哺乳动物中经典的脂肪组织有白色脂肪组织和棕色脂肪组织。白色脂肪细胞呈球状,几乎被单个脂滴充满,含有少量的线粒体,主要以甘油三酯的形式储存多余的能量,而棕色脂肪细胞比白色脂肪细胞小,含有大量线粒体和多房小脂滴,主要通过解偶联蛋白UCP1的作用产生热量[1]。近年来,研究者又发现了一类特殊的脂肪细胞,被称为米色脂肪细胞[2],有研究认为,该细胞由白色脂肪细胞在一定条件下(如冷刺激[3]、肾上腺素激动剂处理[4]、运动[5])转变而来,含有较多的线粒体和脂滴,也能够燃烧脂肪将其转变为热量。越来越多的证据表明,棕色与米色脂肪细胞的激活可以成为肥胖及其相关代谢综合征的潜在治疗靶点,因而关于其细胞与分子机制的研究一直是代谢领域研究的热点。
组蛋白的C末端和N末端伸展到核小体外,很容易发生共价修饰,例如乙酰化、甲基化、磷酸化、泛素化等[6]。泛素化包括多泛素化(polyubiquitination)与单泛素化(monoubiquitination),底物蛋白多泛素化后在蛋白酶体中降解,而组蛋白的单泛素化与基因的转录调控和DNA损伤应答相关。组蛋白H2B单泛素化(H2Bub)可导致染色质链的破坏,造成更开放和容易接近的染色质构象[7],在转录延伸[8]、DNA损伤应答[9]、维持干细胞多潜能性[10]及基因组稳定性[11]等方面都发挥重要作用。目前,H2Bub已成为组蛋白翻译后修饰的研究热点之一。
泛素化过程是由3个酶连续催化,包括泛素激活酶(ubiquitin-activating enzyme,E1)、泛素结合酶(ubiquitin-conjugating enzyme,E2)和泛素连接酶(ubiquitin-proteinligase,E3)[12]。尽管H2Bub早在1980年已被发现[13],但是参与H2B单泛素化的3种酶一直未知。直到2000年,科学家们才鉴定出酵母中H2Bub的泛素结合酶Rad6[14]。3年后,又在酵母中发现了泛素连接酶Bre1[15]。随后,在哺乳动物中鉴定出RNF20和RNF40,它们是Bre1的同源物,负责泛素化哺乳动物组蛋白H2B的第120位赖氨酸[16]。
RNF20作为H2Bub特异性的泛素连接酶,在单泛素化过程中发挥着特异性识别靶蛋白的重要作用。有报道证明,RNF20通过H2B的单泛素化促进减数分裂过程中染色质结构松散,从而促进减数分裂过程中DSB的修复及同源染色体的联会和配对,进而调控精子发生[17]。RNF20介导的H2Bub与组蛋白乙酰转移酶8(lysine acetyltransferase 8,MOF)介导的H4K16ac协同作用激活Stat3基因的转录,从而促进神经前体细胞向星形胶质细胞的分化[18]。有文献报道,RNF20在3T3-L1细胞分化过程中通过与Ap2蛋白互作并使之多泛素化,通过蛋白酶体系统降解CEBPα的负调控子AP2蛋白进而上调CEBPα的表达,在3T3-L1分化过程中起着重要作用[19]。Lee等[20]研究发现,RNF20通过多泛素化调控脂代谢的重要转录因子SREBP1c,从而在肝脏脂代谢过程中发挥着重要作用。但RNF20及其介导的H2Bub在棕色脂肪细胞分化中的功能还是未知。因此,本试验以小鼠棕色前体脂肪细胞和C3H10T1/2细胞系为研究对象,通过体外诱导成脂分化,检测RNF20的表达及其介导的H2Bub的水平,利用siRNA干扰技术确定RNF20及其介导的H2Bub对小鼠棕色脂肪细胞分化的影响,为研究棕色脂肪细胞的分化机制提供新的基因素材。
1 材料与方法 1.1 材料 1.1.1 试验动物和细胞试验动物为1日龄和2月龄雄性C57BL/6小鼠,购买于北京维通利华实验动物技术有限公司。小鼠棕色前体脂肪细胞于1日龄小鼠分离获得;C3H10T1/2细胞系购买于国家细胞实验资源共享服务平台。本研究所涉及到统计学的试验都至少有3个生物学重复,2个技术重复。
1.1.2 主要仪器荧光定量PCR仪(ABI7500);化学发光仪(天能);倒置显微镜(Olympus)等。
1.1.3 主要试剂DMEM培养基购自Lonza公司;胎牛血清购自Hyclone公司;胰蛋白酶、青链霉素双抗购自Gibico公司;胶原酶Ⅰ购自Sigma公司;lipofectamine RNAiMAX购自Invitrogen公司;TRIzol reagent、荧光定量试剂和反转录试剂盒购自TaKaRa公司;胰岛素、地塞米松、三碘甲状腺氨酸(T3)、吲哚美辛、3-异丁基-1-甲基黄嘌呤(IBMX)、罗格列酮购自Sigma公司;RNF20 (21625-1-AP)抗体购自Proteintech公司;β-tubulin(2146)、β-actin (4970)、H2Bub(5546)和PPARγ(2443)抗体购自CST公司;H3K4me3(ab8580)、H3K79me3(ab2621)和CEBPα(ab40764)抗体购自Abcam公司。
1.2 试验方法 1.2.1 小鼠棕色前体脂肪细胞的分离与培养将1日龄小鼠冰水冷冻窒息处死后于75%酒精浸泡消毒,在超净台内取出肩胛骨处的棕色脂肪组织,用含有双抗的DPBS洗3遍。将棕色脂肪组织剪碎后转移至无菌的15 mL离心管,加5 mL胶原酶Ⅰ(1.5 mg·mL-1)后放置37 ℃水浴锅中消化30 min,加等体积的生长培养基终止消化。然后用70 μm一次性细胞筛过滤,将滤液收集到15 mL离心管,1 500 r·min-1离心5 min,弃上清,加入5 mL红细胞裂解液将底部沉淀轻柔吹打混匀,室温放置5 min,1 500 r·min-1离心5 min。弃上清,加入DMEM生长培养基将底部细胞吹打混匀后接种于10 cm的培养皿,放置5% CO2,37 ℃培养箱培养,每2 d换1次液。
1.2.2 C3H10T1/2细胞培养及转染C3H10T1/2细胞培养在含10%胎牛血清的DMEM培养基中,置于5% CO2,37 ℃的恒温培养箱,每2 d换1次液,观察细胞形态和生长情况。转染前1 d将细胞接种至6孔板,使细胞第2天汇合度达到60%~80%,用150 μL Opti-MEM稀释5 μL siRNA (20 μmol·L-1),150 μL Opti-MEM稀释9 μL lipofectamin RNAMAX,将2种稀释好的试剂轻轻混匀,室温放置5 min,取250 μL加入6孔板,轻轻混匀。然后放置培养箱。
1.2.3 小鼠棕色前体脂肪细胞及C3H10T1/2细胞的诱导分化细胞100%汇合后,继续培养2 d(这种未分化的细胞定义为分化0 d),开始诱导,诱导培养基为含20 nmol·L-1胰岛素,0.5 mmol·L-1 IBMX,2 μg·mL-1地塞米松,1 nmol·L-1 T3,0.125 mmol·L-1吲哚美辛和1 μmol·L-1罗格列酮的DMEM生长培养基。第2天开始换成维持培养基,维持培养基为含有20 nmol·L-1胰岛素和1 nmol·L-1 T3的DMEM生长培养基。第4天换成DMEM生长培养基,之后每2 d换1次液。
1.2.4 油红O染色饱和油红O原液按3:2(油红O:蒸馏水)稀释,混匀,室温放置10 min,之后过滤。弃掉培养基,用DPBS洗1遍;用4%的多聚甲醛固定细胞10 min;蒸馏水充分洗1遍;60%异丙醇浸洗1遍;避光染色10~15 min;60%异丙醇分化至间质清晰;蒸馏水洗;显微镜下观察并拍照。
1.2.5 siRNA及Rnf20基因定量引物的合成根据文献[21]中Rnf20基因的有效靶序列5′-GAGATTCTGTTAAGGATAA-3′,由上海吉玛制药技术有限公司合成siRNA,且提供阴性对照。siRNF20 sense:5′-GAGAUUCUGUUAAGGAU-AATT-3′,siRNF20 antisense:5′-UUAUCCUUA-ACAGAAUCUCTT-3′;siN.C. sense:5′-UUCUCCGAACGUGUCACGUTT-3′,siN.C. antisense:5′-ACGUGACACGUUCGGAGAATT-3′。根据GenBank公布的小鼠Rnf20基因的mRNA序列设计定量引物,以18S为定量内参。Rnf20-F:5′-GTGAACCGGTACTGGAGCCAG-3′,Rnf20-R:5′-GAA-AGCTGGCTCTTGCCCATC-3′;18S-F:5′-GTAACCCGTTGAACCCCATT-3′,18S-R:5′-CCATCCAA-TCGGTAGTAGCG-3′。引物由北京天一辉远生物科技有限公司合成。
1.2.6 总RNA提取和cDNA合成按照TRIzol试剂说明书的操作步骤进行细胞总RNA的提取。使用微量分光光度计测定RNA的浓度和纯度。取少量RNA进行琼脂糖电泳,鉴定RNA的完整性。取1 μg RNA按照反转录试剂盒说明书进行cDNA合成。
1.2.7 qPCR反应体系为20 μL:SYBR Green Premix Ex Taq 10 μL,浓度为10 μmol·L-1的正反向引物各0.4 μL,DyeII 0.4 μL,cDNA 0.8 μL,ddH2O 8.0 μL。反应条件:95 ℃预变性30 s;然后95变性℃ 5 s、60 ℃退火及延伸34 s,共40个循环。采用2-ΔΔCt法计算Rnf20基因的相对表达量。
1.2.8 组织和细胞蛋白的提取采集1日龄和2月龄小鼠的棕色脂肪组织,加入适量的组织裂解液,组织匀浆仪匀浆后,4 ℃,12 000 r·min-1离心10 min,取上清即组织蛋白。将分化0和8 d的细胞用预冷DPBS洗2遍,加入细胞裂解液,冰浴5 min,收集裂解物,4 ℃,12 000 r·min-1离心10 min后取上清即细胞蛋白。
1.2.9 Western blot将蛋白上样于10%的SDS-PAGE胶,电泳120 V 15 min,200 V 40 min。电泳结束后将蛋白转至NC膜100 V 2 h,5%脱脂牛奶室温封闭1 h。一抗4 ℃孵育过夜,TBST洗3次,每次10 min,二抗室温孵育40 min,TBST洗3次,每次10 min。ECL试剂盒显色,将膜置于化学发光仪中进行曝光,之后拍照并保存。
1.2.10 统计分析采用Image J软件对Western blot蛋白条带进行灰度值分析。用GraphPad Prism Version 6统计软件进行t检验分析。结果用“平均值±标准误”表示。以P < 0.05为差异显著性判断标准,用“*”表示,以P < 0.01为差异极显著性判断标准,用“**”表示。
2 结果 2.1 小鼠不同发育时期棕色脂肪组织中RNF20的表达和H2Bub的水平收集1日龄和2月龄小鼠的棕色脂肪组织,提取总蛋白,利用Western blot技术检测不同时期棕色脂肪组织中RNF20蛋白的表达及其介导的H2Bub水平。结果如图 1所示,2月龄小鼠棕色脂肪组织中RNF20的表达量及其介导的H2Bub水平均显著高于1日龄小鼠。
![]() |
A. Western blot的代表性图片,每组包括3个生物学重复;B. Image J软件对Western blot蛋白条带进行灰度值分析的统计结果:**. P < 0.01。1 d. 1日龄;2 m. 2月龄,下同 A. The representative Western blot image, every group contains 3 biological replications; B. The quantitative data from Western blot: **. P < 0.01.1 d. 1-day-old; 2 m. 2-month-old, the same as below 图 1 RNF20的表达及其介导的H2Bub水平在1日龄和2月龄小鼠棕色脂肪组织中的检测 Fig. 1 The expression of RNF20 and it-mediated H2Bub level in brown adipose tissue from 1-day-old and 2-month-old mice |
随着前体脂肪细胞分离培养技术的成熟,越来越多的研究者利用前体脂肪细胞进行细胞分化过程中基因功能及机制的研究[22-25]。本研究取1日龄小鼠的棕色脂肪组织,通过胶原酶消化分离获得棕色前体脂肪细胞并进行诱导分化。在显微镜明场下可以观察到分化第8天的细胞中有明显的多房小脂滴出现(图 2A,左图),油红O染色(图 2A,右图)进一步显示了较高的细胞成脂分化效率。收集分化前后(0和8 d)的蛋白样品,Western blot比较了脂肪细胞分化标记蛋白(PPARγ和CEBPα)以及RNF20蛋白的表达,以及组蛋白修饰,包括H2Bub、H3K4me3和H3K79me3的水平(图 2B和2C)。本研究用不同批次的细胞重复了3次,对Western blot的结果进行了灰度分析(图 2D)。结果如图 2B和2D所示,PPARγ和CEBPα在分化后的细胞中表达量显著上升,从分子水平说明细胞分化成功。RNF20的表达量及其介导的H2Bub水平在分化后的细胞中显著升高(图 2C和2D)。有报道表明,H2Bub是H3K4me3和H3K79me3的前体[26]。本研究也检测了分化前后的这两个组蛋白修饰的变化,结果发现,细胞分化后H3K79me3的水平显著升高(图 2C和2D),H3K4me3水平也明显升高(图 2C)。所有这些结果说明,RNF20及其介导的H2Bub可能参与了小鼠棕色脂肪细胞的分化。
![]() |
A.细胞分化后脂滴形态(左:显微镜明场;右:油红O染色);B.脂肪分化标记蛋白CEBPα、PPARγ在细胞分化前后的表达;C. Western blot的代表性图片:RNF20蛋白及H2Bub、H3K4me3、H3K79me3在细胞分化前后的水平;D. 3次Western blot蛋白条带的灰度值统计结果:*. P < 0.05,**. P < 0.01;0 d.分化前;8 d.分化后,下同 A. Morphology of lipid droplet in differentiated cells (left: light field of microscopy; right: Oil Red O staining); B. Expression of CEBPα and PPARγ, which are known as adipocytes differentiation marker proteins; C. The representative Western blot image: Levels of RNF20, H2Bub, H3K79me3 and H3K4me3 in differentiated and non-differentiated cells; D. The quantitative data from 3 independent experiments: *. P < 0.05, **. P < 0.01; 0 d. Non-differentiated; 8 d. Differentiated, the same as below 图 2 RNF20及相关组蛋白修饰在小鼠棕色前体脂肪细胞分化前后的水平 Fig. 2 Expression of RNF20 and related histone modifications levels in mouse differentiated and non-differentiated brown preadipocytes |
C3H10T1/2是一个典型的小鼠间充质干细胞系,研究者一般用它作为向棕色脂肪细胞诱导分化的工具细胞。本研究对其进行了体外分化并比较了细胞分化前后(0和8 d)RNF20的表达及相关组蛋白修饰的水平。显微镜明场视野下分化8 d的细胞明显出现的脂滴(图 3A,左图)、油红O染色(图 3A,右图)以及脂肪细胞分化标记蛋白(PPARγ和CEBPα)的表达明显上升(图 3B),均表明细胞的分化效率比较高。与在棕色前体脂肪细胞体外分化中观察到的结果非常一致,RNF20的表达量及其介导的H2Bub水平在分化后的细胞中均显著升高,此外,与H2Bub相关的H3K4me3和H3K79me3的水平在分化后的细胞中均明显升高(图 3C)。
![]() |
A.细胞分化后脂滴形态(左:显微镜明场;右:油红O染色);B.脂肪细胞分化标记蛋白CEBPα和PPARγ在细胞分化前后的表达;C. RNF20蛋白及H2Bub、H3K4me3、H3K79me3在细胞分化前后的水平(左. Western blot的代表性图片;右. Western blot蛋白条带的灰度值统计结果) A. Morphology of lipid droplet in differentiated cells (left: light field of microscopy; right: Oil Red O staining); B. Expressions of CEBPα and PPARγ, which are known as adipocytes differentiation marker proteins; C. Levels of RNF20, H2Bub, H3K79me3 and H3K4me3 in differentiated and non-differentiated cells (left. the representative Western blot image; right. the quantitative data from Western blot) 图 3 RNF20及相关组蛋白修饰在C3H10T1/2细胞分化前后的水平 Fig. 3 Expression of RNF20 and related histone modifications levels in differentiated and non-differentiated C3H10T1/2 cells |
为了进一步确定RNF20和H2Bub对小鼠棕色脂肪细胞分化的影响,本研究合成了Rnf20的siRNA,检测干扰Rnf20基因表达是否能够降低H2Bub的水平从而影响C3H10T1/2细胞的成脂分化效率。利用脂质体转染试剂将干扰组siRNF20和阴性对照siN.C.分别转染C3H10T1/2细胞。转染48 h后收集细胞并提取RNA和蛋白,利用qPCR和Western blot技术检测了siRNA的干扰效率,与阴性对照组相比,Rnf20基因的表达量显著降低(图 4A和4B)。表明所合成的RNF20 siRNA在C3H10T1/2细胞中具有干扰效果,可开展后续试验。对转染siRNF20和siN.C.的C3H10T1/2细胞进行体外成脂分化,发现转染siRNF20的细胞分化后脂滴明显减少(图 4C)。对分化后的两组细胞检测了RNF20的表达和H2Bub的水平。结果显示,分化后细胞中RNF20的表达和H2Bub的水平均显著降低(图 4D)。此结果表明,敲降Rnf20能够显著降低H2Bub的水平,也明显降低了C3H10T1/2细胞的成脂分化效率。
![]() |
A.mRNA水平检测Rnf20基因在C3H10T1/2细胞中的干扰效率;B.蛋白水平检测Rnf20的干扰效率及其介导的H2Bub水平(左:Western blot的代表性图片;右:Western blot蛋白条带的灰度值统计结果;C.分化后明场和油红O染色后的脂滴形态(左:显微镜明场;右:油红O染色);D. C3H10T1/2细胞分化后RNF20的表达及其介导的H2Bub的水平(左:Western blot的代表性图片;右:Western blot蛋白条带的灰度值统计结果);siN.C..阴性对照组;siRNF20.干扰组 A. Detection of Rnf20 gene interference efficiency at mRNA level; B. Detection of Rnf20 gene interference efficiency and it-mediated H2Bub at protein level (left: the representative Western blot image; right: the quantitative data from Western blot); C. Morphology of lipid droplet in differentiated cells and Oil Red O staining (left: light field of microscopy; right: Oil Red O staining); D. Expression of RNF20 and it-mediated H2Bub in differentiated C3H10T1/2 cells (left: the representative Western blot image; right: the quantitative data from Western blot); siN.C.. Negative control group; siRNF20. Interference group 图 4 敲降Rnf20基因对C3H10T1/2细胞成脂分化的影响 Fig. 4 The effect of Rnf20 gene knockdown on adipogenic differentiation of C3H10T1/2 cells |
动物脂肪组织在机体代谢和能量平衡中起到了至关重要的作用,脂肪功能紊乱能引起多种代谢性疾病,如脂肪营养不良症、肥胖症等。多年来,研究人员挖掘和鉴定了大量调控脂肪组织独特功能的基因及其参与的信号通路,此外,大量研究表明,表观遗传学尤其是组蛋白修饰,包括甲基化、乙酰化等,可以在特定的时候启动或关闭基因的表达,也在脂肪发育和功能维持中发挥重要的作用[27-31],但是组蛋白泛素化修饰在脂肪中的作用还是未知。
H2Bub参与多种细胞的分化过程并发挥着重要作用,且H2Bub在多种细胞分化过程中水平都是升高的[10, 32-34],Karpiuk等[10]发现,H2Bub水平在人骨髓间充质干细胞(human mesenchymal stem cells,hMSCs)成脂分化过程中显著升高。与以往的研究结果一致,本研究发现,RNF20和H2Bub水平在棕色脂肪细胞分化后显著升高,说明H2Bub在细胞分化中的功能比较保守。令人意外的是,H2Bub的水平在成肌细胞C2C12的分化过程中是下降的[21],意味着RNF20及其介导的H2Bub在成脂和成肌过程中发挥的功能有所不同,涉及到的具体机制需要进一步深入研究。
虽然有报道称,RNF20能够单独发挥泛素连接酶的功能[35],但是大量研究表明,细胞中H2Bub的水平除了受RNF20的调控,还受其它泛素连接酶和去泛素化酶的影响。Fuchs等[33]发现,去泛素化酶USP44为H2Bub的负调控子,它与RNF20协同调控H2Bub。有研究表明,RNF20与RNF40形成复合物发挥E3连接酶的功能[36]。本研究发现,敲降Rnf20基因显著降低了H2Bub水平,并抑制了细胞的成脂分化,说明RNF20和H2Bub对维持正常的棕色脂肪细胞分化是必需的。当然,也不排除RNF20可能与某些靶基因互作,影响了成脂基因的表达,进而影响细胞分化,涉及到的分子机制有待进一步研究。
此外,不同的组蛋白修饰之间存在着交叉对话,有报道证明,H2Bub是H3K4me3和H3K79me3的前体,且H3K4me3和H3K79me3与基因的转录激活有关[26],有研究发现,在人的脂肪组织中,成脂基因、脂代谢基因及炎症基因核小体上的H3K4me3与体重指数和胰岛素抵抗的稳态模型评估正相关[37]。PPARγ和CEBPα是成脂的关键因子,而PPARγ在一些基因增强子的结合位点富集着高水平的H3K4me3[38]。此外,H3K4me3和H3K27me3相互作用调控棕色脂肪细胞的分化[39]。本研究发现,在细胞成脂分化后,H2Bub、H3K4me3及H3K79me3水平都明显升高,推测H2Bub使染色质结构变得松散,促进了成脂基因的表达,或者是H2Bub通过调控H3K4me3或H3K79me3使得成脂基因上调转录表达,从而促进细胞分化。
最近,有研究发现,Rnf20+/小鼠的脂肪组织减少,细胞体积变小[40]。此外,本研究发现,RNF20和H2Bub在2月龄小鼠棕色脂肪组织中的水平显著高于1日龄小鼠,说明H2Bub可能参与了棕色脂肪组织发育过程。RNF20及其介导的H2Bub调控成脂分化及其对棕色脂肪发育与功能的影响与机制尚需利用合适的动物模型进行更为深入的研究。
4 结论本试验发现,RNF20及其介导的H2Bub在2月龄小鼠棕色脂肪组织中的水平显著高于1日龄小鼠。RNF20及H2Bub在分化后的棕色前体脂肪细胞和C3H10T1/2细胞中显著上调。敲降Rnf20的表达显著降低了H2Bub的水平,抑制了C3H10T1/2细胞的分化。综上结果表明,RNF20及其介导的H2Bub是小鼠棕色脂肪细胞分化所必需的。本研究丰富了棕色脂肪细胞分化的表观遗传调控,为进一步了解动物脂肪细胞的发育和功能提供了新的基因素材,RNF20也有望成为治疗肥胖及相关疾病新的潜在治疗靶点。
[1] | JUNG S M, SANCHEZ-GURMACHES J, GUERTIN D A. Brown adipose tissue development and metabolism[J]. Handb Exp Pharmacol, 2019, 251: 3–36. |
[2] | CAROBBIO S, GUÉNANTIN A C, SAMUELSON I, et al. Brown and beige fat:from molecules to physiology and pathophysiology[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(1): 37–50. |
[3] | LIANG X J, PAN J F, CAO C W, et al. Transcriptional response of subcutaneous white adipose tissue to acute cold exposure in mice[J]. Int J Mol Sci, 2019, 20(16): 3968. |
[4] | DANYSZ W, HAN Y, LI F, et al. Browning of white adipose tissue induced by the β3 agonist CL-316, 243 after local and systemic treatment-PK-PD relationship[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9): 2972–2982. |
[5] | PHILLIPS K J. Beige fat, adaptive thermogenesis, and its regulation by exercise and thyroid hormone[J]. Biology, 2019, 8(3): 57. |
[6] | STILLMAN B. Histone modifications:insights into their influence on gene expression[J]. Cell, 2018, 175(1): 6–9. |
[7] | FIERZ B, CHATTERJEE C, MCGINTY R K, et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction[J]. Nat Chem Biol, 2011, 7(2): 113–119. |
[8] | CAO J, YAN Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer[J]. Front Oncol, 2012, 2: 26. |
[9] | MAO P, SMERDON M J. Rescue of DNA damage-stalled RNA Pol Ⅱ:histone H2B in action[J]. RNA Dis, 2014, 1(1): e422. |
[10] | KARPIUK O, NAJAFOVA Z, KRAMER F, et al. The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells[J]. Mol Cell, 2012, 46(5): 705–713. |
[11] | SADEGHI L, SIGGENS L, SVENSSON J P, et al. Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity[J]. Nat Struct Mol Biol, 2014, 21(3): 236–243. |
[12] | GLICKMAN M H, CIECHANOVER A. The ubiquitin -proteasome proteolytic pathway:destruction for the sake of construction[J]. Physiol Rev, 2002, 82(2): 373–428. |
[13] | WEST M H, BONNER W M. Histone 2B can be modified by the attachment of ubiquitin[J]. Nucleic Acids Res, 1980, 8(20): 4671–4680. |
[14] | ROBZYK K, RECHT J, OSLEY M A. Rad6-dependent ubiquitination of histone H2B in yeast[J]. Science, 2000, 287(5452): 501–504. |
[15] | WOOD A, KROGAN N J, DOVER J, et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter[J]. Mol Cell, 2003, 11(1): 267–274. |
[16] | ZHU B, ZHENG Y, PHAM A D, et al. Monoubiquitination of human histone H2B:the factors involved and their roles in HOX gene regulation[J]. Mol Cell, 2005, 20(4): 601–611. |
[17] | XU Z, SONG Z, LI G, et al. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation[J]. Nucleic Acids Res, 2016, 44(20): 9681–9697. |
[18] | LIANG Q L, XIA W L, LI W, et al. RNF20 controls astrocytic differentiation through epigenetic regulation of STAT3 in the developing brain[J]. Cell Death Differ, 2018, 25(2): 294–306. |
[19] | REN P, SHENG Z, WANG Y, et al. RNF20 promotes the polyubiquitination and proteasome-dependent degradation of AP-2α protein[J]. Acta Biochim Biophys Sin, 2014, 46(2): 136–140. |
[20] | LEE J H, LEE G Y, JANG H, et al. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation[J]. Hepatology, 2014, 60(3): 844–857. |
[21] | VETHANTHAM V, YANG Y, BOWMAN C, et al. Dynamic loss of H2B ubiquitylation without corresponding changes in H3K4 trimethylation during myogenic differentiation[J]. Mol Cell Biol, 2012, 32(6): 1044–1055. |
[22] |
任玲, 胡鑫, 邢义珅, 等. S100a10基因对小鼠前体脂肪细胞白色和棕色成脂分化的影响[J]. 畜牧兽医学报, 2019, 50(6): 1171–1178.
REN L, HU X, XING Y S, et al. Effects of S100a10 on white and brown adipogenic differentiation of mice preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1171–1178. (in Chinese) |
[23] |
何长晟, 王永, 许晴, 等. KLF2对山羊肌内前体脂肪细胞分化的影响[J]. 畜牧兽医学报, 2020, 51(1): 64–73.
HE C S, WANG Y, XU Q, et al. The effect of KLF2 on the differentiation of goat intramuscular preadipocyte[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 64–73. (in Chinese) |
[24] |
许晴, 李倩, 王永, 等. 过表达FGF10促进山羊皮下前体脂肪细胞分化[J]. 畜牧兽医学报, 2019, 50(10): 1972–1984.
XU Q, LI Q, WANG Y, et al. Overexpression of FGF10 promotes the differentiation of subcutaneous preadipocyte in goat[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(10): 1972–1984. (in Chinese) |
[25] |
张宁芳, 成志敏, 乐宝玉, 等. 猪肌源性前体脂肪细胞的分离培养和成脂诱导分化研究[J]. 畜牧兽医学报, 2018, 49(12): 2612–2621.
ZHANG N F, CHENG Z M, LE B Y, et al. Isolation, culture and adipogenic differention of pig myogenic preadipocytes cell[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(12): 2612–2621. (in Chinese) |
[26] | WORDEN E J, WOLBERGER C. Activation and regulation of H2B-Ubiquitin-dependent histone methyltransferases[J]. Curr Opin Struct Biol, 2019, 59: 98–106. |
[27] | MIKKELSEN T S, XU Z, ZHANG X L, et al. Comparative epigenomic analysis of murine and human adipogenesis[J]. Cell, 2010, 143(1): 156–169. |
[28] | GALMOZZI A, MITRO N, FERRARI A, et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue[J]. Diabetes, 2013, 62(3): 732–742. |
[29] | OKUNO Y, OHTAKE F, IGARASHI K, et al. Epigenetic regulation of adipogenesis by PHF2 histone demethylase[J]. Diabetes, 2013, 62(5): 1426–1434. |
[30] | WANG L F, XU S, LEE J E, et al. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis[J]. EMBO J, 2013, 32(1): 45–59. |
[31] | ZHUANG L N, JANG Y, PARK Y K, et al. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function[J]. Nat Commun, 2018, 9(1): 1796. |
[32] | CHEN S, LI J, WANG D L, et al. Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation[J]. Cell Res, 2012, 22(9): 1402–1405. |
[33] | FUCHS G, SHEMA E, VESTERMAN R, et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation[J]. Mol Cell, 2012, 46(5): 662–673. |
[34] | ZHANG K Q, WANG J H, TONG T R, et al. Loss of H2B monoubiquitination is associated with poor-differentiation and enhanced malignancy of lung adenocarcinoma[J]. Int J Cancer, 2017, 141(4): 766–777. |
[35] | KIM J, HAKE S B, ROEDER R G. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions[J]. Mol Cell, 2005, 20(5): 759–770. |
[36] | DICKSON K A, COLE A J, GILL A J, et al. The RING finger domain E3 ubiquitin ligases BRCA1 and the RNF20/RNF40 complex in global loss of the chromatin mark histone H2B monoubiquitination (H2Bub1) in cell line models and primary high-grade serous ovarian cancer[J]. Hum Mol Genet, 2016, 25(24): 5460–5471. |
[37] | CASTELLANO-CASTILLO D, DENECHAUD P D, FAJAS L, et al. Human adipose tissue H3K4me3 histone mark in adipogenic, lipid metabolism and inflammatory genes is positively associated with BMI and HOMA-IR[J]. PLoS One, 2019, 14(4): e0215083. |
[38] | WAKI H, NAKAMURA M, YAMAUCHI T, et al. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation[J]. PLoS Genet, 2011, 7(10): e1002311. |
[39] | PAN D N, HUANG L, ZHU L J, et al. Jmjd3-mediated H3K27me3 dynamics orchestrate brown fat development and regulate white fat plasticity[J]. Dev Cell, 2015, 35(5): 568–583. |
[40] | JEON Y G, LEE J H, JI Y, et al. RNF20 Functions as a transcriptional coactivator for PPARγ by promoting NCoR1 degradation in adipocytes[J]. Diabetes, 2020, 69(1): 20–34. |