL CCK8溶液,37 ℃、5% CO2培养箱内孵育2 h,利用酶标仪检测吸光度(450 nm),观察细胞增殖情况。试验重复3次。

1.5 引物设计

采用茎环法设计绵羊miR-200b引物,其反转录引物序列:CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCATCATTA,上游引物序列:GCCGAGTAATACTGCCTGG,下游通用序列:CTCAACTGGTGTCGTGGA,并以U6为内参基因。利用Primer 3.0软件设计其他基因的引物, 并通过NCBI中Primer-BLAST初步查验引物特异性。CDK4、CDK6、CCND1、CCND2、BaxBcl-2表达量的检测均以GAPDH为内参基因。引物均由通用生物系统有限公司合成,引物序列详见表 1

表 1 qRT-PCR引物序列 Table 1 qRT-PCR primer sequences
1.6 基因表达检测

转染前,以每孔2.5×105的密度将颗粒细胞接种于6孔板,每孔2 300 μL细胞悬液,每组3个重复,37 ℃预培养。用opti-M分别稀释50 nmol·L-1 miR-200b mimic、mimic NC和100 nmol·L-1 miR-200b inhibitor、inhibitor NC,低速漩涡混匀,加入12 μL HiPerFect Transfection Reagent,低速漩涡混匀,室温静置10 min,形成转染复合体。然后将转染复合体逐滴加至6孔板中,37 ℃、5% CO2培养箱内继续培养。转染48 h后,收集细胞培养液,PBS清洗细胞2次,利用TRIzolTM Reagent提取RNA。使用PrimeScriptTMRT reagent Kit(宝生物)反转录成cDNA。首先除去DNA,反应体系:RNA 800 μg,5×gDNA Reaction Buffer 2 μL,gDNA Eraser 1 μL,RNase-free dH2O补至10 μL;42 ℃孵育2 min,4 ℃保存。然后进行反转录,20 μL反应体系:上述反应液10 μL,PrimeScript RT Enzyme Mix I 1 μL,RT Primer Mix 1 μL,5×PrimeScript Buffer 2(for Real Time)4 μL,RNase Free dH2 O 4 μL。轻轻混匀,37 ℃孵育15 min,85 ℃加热失活5 s,产物-20 ℃保存。最后使用Forget-Me-NotTM Evagreen qPCR Master Mix(Biotium)进行qRT-PCR检测,反应体系:2×Forget-Me-NotTM qPCR Master Mix 10 μL,Forget-Me-Not EvaGreen ROX Reference Dye 3 μL,RNase-free dH2 O 4.2 μL,cDNA 2 μL,Forward Primer 0.4 μL,Reverse Primer 0.4 μL。反应条件:95 ℃ 2 min,95 ℃ 30 s,60 ℃ 5 s共40个循环。

1.7 数据统计分析

数据均采用SPSS 22.0进行统计分析,使用GraphPad Prism进行作图。qRT-PCR数据采用2-ΔΔCT方法进行计算。结果以“平均值±标准差(Mean±SD)”表示。

2 结果 2.1 绵羊miR-200b生物信息学分析

利用NCBI和miRBase查出各物种miR-200b成熟序列,其种子区域均为AAUACU,说明miR-200b核心序列在各物种间高度保守(图 1A)。利用3种在线工具TargetScan、miRTarBase以及miRDB分别预测出1 196、51和1 246个基因与miR-200b有靶向关系,并用Venny2.1在线网站(https://bioinfogp.cnb.csic.es/tools/venny/)对预测的结果进行交互绘制,如图 1B所示。其中,3个软件预测出25个共同靶基因。GO分析发现,这些靶基因主要富集在细胞的增殖分化、细胞周期及生殖发育过程(图 1C);KEGG分析发现,miR-200b除了参与癌症相关通路,还参与Ras信号通路、MAPK信号通路、PI3K-Akt信号通路、mTOR信号通路及雌激素信号通路等(图 1D),且这些信号通路与细胞周期、细胞生物学过程及生殖过程相关。

A.不同物种miR-200b成熟序列;B. miR-200b预测靶基因的韦恩图;C. GO富集分析;D. KEGG通路富集分析 A. miR-200b mature sequence of various species; B. Venn diagram of miR-200b predicted target genes; C. GO enrichment analysis; D. KEGG pathway enrichment analysis 图 1 miR-200b的生物信息学分析 Fig. 1 Bioinformatics analysis of miR-200b
2.2 miR-200b对颗粒细胞增殖的影响

图 2中可以看出,与mimic NC相比,miR-200b mimic转染24 h颗粒细胞存活率并无显著变化(P>0.05),但48和72 h细胞存活率均极显著降低(P < 0.01);与inhibitor NC相比,miR-200b inhibitor转染24 h细胞存活率显著升高(P < 0.05),48 h极显著升高(P < 0.01),但72 h无显著变化(P>0.05)。随转染时间延长,各组细胞存活率呈“V”型变化趋势,且在48 h达到最低。因此,转染miR-200b可降低颗粒细胞存活率,抑制细胞增殖,并有一定时间效应,本试验选取转染48 h进行后续试验。

*. P < 0.05;**. P < 0.01;***. P < 0.001。下同 *. P < 0.05; **. P < 0.01; ***. P < 0.001. The same as below 图 2 转染miR-200b mimic、miR-200b inhibitor及NC的颗粒细胞存活率 Fig. 2 The survival rate of granulosa cell transfected with miR-200b mimic, miR-200b inhibitor and NC
2.3 miR-200b基因在卵泡颗粒细胞中的表达量检测

转染miR-200b mimic组的miR-200b表达量是mimic NC组的1 391.50倍(图 3),差异极显著(P < 0.001);而mimic NC、inhibitor NC及miR-200b inhibitor组的miR-200b表达量基本接近,无显著差异(P>0.05)。

图 3 miR-200b在卵泡颗粒细胞中的表达水平 Fig. 3 The expression level of miR-200b in follicular granulosa cells
2.4 miR-200b对细胞周期相关基因表达的影响

图 4中可以看出,与mimic NC相比,转染miR-200b mimic极显著下调CDK4(P < 0.01)、CDK6(P < 0.001)及CCND1(P < 0.001)基因表达水平,显著下调CCND2基因的表达水平(P < 0.05)。表明,miR-200b可抑制细胞周期进程。

图 4 转染miR-200b mimic和mimic NC的颗粒细胞周期相关基因表达水平 Fig. 4 The expression level of cell cycle related genes in granulosa cells transfected with miR-200b mimic and mimic NC
2.5 miR-200b对颗粒细胞凋亡相关基因表达的影响

图 5中可以看出,与mimic NC相比,转染miR-200b mimic极显著抑制Bcl-2基因表达水平(P < 0.01),而对Bax基因mRNA表达水平无显著影响(P>0.05)。此外,转染miR-200b mimic极显著下调Bcl-2与Bax的比值(P < 0.001)。

图 5 转染miR-200b mimic和mimic NC的颗粒细胞凋亡相关基因表达水平 Fig. 5 The expression level of apoptosis related genes in granulosa cells transfected with miR-200b mimic and mimic NC
3 讨论

卵泡发育是一个复杂精密的周期性过程,颗粒细胞作为哺乳动物卵巢的主要功能细胞,其生长分化在卵泡发育过程中发挥关键性的作用。通过转录组测序技术,对1和8月龄湖羊的卵巢组织分别进行测序,鉴定出miR-200a、miR-200b和miR-200c为其中3个差异表达的miRNAs,且与1月龄湖羊卵巢相比,8月龄的表达量显著下调,说明miR-200s与绵羊卵巢发育息息相关[32]。通过构建和分析小尾寒羊间情期和发情期卵巢组织miRNA表达谱,筛选出这两个时期差异表达的miRNAs,经进一步分析获得miR-200a、miR-200b和miR-200c这3个显著差异表达的miRNAs,且在发情期较间情期均表达下调[30, 33]。本研究对绵羊miR-200b靶基因进行GO和KEGG富集分析发现,这些基因参与细胞的增殖分化、细胞周期及生殖发育过程,表明miR-200b调控细胞生物学过程。因此,本试验针对miR-200b对绵羊卵泡颗粒细胞周期和凋亡的影响进行了研究。

通过检测细胞存活率,发现各处理组均存在先降后升的现象,这可能与绵羊卵泡颗粒细胞和miR-200b转染时间相关。对于绵羊卵泡颗粒细胞,24 h转染时间较短,转染效率较低,72 h转染时间较长转染可能逐步失效,而48 h转染效果很显著,说明转染效率高,因此后续试验均选择转染48 h。通过检测miR-200b表达量,发现miR-200b mimic组极显著升高,而miR-200b inhibitor组和inhibitor NC组并无显著差异,可能是由于绵羊卵泡颗粒细胞inhibitor选用剂量较低,效果不理想,因此后续试验只选用了mimic及其NC处理组进行过表达研究。研究表明,miRNA影响颗粒细胞增殖和凋亡过程。miR-214-3p能够在转录和翻译水平上调细胞周期相关基因(Cyclin BCyclin DCyclin ECDK4)表达从而促进猪颗粒细胞增殖[18],miR-16过表达促进颗粒细胞增殖,诱导细胞周期进程并抑制细胞凋亡[34],而miR-379-5p过表达抑制颗粒细胞增殖[35]。本研究中,miR-200b过表达降低颗粒细胞存活率,并下调CDK4、CDK6、CCND1和CCND2基因表达,而上述4个基因参与细胞周期G1期的进程及G1/S期转化。因此,miR-200b通过抑制绵羊颗粒细胞G1期相关基因表达影响细胞周期,从而抑制细胞增殖。与本试验结果一致,He等[31]发现,过表达miR-200b可抑制人卵巢颗粒细胞(KGN)增殖。

Zhang等[36]对miRNA与颗粒细胞凋亡和卵泡闭锁的调控关系进行了综述分析得出,miRNA调控的卵泡闭锁主要是由颗粒细胞凋亡所致。miR-1275促进猪颗粒细胞凋亡和卵泡闭锁并通过损害LRH-1/CYP19A1轴调控E2分泌[37],miR-204-5p通过靶向Bcl-2调控大鼠卵巢颗粒细胞凋亡[38]。本研究中,miR-200b过表达能从转录水平抑制Bcl-2表达并极显著下调Bcl-2与Bax比值,促进绵羊卵泡颗粒细胞凋亡。Bcl-2家族调控细胞凋亡属于介导细胞凋亡的最重要途径——线粒体途径。Bax的过表达可以加速诱导颗粒细胞的凋亡,而Bcl-2基因过表达可以拮抗Bax基因,抑制卵泡膜细胞及颗粒细胞的凋亡,控制卵母细胞凋亡,进而延缓卵泡闭锁[39]Bax/Bcl-2的比值可以揭示细胞的生长或凋亡情况[40]。颗粒细胞凋亡是导致发育期卵泡闭锁的关键因素[41-43],本研究中,绵羊卵泡颗粒细胞Bcl-2/Bax比值降低,表明miR-200b促进了细胞凋亡,推测其可能对绵羊卵巢卵泡闭锁具有重要调控作用。

4 结论

本研究结果表明,miR-200b通过降低颗粒细胞存活率抑制细胞增殖、促使细胞周期相关基因表达量降低、下调Bcl-2/Bax比值来抑制细胞周期并促进细胞凋亡进而调控绵羊卵泡颗粒细胞。

参考文献
[1]
仝晓丽. 睾酮在体外通过促进颗粒细胞凋亡引起卵泡闭锁的机制研究[D]. 长春: 吉林大学, 2020.
TONG X L. Study on the mechanism of follicular atresia induced by testosterone in vitro by promoting granulosa cell apoptosis[D]. Changchun: Jilin University, 2020. (in Chinese)
[2]
郭亚军, 柳苗苗, 付德海, 等. 藏绵羊卵巢组织学及卵泡超微形态的观察[J]. 畜牧兽医学报, 2021, 52(2): 389-398.
GUO Y J, LIU M M, FU D H, et al. Observation of ovary histology and ultrastructure of follicles in Tibetan sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 389-398. (in Chinese)
[3]
WANG C L, FAN Y C, TSENG C H, et al. Salmonella Enteritidis infection slows steroidogenesis and impedes cell growth in hen granulosa cells[J]. Avian Dis, 2014, 58(4): 511-517. DOI:10.1637/10846-041414-Reg.1
[4]
WU Y Q, ZHANG Z H, LIAO X H, et al. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development[J]. Biochem Biophys Res Commun, 2015, 466(3): 599-605. DOI:10.1016/j.bbrc.2015.09.096
[5]
HSU C Y, HSIEH T H, TSAI C F, et al. Synthetic steroid hormones regulated cell proliferation through microRNA-34a-5p in human ovarian endometrioma[J]. Biol Reprod, 2016, 94(3): 60.
[6]
LIU J Y, TU F, YAO W, et al. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2[J]. Sci Rep, 2016, 6: 21197. DOI:10.1038/srep21197
[7]
YOSHIDA K, YOKOI A, KAGAWA T, et al. Unique miRNA profiling of squamous cell carcinoma arising from ovarian mature teratoma: comprehensive miRNA sequence analysis of its molecular background[J]. Carcinogenesis, 2019, 40(12): 1435-1444.
[8]
ZHANG X D, ZHANG L, SHANG J N, et al. Combined microRNAome and transcriptome analysis of follicular phase and luteal phase in porcine ovaries[J]. Reprod Domest Anim, 2019, 54(7): 1018-1025. DOI:10.1111/rda.13457
[9]
GU B, LIU H, HAN Y, et al. Integrated analysis of miRNA and mRNA expression profiles in 2-, 6-, and 12-month-old Small Tail Han Sheep ovaries reveals that oar-miR-432 downregulates RPS6KA1 expression[J]. Gene, 2019, 710: 76-90. DOI:10.1016/j.gene.2019.02.095
[10]
SONG P Y, YUE Q X, FU Q, et al. Integrated analysis of miRNA-mRNA interaction in ovaries of Turpan Black Sheep during follicular and luteal phases[J]. Reprod Domest Anim, 2021, 56(1): 46-57. DOI:10.1111/rda.13848
[11]
LIU Y, WU X Q, XIE J, et al. Identification of transcriptome differences in goat ovaries at the follicular phase and the luteal phase using an RNA-Seq method[J]. Theriogenology, 2020, 158: 239-249. DOI:10.1016/j.theriogenology.2020.06.045
[12]
PASQUARIELLO R, MANZONI E F M, FIANDANESE N, et al. Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence[J]. Theriogenology, 2020, 145: 77-85. DOI:10.1016/j.theriogenology.2020.01.027
[13]
YANG S H, WANG S, LUO A Y, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary[J]. Biol Reprod, 2013, 89(5): 126.
[14]
LI T T, LIU X Q, GONG X F, et al. microRNA-92b-3p regulates primordial follicle assembly by targeting TSCI in neonatal mouse ovaris[J]. Cell Cycle, 2019, 18(8): 824-833. DOI:10.1080/15384101.2019.1593648
[15]
SONTAKKE S D, MOHAMMED B T, MCNEILLY A S, et al. Characterization of microRNAs differentially expressed during bovine follicle development[J]. Reproduction, 2014, 148(3): 271-283. DOI:10.1530/REP-14-0140
[16]
PANDE H O, TESFAYE D, HOELKER M, et al. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway[J]. J Ovarian Res, 2018, 11(1): 34. DOI:10.1186/s13048-018-0410-3
[17]
ZHOU R Y, MIAO Y P, LI Y M, et al. MicroRNA-150 promote apoptosis of ovine ovarian granulosa cells by targeting STAR gene[J]. Theriogenology, 2019, 127: 66-71. DOI:10.1016/j.theriogenology.2019.01.003
[18]
SHI S J, ZHOU X G, LI J J, et al. MiR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells[J]. J Anim Sci Biotechnol, 2020, 11: 94. DOI:10.1186/s40104-020-00500-y
[19]
ZHU L, JING J, QIN S Q, et al. miR-130a-3p regulates steroid hormone synthesis in goat ovarian granulosa cells by targeting the PMEPA1 gene[J]. Theriogenology, 2021, 165: 92-98. DOI:10.1016/j.theriogenology.2021.02.012
[20]
SINHA P B, TESFAYE D, RINGS F, et al. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation[J]. J Ovarian Res, 2017, 10(1): 37. DOI:10.1186/s13048-017-0336-1
[21]
EISENBERG I, NAHMIAS N, PERSKY M N, et al. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women[J]. Fertil Steril, 2017, 107(1): 269-275. DOI:10.1016/j.fertnstert.2016.10.003
[22]
DONADEU F X, SANCHEZ J M, MOHAMMED B T, et al. Relationships between size, steroidogenesis and miRNA expression of the bovine corpus luteum[J]. Theriogenology, 2020, 145: 226-230. DOI:10.1016/j.theriogenology.2019.10.033
[23]
贺小云, 刘秋月, 储明星. miRNA调控哺乳动物卵泡发育和卵母细胞成熟的研究进展[J]. 畜牧兽医学报, 2019, 50(11): 2175-2185.
HE X Y, LIU Q Y, CHU M X. Advances in miRNA regulating mammalian follicular development and oocyte maturation[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(11): 2175-2185. DOI:10.11843/j.issn.0366-6964.2019.11.001 (in Chinese)
[24]
SHI L, LIU S, ZHAO W Q, et al. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase Ⅱ oocytes from women with polycystic ovary syndrome[J]. Reprod Biomed Online, 2015, 31(4): 565-572. DOI:10.1016/j.rbmo.2015.06.023
[25]
HUMPHRIES B, YANG C F. The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy[J]. Oncotarget, 2015, 6(9): 6472-6498. DOI:10.18632/oncotarget.3052
[26]
ZOU X, LU T T, ZHAO Z F, et al. Comprehensive analysis of mRNAs and miRNAs in the ovarian follicles of uniparous and multiple goats at estrus phase[J]. BMC Genomics, 2020, 21(1): 267. DOI:10.1186/s12864-020-6671-4
[27]
于要升, 林杉, 王开胜, 等. 绵羊oar-miR-200b对GNAQ基因的表达调控[J]. 石河子大学学报: 自然科学版, 2016, 34(4): 424-430.
YU Y S, LIN S, WANG K S, et al. Regulation of gene expression of GNAQ by oar-miR-200b in sheep[J]. Journal of Shihezi University: Natural Science, 2016, 34(4): 424-430. (in Chinese)
[28]
HASUWA H, UEDA J, IKAWA M, et al. MiR-200b and MiR-429 function in mouse ovulation and are essential for female fertility[J]. Science, 2013, 341(6141): 71-73. DOI:10.1126/science.1237999
[29]
XIONG S T, MA W G, JING J, et al. An miR-200 cluster on chromosome 23 regulates sperm motility in zebrafish[J]. Endocrinology, 2018, 159(5): 1982-1991. DOI:10.1210/en.2018-00015
[30]
段新崇, 魏彦辉, 李阳, 等. 小尾寒羊间情期和发情期microRNAs差异表达分析[J]. 畜牧兽医学报, 2016, 47(7): 1324-1332.
DUAN X C, WEI Y H, LI Y, et al. Analyzing the differential expression of microRNAs in estrus and diestrus of Small Tailed Han Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(7): 1324-1332. (in Chinese)
[31]
HE T T, SUN Y F, ZHANG Y C, et al. MicroRNA-200b and microRNA-200c are up-regulated in PCOS granulosa cell and inhibit KGN cell proliferation via targeting PTEN[J]. Reprod Biol Endocrinol, 2019, 17(1): 68. DOI:10.1186/s12958-019-0505-8
[32]
解领丽, 李嫒, 黄万龙, 等. 湖羊卵巢不同发育阶段的miRNA鉴定与分析[J]. 畜牧兽医学报, 2019, 50(7): 1396-1404.
XIE L L, LI Y, HUANG W L, et al. Identification and analysis of miRNAs at different developmental stages in Hu Sheep ovaries[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(7): 1396-1404. (in Chinese)
[33]
WANG H, LI X Y, ZHOU R Y, et al. Genome-wide transcriptome profiling in ovaries of small-tail Han sheep during the follicular and luteal phases of the oestrous cycle[J]. Anim Reprod Sci, 2018, 197: 212-221. DOI:10.1016/j.anireprosci.2018.08.031
[34]
FU X, HE Y L, WANG X F, et al. MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome[J]. Cell Physiol Biochem, 2018, 48(2): 670-682. DOI:10.1159/000491894
[35]
DANG Y J, WANG X Y, HAO Y J, et al. MicroRNA-379-5p is associated with biochemical premature ovarian insufficiency through PARP1 and XRCC6[J]. Cell Death Dis, 2018, 9(2): 106. DOI:10.1038/s41419-017-0163-8
[36]
ZHANG J B, XU Y X, LIU H L, et al. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis[J]. Reprod Biol Endocrinol, 2019, 17(1): 9. DOI:10.1186/s12958-018-0450-y
[37]
LIU J Y, LI X Y, YAO Y, et al. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis[J]. Biochim Biophys Acta Gene Regul Mech, 2018, 1861(3): 246-257. DOI:10.1016/j.bbagrm.2018.01.009
[38]
ZHONG P, LIU J, LI H, et al. MicroRNA-204-5p regulates apoptosis by targeting Bcl2 in rat ovarian granulosa cells exposed to cadmium[J]. Biol Reprod, 2020, 103(3): 608-619. DOI:10.1093/biolre/ioaa091
[39]
STEFANZL G, BERGER D, CERNY-REITERER S, et al. The pan-BCL-2-blocker obatoclax (GX15-070) and the PI3-kinase/mTOR-inhibitor BEZ235 produce cooperative growth-inhibitory effects in ALL cells[J]. Oncotarget, 2017, 8(40): 67709-67722. DOI:10.18632/oncotarget.18810
[40]
张纯, 徐晓娟, 姚莉娟, 等. 改良多囊卵巢综合征大鼠模型卵泡颗粒细胞中凋亡调控蛋白Bcl-2 Bax表达的研究[J]. 四川中医, 2016, 34(6): 34-37.
ZHANG C, XU X J, YAO L J, et al. Research on the expression of apoptosis regulatory proteins Bcl-2, Bax in ovarian follicle granulosa cells of improved PCOS rat model[J]. Journal of Sichuan Traditional Chinese Medicine, 2016, 34(6): 34-37. (in Chinese)
[41]
TILLY J L, KOWALSKI K I, JOHNSON A L, et al. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression[J]. Endocrinology, 1991, 129(5): 2799-2801. DOI:10.1210/endo-129-5-2799
[42]
BILLIG H, FURUTA I, HSUEH A J. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis[J]. Endocrinology, 1993, 133(5): 2204-2212. DOI:10.1210/endo.133.5.8404672
[43]
YU Y S, SUI H S, HAN Z B, et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors[J]. Cell Res, 2004, 14(4): 341-346. DOI:10.1038/sj.cr.7290234

(编辑   郭云雁)