畜牧兽医学报  2021, Vol. 52 Issue (1): 1-8. DOI: 10.11843/j.issn.0366-6964.2021.001    PDF    
线粒体自噬调节雌性动物生殖功能的研究进展
房晓欢1, 李俊杰1,2     
1. 河北农业大学动物科技学院, 保定 071000;
2. 河北省牛羊胚胎技术创新中心, 保定 071000
摘要:线粒体是一种广泛存在于真核细胞并为机体提供能量的细胞器,其自噬对于清除功能障碍的线粒体,维持线粒体的动态平衡和细胞稳态具有重要意义。近年来,线粒体自噬对雌性动物生殖的影响愈发受到关注。本文在线粒体自噬生理功能基础上,从雌性动物主要生殖器官与组织、卵母细胞、颗粒细胞及胚胎等方面综述了线粒体自噬对雌性动物生殖功能的影响。
关键词线粒体自噬    雌性动物    生殖    进展    
Research Progress of Mitophagy on Regulating Female Reproductive Function in Animals
FANG Xiaohuan1, LI Junjie1,2     
1. College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China;
2. Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071000, China
Abstract: Mitochondria are an organelle that widely exists in eukaryotic cells and provide energy for the body. Mitophagy is of great significance on clearing dysfunctional mitochondria, maintaining mitochondrial dynamic equilibrium and cellular homeostasis. In recent years, the effect of mitophagy on female reproduction in animals received increasing attention. Based on the physiological function of mitophagy, the effect of mitophagy on female reproductive function in the aspects of main reproductive organs and tissues, oocytes, granulosa cells and embryos of female animals were reviewed in this article.
Key words: mitophagy    female animal    reproduction    progresses    

线粒体是细胞进行氧化代谢和能量转化的重要场所,其正常形态及数量地维持对于细胞乃至整个机体生理活动至关重要。线粒体数量和质量受精密的线粒体网络调控,通过不断融合和分裂,达到线粒体动力学平衡[1]。当细胞受到氧化应激或其他外界刺激时极易对线粒体造成损伤,导致其功能障碍[2]。受损的线粒体会破坏线粒体稳态,影响细胞的生命进程,此时线粒体稳态的平衡需要通过线粒体自噬实现[3]。线粒体自噬是一个依赖于溶酶体进行的生理过程,可选择性地清除受损或者功能障碍的线粒体,维持线粒体动态平衡[4-5]。当细胞处于不利环境下,线粒体自噬还可以清除部分正常线粒体,减轻细胞运行负担[6]。卵母细胞的线粒体自噬水平直接影响其质量,抑制线粒体自噬会导致线粒体异常积累和受精失败[7];而激活线粒体自噬则会延缓小鼠卵母细胞老化,提高卵母细胞发育能力[8]。本文从线粒体自噬对雌性动物生殖功能的影响及机制加以综述,以期为提高雌性动物繁殖效率提供依据。

1 线粒体自噬的生理功能 1.1 线粒体自噬对线粒体的质量调控

线粒体自噬在线粒体质量控制中发挥着核心作用,研究表明,线粒体在不对称分裂过程中可产生两个具有不同膜电位的子代线粒体,其中,膜电位高的子代线粒体可以继续执行线粒体功能并进行下一次分裂;而膜电位低的子代线粒体,为保护其余正常线粒体以及细胞免受活性氧(ROS)的损伤,则会通过线粒体自噬被清除[9-10]。线粒体自噬的目的是隔离并消除功能失调且具有潜在危害的线粒体[11],反之,线粒体自噬异常会导致受损线粒体积累,引起细胞凋亡[12]。现有研究表明,线粒体自噬触发因素包括线粒体去极化[13]、ROS产生[14]及蛋白质错误折叠[15]。常见的线粒体自噬效应因子是PTEN诱导的假定激酶1(PINK1),健康线粒体PINK1蛋白含量极低,但受损或去极化的线粒体因缺乏降解PINK1的能力,而将其作为底物,引发线粒体自噬[16-17]。线粒体自噬不仅可清除功能障碍的线粒体,还可促进线粒体生物合成,有助于线粒体质量控制,线粒体自噬和线粒体生物合成相互联系,维持线粒体稳态[18]。可见,线粒体自噬对线粒体的质量控制具有重要作用。

1.2 线粒体自噬对细胞分化和发育的调控

在细胞分化和发育过程中,线粒体自噬可清除多余线粒体,调整线粒体数量以适应细胞或组织需求。研究发现,红细胞分化过程中,血红蛋白介导的氧气运输会受到氧化应激的不利影响产生ROS,导致细胞损伤,而线粒体受体NIX介导的线粒体自噬可通过清除线粒体,抵抗氧化应激,促进红细胞成熟[19-20]。线粒体自噬障碍的小鼠,由于红细胞中线粒体未被清除而导致贫血[21]。另外,线粒体自噬还与父系线粒体清除有关,绝大多数哺乳动物线粒体DNA(mtDNA)为母系遗传,受精后的胚胎内线粒体基本都源于卵母细胞[22],这是因为受精后父系线粒体及mtDNA会被选择性降解[23]。Rojansky等[24]研究表明,小鼠卵母细胞受精后迅速诱导线粒体自噬,降解并清除了胚胎内父系线粒体。

1.3 线粒体自噬对体细胞重编程的调控

线粒体自噬在体细胞重编程过程中发挥着重要作用,研究表明,诱导多能干细胞(iPSC)的体细胞重编程伴随着线粒体数量、结构及功能的变化[25]。通常体细胞分化需要激活线粒体生物合成以增加线粒体含量,供能途径从糖酵解转化为氧化磷酸化;反之,体细胞重编程需要减少线粒体数量,供能途径从氧化磷酸化转变为糖酵解[26-27]。研究发现,PINK1缺失的小鼠胚胎成纤维细胞(MEFs)重编程诱导的iPSC不能有效清除线粒体,导致此iPSC不稳定,有自发分化的倾向,降低了iPSC重编程效率[28]。此外,NIX介导的线粒体自噬也与MEFs重编程有关,敲降NIX会降低重编程期间线粒体清除效率[29]。可见,线粒体自噬在调控体细胞重编程方面具有重要功能。

2 线粒体自噬对雌性动物主要生殖器官及其功能的影响

基于线粒体自噬的生理功能,线粒体自噬在细胞分化[30]、心血管疾病[31]、神经退行性疾病[32]、癌症[33]等众多生理过程和疾病中已有深入研究。近年来,为提高雌性动物生殖功能,关于线粒体自噬对雌性动物生殖器官、卵母细胞及胚胎发育的影响越来越受到关注。

2.1 线粒体自噬对雌性动物生殖器官与组织的影响

2.1.1 线粒体自噬对卵巢的影响   卵巢是雌性动物的重要生殖器官,与卵母细胞质量及母体妊娠直接相关。线粒体自噬与卵巢功能有密切联系,可通过清除功能障碍的线粒体,调节卵泡发育,维持卵巢机能。研究显示,促卵泡素(FSH)作为调节小鼠卵泡发育的主要激素,可通过激活线粒体自噬清除受损线粒体,减少卵泡闭锁并促进卵泡的生长发育[34]。多囊卵巢综合征(PCOS)是女性常见的因内分泌紊乱引起的疾病,可引起高血压等并发症,研究发现,线粒体自噬是PCOS和高血压间重要的共享通路[35]。如果因线粒体自噬障碍而损伤线粒体功能,则会导致患PCOS女性卵母细胞结构改变[36]。另有研究发现,将丁酸钠应用于重组中国仓鼠卵巢细胞(rCHO)培养,可导致线粒体膜电位降低和自噬蛋白增加,并通过线粒体自噬降解受损线粒体[37]。可见,线粒体自噬对于卵巢相关疾病及卵泡发育有重要作用。

2.1.2 线粒体自噬对子宫与胎盘组织的影响   哺乳动物子宫和胎盘是维持胎儿生长发育的重要器官,线粒体自噬与二者的功能亦密切相关。研究发现,线粒体自噬可参与子宫内膜异位症的发生,线粒体自噬异常可引起氧化应激,启动caspase-9诱导的线粒体凋亡,促进人子宫内膜基质细胞凋亡并限制其迁移[38]。另有研究发现,高雄激素血症和胰岛素拮抗诱发的妊娠子宫缺陷与mtDNA拷贝数、线粒体融合和分裂以及线粒体自噬相关基因的表达有关,通过基因间的互补和适应性调节,缓解妊娠子宫线粒体功能障碍,以维持胎儿的正常发育[39]。此外,线粒体自噬与胎盘功能也有紧密联系,人子痫前期的胎盘中神经酰胺/BOK诱导线粒体分裂增加,产生大量线粒体片段,而线粒体自噬蛋白PINK1和Parkin表达升高表明,线粒体自噬可作为一种细胞防御机制降解子痫前期胎盘内多余的线粒体[40]。同样,二氧化钛纳米粒子处理后的人滋养层细胞内ROS水平升高,线粒体受损,影响胎盘功能,而PINK1和Parkin蛋白表达增加表明,线粒体自噬激活,有助于清除受损线粒体[41]。因此,线粒体自噬可通过清除受损线粒体,提高相关基因和蛋白的表达来维持子宫及胎盘组织的正常功能。

2.2 线粒体自噬对卵母细胞与胚胎发育的影响

2.2.1 线粒体自噬对卵母细胞的影响   卵母细胞可通过线粒体自噬吞噬多余或受损的线粒体以维持其功能。哺乳动物早期胚胎线粒体几乎全部来自于卵母细胞,并且,仅在胚胎发育后期mtDNA拷贝数才会增加,从受精卵到囊胚期均不会发生mtDNA复制[42]。因此,卵母细胞内线粒体数量和质量对于胚胎发育至关重要。环孢素A(CsA)作为线粒体自噬抑制剂,可以改变线粒体通透性,抑制自噬体增殖[43],在小鼠卵母细胞培养过程中加入CsA后,线粒体膜电位、mtDNA拷贝数及ATP产生均显著降低,同时,减少自噬体的生成,影响卵母细胞线粒体自噬功能并且对胚胎发育产生不利影响[44]。Kim等[7]使用线粒体自噬抑制剂Mdivi-1处理小鼠卵母细胞,尽管对卵母细胞核成熟无显著影响,但会导致线粒体过量积累与受精失败,表明Mdivi-1处理抑制了卵母细胞的胞质成熟。另外,在猪卵母细胞老化过程中,线粒体自噬相关蛋白PINK1和Parkin会显著减少,而加入辅酶Q10后,可通过增加线粒体自噬蛋白提高ATP水平和线粒体更新能力[45]。但有学者对于卵母细胞线粒体自噬能力持不同的观点,Boudoures等[46]研究发现,使用羰基氰化物间氯苯腙(CCCP)触发线粒体自噬后,未检测到线粒体与自噬体的共定位,mtDNA拷贝数保持不变,小鼠卵母细胞内依然存在大量线粒体,表明,非功能线粒体未移入自噬体中被清除。

2.2.2 线粒体自噬对颗粒细胞的影响   颗粒细胞定位于卵母细胞的周围,可通过缝隙连接在卵母细胞的成熟和排卵过程中发挥重要作用,并且还会影响卵泡的发育甚至卵巢的正常机能。Li等[47]研究发现,补充脱氢表雄酮(DHEA)可通过线粒体自噬清除功能障碍的线粒体,减少线粒体过度分裂,维持线粒体动力学平衡,提升人颗粒细胞质量。此外,不同条件诱导的线粒体自噬对颗粒细胞的影响有差异,研究表明,在缺氧条件下,FSH介导的线粒体自噬可通过自噬体的积累清除功能障碍的线粒体,保护猪颗粒细胞免受缺氧诱导的细胞凋亡[48]。而在氧化应激状态下,FSH可以通过抑制过量ROS诱导的线粒体自噬,促进小鼠颗粒细胞的存活[49]。可见,线粒体自噬是一个动态的过程,过度的线粒体自噬可能导致颗粒细胞活力降低,另外,颗粒细胞过度的线粒体自噬和线粒体损伤可能与PCOS有关,Yi等[50]在PCOS患者的颗粒细胞中检测到过度的线粒体自噬,以及线粒体膜电位和mtDNA拷贝数降低,而通过添加褪黑素抑制线粒体自噬蛋白表达后,明显改善了PCOS颗粒细胞的线粒体损伤。

2.2.3 线粒体自噬对胚胎发育的影响   哺乳动物mtDNA的遗传方式严格遵循母系遗传,但是精子在受精过程中也会携带少量的mtDNA进入卵母细胞,表明早期胚胎中可能存在父系线粒体消除的机制[51],而这种父系线粒体的消除即通过线粒体自噬完成。小鼠植入前胚胎中父系线粒体通过线粒体自噬被降解,这可能与父系线粒体膜电位的去极化有关[24]。有学者认为,受精卵内精子线粒体自噬由泛素介导[52]。Yi等[53]研究蛋白质去泛素化对受精和胚胎发育中精子功能的影响时发现,受精后精子携带的线粒体依赖泛素蛋白酶体系被线粒体自噬过程降解。此外,线粒体自噬与胚胎发育密切相关,线粒体自噬蛋白PINK1敲降会阻止线粒体分裂,诱导线粒体伸长并导致其功能障碍,损害囊胚的形成和质量[54]。另有研究证实,暴露于高脂高糖培养基的小鼠卵母细胞体外受精后,由于缺乏线粒体自噬,会导致功能障碍的线粒体从卵母细胞传递到胚胎,其囊胚线粒体膜电位及参与ATP生成的代谢产物降低,胚胎发育率降低[46]

3 线粒体自噬调节雌性动物生殖的机制

线粒体动力学是线粒体融合和分裂的动态变化过程,正常的线粒体可通过相互融合和分裂对线粒体进行更新并维持功能,但受到损伤的线粒体因其膜电位发生去极化,不能继续融合,往往通过线粒体自噬被降解[55]

3.1 PINK1介导的线粒体自噬

PINK1是一种丝氨酸/苏氨酸蛋白激酶,其N端含有线粒体靶向序列,可通过外膜转运酶和内膜转运酶复合体进入线粒体内膜,并被线粒体蛋白酶PARL切割为一个52 ku的蛋白片段[56-57]。在健康线粒体中,52 ku的PINK1片段被释放到细胞质并被E3连接酶快速泛素化后降解[58],因此,健康线粒体中PINK1水平较低。但当线粒体受损时,PINK1的转运和加工被阻断,导致有活性的PINK1在线粒体外膜积累[59],并激活Parkin的E3泛素连接酶活性,之后,线粒体外膜上的泛素链装配并促进线粒体自噬受体的募集,进而被自噬体捕获而降解[60]。这是线粒体自噬的经典通路,同样,线粒体自噬对雌性动物生殖功能的影响也可通过PINK1/Parkin通路进行调控。

在卵泡发育过程中,颗粒细胞因缺乏血液供应而处于缺氧状态,这极易导致其凋亡。研究发现,FSH可显著降低缺氧条件下线粒体自噬途径引起的猪颗粒细胞凋亡,这是由于FSH介导的缺氧诱导因子(HIF-1α)水平上调,促进了PINK1和Parkin的表达,并通过减少细胞色素c的释放,诱导了受损线粒体的清除[48]。同样,在小鼠中,FSH通过上调颗粒细胞HIF-1α表达,促进线粒体自噬PINK1/Parkin途径的激活以及自噬蛋白Beclin1和Bnip3积累,对于降解受损线粒体、促进颗粒细胞增殖及卵泡发育具有重要作用[34]。此外,PINK1/Parkin对于延缓卵母细胞老化具有重要意义,对抗氧化剂辅酶Q10延缓卵母细胞衰老的研究表明,辅酶Q10可上调猪卵母细胞PINK1和Parkin蛋白表达,增加活性线粒体数量,提高ATP水平,从而促进线粒体更新,延缓卵母细胞衰老[45]。但细胞内PINK1/Parkin蛋白的增加也可能会引起线粒体自噬的过度。氧化应激条件下自噬会加速小鼠颗粒细胞的死亡,FSH处理可抑制细胞内PINK1蛋白表达,从而抑制Parkin的线粒体转位,通过抑制线粒体自噬保护颗粒细胞免受氧化损伤[49]。此外,PCOS的发病机制也与过度的PINK1/Parkin激活有关,PCOS颗粒细胞中线粒体自噬蛋白PINK1和Parkin及自噬蛋白Beclin-1、LC3B-Ⅱ表达增加,自噬底物P62及SIRT1水平降低,而添加褪黑素可通过提高SIRT1蛋白水平,抑制过度的PINK1/Parkin介导的线粒体自噬,保护PCOS颗粒细胞免受线粒体损伤[50]

3.2 FOXO3a介导的线粒体自噬

FOXO3a是叉头转录因子家族的成员,可对肿瘤细胞增殖[61]、细胞凋亡[62]、氧化应激[63]等多种生理过程起调控作用,与人类寿命密切相关。随着线粒体自噬研究的深入,越来越多的研究发现,FOXO3a还可参与线粒体自噬调节,FOXO3a是一种线粒体蛋白,其可与SIRT3在线粒体中相互作用,进一步促进线粒体自噬[64]。现已证明,FOXO3a介导的线粒体自噬在改善动脉粥样硬化[65]、心肌病[66]、肝脏损伤[67]等多种疾病方面有重要作用。最近的研究显示,FOXO3a也参与调节衰老卵母细胞的线粒体自噬[44],FOXO3a是白藜芦醇的下游信号因子,使用白藜芦醇处理小鼠卵母细胞后,FOXO3a表达上调,与自噬信号通路呈正相关,再经线粒体自噬抑制剂CsA处理后,FOXO3a的表达受到抑制,表明,FOXO3a是参与白藜芦醇介导的老化卵母细胞线粒体自噬过程的关键因子[44],这为FOXO3a参与白藜芦醇介导的衰老卵母细胞线粒体自噬调节提供了依据。

4 存在问题与展望

线粒体自噬是一个处于不断动态变化中的生理过程,线粒体自噬的缺乏以及过度激活均会破坏线粒体稳态,影响细胞乃至整个机体的功能。线粒体自噬不足可能导致细胞或胚胎内功能障碍的线粒体无法清除[34, 54],而过度激活则可能导致线粒体损伤,引发细胞凋亡[49],因此,如何精确控制线粒体自噬程度尚需进一步研究。目前,对于雌性动物生殖中线粒体自噬的调控机制多集中于PINK1/Parkin通路,是否和心衰[68]、癌症[69]、炎症[70]、红细胞成熟[21]等疾病或过程一样可由FUNDC1和NIX/BNIP3等蛋白通路介导发挥作用,还有待深入研究。此外,目前关于线粒体自噬对雌性动物生殖功能的影响研究多集中于人[38]和小鼠[44],对于家畜来说,线粒体自噬可促进猪卵母细胞线粒体更新,延缓其衰老[45],也有研究证明,线粒体自噬与牛支持细胞[71]及膀胱尿路上皮细胞[72]有紧密关系,但对于牛、羊雌性生殖器官及生殖细胞的研究未见报道。

线粒体自噬作为可清除受损线粒体,维持线粒体稳态的重要生理过程,对于调控卵巢机能、卵母细胞发育、颗粒细胞活力等方面均有重要作用。随着研究的深入,线粒体自噬可为改善多囊卵巢综合征和提高卵母细胞成熟等方面提供新的着眼点。通过激活线粒体自噬,清除卵母细胞内功能障碍的线粒体,有助于抵抗氧化应激,维持卵母细胞减数分裂进程,并且有望为提高卵母细胞成熟效率及改善体外胚胎生产技术提供新思路。但就目前来说,为充分发挥线粒体自噬在雌性动物生殖方面的潜力,还需对线粒体自噬程度的把控和作用机制进行深入探索,同时,线粒体自噬对于家畜生殖的影响也有待深入研究。

参考文献
[1] UDAGAWA O, ISHIHARA N. Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes[J]. J Biochem, 2020, 167(3): 257–266. DOI: 10.1093/jb/mvz093
[2] KIM I, RODRIGUEZ-ENRIQUEZ S, LEMASTERS J J. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys, 2007, 462(2): 245–253. DOI: 10.1016/j.abb.2007.03.034
[3] WU N N, ZHANG Y M, REN J. Mitophagy, mitochondrial dynamics, and homeostasis in cardio-vascular aging[J]. Oxid Med Cell Longev, 2019, 2019: 9825061.
[4] TANIDA I. Autophagy basics[J]. Microbiol Immunol, 2011, 55(1): 1–11. DOI: 10.1111/j.1348-0421.2010.00271.x
[5] YAN C J, GONG L L, CHEN L, et al. PHB2 (Prohibitin 2) promotes PINK1-PRKN/PARKIN-dependent mitophagy by the parl-pgam5-pink1 axis[J]. Autophagy, 2020, 16(3): 419–434. DOI: 10.1080/15548627.2019.1628520
[6] BHATIA-KIŠŠOVÁ I, CAMOUGRAND N. Mitophagy:a process that adapts to the cell physiology[J]. Int J Biochem Cell Biol, 2013, 45(1): 30–33. DOI: 10.1016/j.biocel.2012.07.006
[7] KIM K H, KIM E Y, KO J J, et al. Gas6 is a reciprocal regulator of mitophagy during mammalian oocyte maturation[J]. Sci Rep, 2019, 9(1): 10343. DOI: 10.1038/s41598-019-46459-3
[8] ZHOU J L, XUE Z Y Y, HE H N, et al. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy[J]. Aging (Albany NY), 2019, 11(23): 11504–11519.
[9] TWIG G, ELORZA A, MOLINA A J A, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. EMBO J, 2008, 27(2): 433–446. DOI: 10.1038/sj.emboj.7601963
[10] ZOROV D B, VOROBJEV I A, POPKOV V A, et al. Lessons from the discovery of mitochondrial fragmentation (fission):a review and update[J]. Cells, 2019, 8(2): 175. DOI: 10.3390/cells8020175
[11] GUSTAFSSON Å B, DORN Ⅱ G W. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process[J]. Physiol Rev, 2019, 99(1): 853–892. DOI: 10.1152/physrev.00005.2018
[12] ZHU J H, WANG K Z, CHU C T. After the banquet:mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013, 9(11): 1663–1676. DOI: 10.4161/auto.24135
[13] MATSUDA N, SATO S, SHIBA K, et al. PINK1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy[J]. J Cell Biol, 2010, 189(2): 211–221. DOI: 10.1083/jcb.200910140
[14] NARENDRA D P, JIN S M, TANAKA A, et al. PINK1 is selectively stabilized on impaired mito-chondria to activate parkin[J]. PLoS Biol, 2010, 8(1): e1000298. DOI: 10.1371/journal.pbio.1000298
[15] JIN S M, YOULE R J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by pink1 to induce park2/parkin-mediated mitophagy of polarized mitochondria[J]. Autophagy, 2013, 9(11): 1750–1757. DOI: 10.4161/auto.26122
[16] DORN Ⅱ G W, KITSIS R N. The mitochondrial dynamism-mitophagy-cell death interactome:multiple roles performed by members of a mitochondrial molecular ensemble[J]. Circ Res, 2015, 116(1): 167–182. DOI: 10.1161/CIRCRESAHA.116.303554
[17] MEISSNER C, LORENZ H, WEIHOFEN A, et al. The mitochondrial intramembrane protease PARL cleaves human pink1 to regulate pink1 trafficking[J]. J Neurochem, 2011, 117(5): 856–867. DOI: 10.1111/j.1471-4159.2011.07253.x
[18] PALIKARAS K, LIONAKI E, TAVERNARAKIS N, et al. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans[J]. Nature, 2015, 521(7553): 525–528. DOI: 10.1038/nature14300
[19] KANKI T. Nix:a receptor protein for mitophagy in mammals[J]. Autophagy, 2010, 6(3): 433–435. DOI: 10.4161/auto.6.3.11420
[20] ASHRAFI G, SCHWARZ T L. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1): 31–42. DOI: 10.1038/cdd.2012.81
[21] SANDOVAL H, THIAGARAJAN P, DASGUPTA S K, et al. Essential role for nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454(7201): 232–235. DOI: 10.1038/nature07006
[22] WALLACE D C. Mitochondrial genetic medicine[J]. Nat Genet, 2018, 50(12): 1642–1649. DOI: 10.1038/s41588-018-0264-z
[23] SONG W H, BALLARD J W O, YI Y J, et al. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility[J]. BioMed Res Int, 2014, 2014: 981867.
[24] ROJANSKY R, CHA M Y, CHAN D C. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1[J]. Elife, 2016, 5: e17896. DOI: 10.7554/eLife.17896
[25] LIANG X, KRISTIANSEN C K, VATNE G H, et al. Patient-specific neural progenitor cells derived from induced pluripotent stem cells offer a promise of good models for mitochondrial disease[J]. Cell Tissue Res, 2020, 380(1): 15–30. DOI: 10.1007/s00441-019-03164-x
[26] WU J, OCAMPO A, BELMONTE J C I. Cellular metabolism and induced pluripotency[J]. Cell, 2016, 166(6): 1371–1385. DOI: 10.1016/j.cell.2016.08.008
[27] NISHIMURA K, FUKUDA A, HISATAKE K. Mechanisms of the metabolic shift during somatic cell reprogramming[J]. Int J Mol Sci, 2019, 20(9): 2254. DOI: 10.3390/ijms20092254
[28] VAZQUEZ-MARTIN A, VAN DEN HAUTE C, CUFÍ S, et al. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate[J]. Aging (Albany NY), 2016, 8(7): 1330–1352.
[29] XIANG G, YANG L, LONG Q, et al. BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming[J]. Autophagy, 2017, 13(9): 1543–1555. DOI: 10.1080/15548627.2017.1338545
[30] ESTEBAN-MARTÍNEZ L, SIERRA-FILARDI E, MCGREAL R S, et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation[J]. EMBO J, 2017, 36(12): 1688–1706. DOI: 10.15252/embj.201695916
[31] BRAVO-SAN PEDRO J M, KROEMER G, GALLUZZI L. Autophagy and mitophagy in cardiovascular disease[J]. Circ Res, 2017, 120(11): 1812–1824. DOI: 10.1161/CIRCRESAHA.117.311082
[32] FIVENSON E M, LAUTRUP S, SUN N, et al. Mitophagy in neurodegeneration and aging[J]. Neurochem Int, 2017, 109: 202–209. DOI: 10.1016/j.neuint.2017.02.007
[33] BERNARDINI J P, LAZAROU M, DEWSON G. Parkin and mitophagy in cancer[J]. Oncogene, 2017, 36(10): 1315–1327. DOI: 10.1038/onc.2016.302
[34] ZHOU J L, YAO W, LI C Y, et al. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells[J]. Cell Death Dis, 2017, 8(8): e3001. DOI: 10.1038/cddis.2017.371
[35] RAMLY B, AFIQAH-ALENG N, MOHAMED-HUSSEIN Z A. Protein-protein interaction network analysis reveals several diseases highly associated with polycystic ovarian syndrome[J]. Int J Mol Sci, 2019, 20(12): 2959. DOI: 10.3390/ijms20122959
[36] JIA L F, LI J, HE B, et al. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries[J]. Sci Rep, 2016, 6: 19436. DOI: 10.1038/srep19436
[37] LEE J S, LEE G M. Effect of sodium butyrate on autophagy and apoptosis in chinese hamster ovary cells[J]. Biotechnol Prog, 2012, 28(2): 349–357. DOI: 10.1002/btpr.1512
[38] ZHAO Q, YE M, YANG W, et al. Effect of Mst1 on endometriosis apoptosis and migration:role of Drp1-related mitochondrial fission and parkin-required mitophagy[J]. Cell Physiol Biochem, 2018, 45(3): 1172–1190. DOI: 10.1159/000487450
[39] HU M, ZHANG Y, GUO X, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production[J]. Am J Physiol Endocrinol Metab, 2019, 316(5): E794–E809. DOI: 10.1152/ajpendo.00359.2018
[40] AUSMAN J, ABBADE J, ERMINI L, et al. Ceramide-induced BOK promotes mitochondrial fission in preeclampsia[J]. Cell Death Dis, 2018, 9(3): 298. DOI: 10.1038/s41419-018-0360-0
[41] ZHANG Y Q, XU B, YAO M M, et al. Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells[J]. Chem Biol Interact, 2018, 296: 124–133. DOI: 10.1016/j.cbi.2018.09.015
[42] MISHRA P, CHAN D C. Mitochondrial dynamics and inheritance during cell division, development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15(10): 634–646. DOI: 10.1038/nrm3877
[43] ELMORE S P, QIAN T, GRISSOM S F, et al. The mitochondrial permeability transition initiates auto-phagy in rat hepatocytes[J]. FASEB J, 2001, 15(12): 1–7.
[44] ZHOU J L, XUE Z Y Y, HE H N, et al. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy[J]. Aging (Albany NY), 2019, 11(23): 11504–11519.
[45] NIU Y J, ZHOU W J, NIE Z W, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs[J]. Aging (Albany NY), 2020, 12(2): 1256–1271.
[46] BOUDOURES A L, SABEN J, DRURY A, et al. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy[J]. Dev Biol, 2017, 426(1): 126–138. DOI: 10.1016/j.ydbio.2017.04.005
[47] LI C J, CHEN S N, LIN L T, et al. Dehydroepiandrosterone ameliorates abnormal mitochondrial dynamics and mitophagy of cumulus cells in poor ovarian responders[J]. J Clin Med, 2018, 7(10): 293. DOI: 10.3390/jcm7100293
[48] LI C Y, ZHOU J Q, LIU Z J, et al. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1α-PINK1-Parkin pathway[J]. FASEB J, 2020, 34(3): 3631–3645. DOI: 10.1096/fj.201901808RRR
[49] SHEN M, JIANG Y, GUAN Z Q, et al. FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy[J]. Sci Rep, 2016, 6: 38090. DOI: 10.1038/srep38090
[50] YI S L, ZHENG B, ZHU Y, et al. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS[J]. Am J Physiol Endocrinol Metab, 2020, 319(1): E91–E101. DOI: 10.1152/ajpendo.00006.2020
[51] AL RAWI S, LOUVET-VALLÉE S, DJEDDI A, et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission[J]. Science, 2011, 334(6059): 1144–1147. DOI: 10.1126/science.1211878
[52] SUTOVSKY P, MORENO R D, RAMALHO-SANTOS J, et al. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos[J]. Biol Reprod, 2000, 63(2): 582–590. DOI: 10.1095/biolreprod63.2.582
[53] YI Y J, SUTOVSKY M, SONG W H, et al. Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development[J]. Reprod Fertil Dev, 2015, 27(8): 1154–1167. DOI: 10.1071/RD14012
[54] NIU Y J, NIE Z W, SHIN K T, et al. PINK1 regulates mitochondrial morphology via promoting mitochondrial fission in porcine preimplantation embryos[J]. FASEB J, 2019, 33(7): 7882–7895. DOI: 10.1096/fj.201802473R
[55] PARK Y S, CHOI S E, KOH H C. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction[J]. Toxicol Lett, 2018, 284: 120–128. DOI: 10.1016/j.toxlet.2017.12.004
[56] DURCAN T M, FON E A. The three 'P's of mitophagy:PARKIN, PINK1, and post-translational modifications[J]. Genes Dev, 2015, 29(10): 989–999. DOI: 10.1101/gad.262758.115
[57] GREENE A W, GRENIER K, AGUILETA M A, et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment[J]. EMBO Rep, 2012, 13(4): 378–385. DOI: 10.1038/embor.2012.14
[58] YAMANO K, YOULE R J. PINK1 is degraded through the N-end rule pathway[J]. Autophagy, 2013, 9(11): 1758–1769. DOI: 10.4161/auto.24633
[59] LAZAROU M, JIN S M, KANE L A, et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin[J]. Dev Cell, 2012, 22(2): 320–333. DOI: 10.1016/j.devcel.2011.12.014
[60] LAZAROU M, SLITER D A, KANE L A, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309–314. DOI: 10.1038/nature14893
[61] LI L, CHEN S C, SUN Y W, et al. Matrine inhibits the proliferation of pituitary tumor cells by decreasing foxo3a phosphorylation and promoting foxo3a nuclear localization[J]. Exp Ther Med, 2019, 17(5): 3775–3780.
[62] LONG J, YANG C S, HE J L, et al. FOXO3a is essential for murine endometrial decidualization through cell apoptosis during early pregnancy[J]. J Cell Physiol, 2019, 234(4): 4154–4166. DOI: 10.1002/jcp.27167
[63] 熊显荣, 王艳, 李键, 等. SIRT1对牦牛卵母细胞体外成熟与老化的影响[J]. 畜牧兽医学报, 2019, 50(12): 2440–2448.
XIONG X R, WANG Y, LI J, et al. Effects of SIRT1 on the in vitro maturation and aging of yak oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2440–2448. (in Chinese)
[64] ZHENG Y T, SHI B H, MA M Q, et al. The novel relationship between Sirt3 and autophagy in myocardial ischemia-reperfusion[J]. J Cell Physiol, 2019, 234(5): 5488–5495. DOI: 10.1002/jcp.27329
[65] MA S, CHEN J W, FENG J, et al. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev, 2018, 2018: 9286458.
[66] KUNO A, HOSODA R, SEBORI R, et al. Resveratrol ameliorates mitophagy disturbance and improves cardiac pathophysiology of dystrophin-deficient mdx mice[J]. Sci Rep, 2018, 8(1): 15555. DOI: 10.1038/s41598-018-33930-w
[67] GAO H, LV Y, LIU Y X, et al. Wolfberry-derived zeaxanthin dipalmitate attenuates ethanol-induced hepatic damage[J]. Mol Nutr Food Res, 2019, 63(11): 1801339. DOI: 10.1002/mnfr.201801339
[68] ZHANG W L, SIRAJ S, ZHANG R, et al. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury[J]. Autophagy, 2017, 13(6): 1080–1081. DOI: 10.1080/15548627.2017.1300224
[69] LI W H, LI Y J, SIRAJ S, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice[J]. Hepatology, 2019, 69(2): 604–621. DOI: 10.1002/hep.30191
[70] ESTEBAN-MARTÍNEZ L, BOYA P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming[J]. Autophagy, 2018, 14(5): 915–917. DOI: 10.1080/15548627.2017.1332567
[71] ADEGOKE E O, XUE W, MACHEBE N S, et al. Sodium selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage[J]. Ecotoxicol Environ Saf, 2018, 166: 165–175. DOI: 10.1016/j.ecoenv.2018.09.073
[72] ROPERTO S, DE FALCO F, PERILLO A, et al. Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection[J]. Vet Microbiol, 2019, 236: 108396. DOI: 10.1016/j.vetmic.2019.108396