畜牧兽医学报  2020, Vol. 51 Issue (4): 713-721. DOI: 10.11843/j.issn.0366-6964.2020.04.007    PDF    
利用简化基因组测序筛选安格斯牛生长相关的受选择基因
吕世杰1,2, 陈付英1,2, 金磊1,2, 张子敬1,2, 朱肖亭1,2, 施巧婷1,2, 辛晓玲1,2, 楚秋霞1,2, 柏中林3, 王二耀1,2, 徐照学1,2     
1. 河南省农业科学院畜牧兽医研究所, 郑州 450002;
2. 河南省畜禽繁育与营养调控重点实验室, 郑州 450002;
3. 泌阳县动物疫病预防控制中心, 驻马店 463700
摘要:旨在探究安格斯牛生长相关的受选择基因,为肉牛生长相关主效基因的鉴定提供参考。本试验共采集72头南阳牛母牛和14头黑安格斯牛母牛血样并提取基因组DNA。利用SLAF-seq(specific-locus amplified fragment sequencing)技术获得全基因组SNP标记并对试验个体基因型进行分型。通过计算各SNP位点的遗传分化系数(Fst值)和核苷酸多态性(π ratio)筛选两品种间的差异基因组区域,并与动物QTL数据库中牛生长性状QTLs进行比对,重合区域作为候选区域。随后对候选区域内基因进行功能注释以筛选候选基因,并根据"Expression Atlas"数据库对候选基因的组织表达情况进行分析。经筛选后,本试验共得到69 762个SNPs,以Fst值和π ratio值的99%分位数为阈值筛选得到33个两品种间高度差异的基因组区域,其中16个基因组区域与生长性状相关QTLs重合。这些区域共包含27个基因,其中4个基因(FXR1、ADARIGF1和MNF1)与骨生长、肌肉发育和生长调控有关。FXR1和MNF1均在骨骼肌组织中高表达,ADARIGF1分别在脑组织和肝脏中表达最高。结果提示,IGF1基因可作为影响肉牛生长的关键候选基因,FXR1、ADARMNF1基因可优先进行进一步验证研究。
关键词南阳牛    生长性状    候选基因    选择性清除    遗传分化系数    
Identification of Growth-Related Genes under Selection in Angus Cattle Using SLAF-seq
Lü Shijie1,2, CHEN Fuying1,2, JIN Lei1,2, ZHANG Zijing1,2, ZHU Xiaoting1,2, SHI Qiaoting1,2, XIN Xiaoling1,2, CHU Qiuxia1,2, BAI Zhonglin3, WANG Eryao1,2, XU Zhaoxue1,2     
1. Institute of Animal Science and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
2. Henan Key Laboratory of Livestock and Poultry Breeding and Nutrition Regulation, Zhengzhou 450002, China;
3. Center of Animal Disease Prevention and Control of Biyang, Zhumadian 463700, China
Abstract: The aims of this study were to investigate the growth-related genes under selection in Angus cattle and provide a reference for identification of major genes for beef cattle growth. Blood samples of 72 Nanyang cows and 14 Black Angus cows were collected and used to isolate genomic DNA. The genome-wide SNP markers and genotypes of individuals were obtained by using SLAF-seq technology. Fst and π ratio values of each SNP were calculated for selecting the different genomic regions between the two breeds. Afterward, these identified regions were compared with the cattle growth QTLs in animal QTLdb. The overlapping regions were considered as candidate regions for further analysis. Genes within the overlapping regions were screened as candidate genes based on the gene annotation. Tissue expression status of candidate genes were checked in the "Expression Atlas" database. After filtering, 69 762 SNPs were remained for the further analysis. Using the 99% quantiles of Fst and π ratio values as thresholds, 33 genomic regions with high differences between the two breeds were screened. Among them, there were 16 genomic regions overlapped with the cattle growth QTLs. Within the 16 regions, 27 genes were located, among them, 4 genes (FXR1, ADAR, IGF1, MNF1) were related to bone/muscle development and growth regulation. FXR1 and MNF1 genes were highly expressed in the skeletal muscle. ADAR and IGF1 genes were highly expressed in the brain and liver, respectively. IGF1 gene can be considered as a major candidate gene for beef cattle growth, FXR1, ADAR and MNF1 genes are prioritized as potential candidate genes for further verification.
Key words: Nanyang cattle    growth trait    candidate gene    selective sweep    Fst    

南阳牛是我国的五大黄牛品种之一,具有肌肉发达、耐粗饲、适应性强等特性[1]。但其生长性能与引进专门化肉牛品种相比仍然相对较差。南阳牛母牛的12、24、36月龄平均体重分别为243.01、381.04、444.05 kg;12~18、18~24、24~36月龄平均日增重分别为0.38、0.38、0.17 kg·d-1[2]。黑安格斯牛原产于苏格兰东北部,是一个专门化的肉牛品种,生长发育速度快。黑安格斯牛母牛的12、24、36月龄平均体重分别为296.80、522.50、651.00 kg;12~18、18~24、24~36月龄平均日增重分别为0.96、0.58、0.35 kg·d-1[3],其在体重和生长速度上均高于南阳牛。如果选育南阳牛专门化肉用新品系,其生长性状仍然需要进一步改良提高。

目前,全世界范围内存在很多肉牛品种,这些品种的形成离不开自然选择和人工选择。在选择的过程中,群体内某些优势等位基因的频率升高,其周围与之连锁的染色体区域因搭车效应而出现多态性下降,这种现象称为选择性清除(selective sweep)[4]。根据选择性清除,可以判定不同选择条件造成的各品种间差异的基因组区域,根据基因组区域内基因功能的注释信息,并结合品种间表型的差异,可以进一步预测差异表型相关的候选基因。随着分子生物学技术的发展,在全基因组水平获得不同品种间差异的基因组区域已成为可能。分析这些基因组区域和区域内受选择的基因已成为一种鉴定畜禽重要经济性状相关候选基因的有效方法[5-9]。肉牛生长性状是重要的经济性状也是复杂的数量性状,受到多基因调控,一些相关的基因组区域和候选基因已通过关联分析的方法被鉴定出来[10-15]。通过选择性清除方法对生长性状相关候选基因进行鉴定是对关联分析结果的有益补充。进行全基因组分析需要通过测序获得全基因组SNP的基因型数据。以高通量测序为基础的简化基因组测序技术(specific-locus amplified fragment sequencing,SLAF-seq)[16]具备通量高、成本低等特点,能够用于全基因组SNP的鉴定,已被应用于全基因组关联分析[17-20]和选择性清除分析[21-23]

本研究利用SLAF-seq技术对南阳牛和安格斯牛进行全基因组范围内的SNP检测,并通过分析筛选两品种间的差异基因组区域,探究与肉牛生长性状相关的候选基因,以期为肉牛生长相关主效基因的鉴定和南阳牛选育提供参考。

1 材料与方法 1.1 试验材料

本研究以72头南阳牛母牛(J)和14头黑安格斯牛母牛(D)为试验对象。南阳牛来源于河南省南阳黄牛科技中心育种场,黑安格斯牛来源于河南省穆赛牧业有限公司。

1.2 DNA提取

通过牛颈静脉采集每头个体血样并使用DNeasy Blood & Tissue试剂盒(Qiagen,德国)提取血液总DNA。利用紫外分光光度计(ND-1000,NanoDrop Technologies,美国)和1%琼脂糖凝胶检测DNA质量和完整性,样品纯度要求A260 nm/A280 nm介于1.8~2.0之间。

1.3 简化基因组测序

通过SLAF-seq对试验个体进行测序以获得全基因组SNP标记。DNA文库构建及测序参考文献[19]进行,并以牛基因组(UMD 3.1)作为参考序列。筛选保留位于常染色体上,具有多态性且最小等位基因频率(minor allele frequency)大于0.05和检出率(call rate)大于0.8的SNP位点。

1.4 选择性清除分析

本试验在每条染色体上使用100 kb的滑动窗口及10 kb的步长检测选择性清除区域。通过R语言[24]的PopGenome软件包[25]计算各滑动窗口内SNP位点的遗传分化系数(Fst值)和核苷酸多态性(π ratio)判断该滑动窗口是否受到选择。筛选两品种间的差异基因组区域时,以Fst和π ratio(π南阳牛黑安格斯牛)99%分位数对应的值分别作为阈值,然后对所得区域取交集。重叠的滑动窗口则合并为一段基因组区域。

1.5 候选基因筛选

将通过选择性清除分析筛选得到的基因组区域与动物QTL数据库(animal QTLdb,release 38)[12]中牛QTLs进行比对,与生长性状QTL重合的区域作为候选基因组区域。利用R语言进行数据分析,通过biomaRt软件包[26]的筛选功能获得候选基因组区域内的基因(参考基因组为UMD3.1)。利用数据库Database for Annotation, Visualization and Integrated Discovery(DAVID,https://david.ncifcrf.gov)[27-28]中的Functional Annotation Table功能对候选基因组区域内基因进行注释,与骨生长、肌肉发育和生长调控有关的基因优先考虑为候选基因。在“Expression Atlas”数据库中查看候选基因在牛各组织间的表达情况[29-30],并根据数据库中的Transcripts Per Million(TPM)值绘制热图。热图使用Morpheus工具绘制(https://software.broadinstitute.org/morpheus)。

2 结果 2.1 牛基因组SNP标记的开发与筛选

对牛基因组进行电子酶切预测,最终确定使用Rsa Ⅰ+Hae Ⅲ酶切,酶切片段长度为414~444 bp的序列定义为SLAF标签,预测到244 240个SLAF标签。试验中Rsa Ⅰ+Hae Ⅲ的酶切效率为86.68%,共得到526.72 M reads。通过生物信息学分析,获得289 363个SLAF标签,平均测序深度为7.3 x,其中多态性的SLAF标签共有244 399个,经筛选后共得到69 762个SNPs(图 1)。

每条染色体上黑色部分表示具有SNP标记,白色部分表示没有SNP标记 On each chromosome, black part means that there are SNP markers located within this region; white part means no SNP markers located within this region 图 1 SNP标记在各染色体上的分布 Fig. 1 Distribution of SNP markers on different chromosomes
2.2 两品种牛的选择性清除分析

Fst和π ratio值的99%分位数分别为0.502和34.98。因此,选取Fst值大于0.502且π ratio值大于34.98的基因组区域为两品种间的差异基因组区域。经筛选,共得到33个两品种间高度差异的基因组区域(图 2表 1)。与animal QTLdb数据库比对后,共有16个基因组区域与生长性状相关QTL重合,重合区域涉及初生重(QTL_67995,QTL_69407)、断奶体重(如QTL_24711,QTL_106666)、12月龄体重(如QTL_22770,QTL_69408)、日增重(如QTL_20926,QTL_68352)、胴体重(QTL_20623,QTL_20356)、犊牛大小(如QTL_15167,QTL_30514)、胸宽(QTL_20617,QTL_20627)、背最长肌面积(QTL_122433)、第12肋骨背膘厚(QTL_126462)、肌内脂肪(QTL_22864)及饲料转化率(QTL_35228)。

横坐标是π ratio值,纵坐标是Fst值,蓝色点是以Fst值和π ratio值均大于99%分位数筛选得到的区域 X-axis is π ratio value, Y-axis is Fst value. Blue dots mean the regions with Fst and π ratio values which are greater than 99th percentile of genome-wide values 图 2 南阳牛和黑安格斯牛品种间的差异基因组区域 Fig. 2 Different genomic regions between Nanyang and Black Angus cattle
表 1 南阳牛和黑安格斯牛品种间的高差异基因组区域及重合的生长性状相关QTLs Table 1 Highly different genomic regions between Nanyang and Black Angus cattle and overlapping QTLs for cattle growth traits
2.3 牛生长形状相关候选基因筛选

与生长性状QTL重合的16个基因组区域共包含27个基因,其中4个基因与骨生长、肌肉发育和生长调控有关,为FXR1、ADARIGF1和MNF1,并分别作用于肌肉器官发育(GO:0007517)、成骨细胞分化(GO:0001649)、生长激素应答(GO:0060416)和骨骼肌细胞分化调控(GO:2001014)(表 2)。根据“Expression Atlas”数据库中的9种不同牛组织RNA-seq数据(E-MTAB-2798, Strand-specific RNA-seq of nine cow tissues)查看4个候选基因的组织表达情况(图 3)。FXR1和MNF1均在骨骼肌组织中高表达,ADARIGF1分别在脑组织和肝脏中表达最高。

表 2 南阳牛生长性状相关候选基因名称及其功能 Table 2 Candidate genes for growth traits of Nanyang cattle and their function
标示的数字为TPM(transcripts per million)值 The labeled number means the value of transcripts per million 图 3 候选基因在牛9种不同组织中的表达情况 Fig. 3 Expression status of candidate genes in 9 tissues of cattle
3 讨论

本研究通过SLAF-seq对南阳牛和黑安格斯牛群体进行了全基因组SNP标记的开发,通过比较获得了两个品种间的33个差异基因组区域(Fst>0.502, π ratio>34.98)。经与牛QTL数据库比对后,共得到16个基因组区域与生长性状相关QTL重合,表明这16个区域可能与两品种生长性状差异有关。通过对这16个基因组区域内基因进行注释,共发现4个基因与骨生长、肌肉发育和生长调控有关,且在牛骨骼肌、肝脏和脑组织中高表达。这4个基因可考虑为安格斯牛生长相关的受选择基因和影响肉牛生长的候选基因,并可作为南阳牛生长性状选育提高的候选基因。

对于这4个候选基因,FXR1基因在小鼠肌肉组织中高表达,该基因敲除会导致小鼠出生后快速死亡并伴有骨骼肌和心肌组织细胞结构的损害[31]。在斑马鱼中,FXR1基因敲除后也会导致横纹肌发育异常[32]。根据“Expression Atlas”数据库的基因表达数据,FXR1在牛骨骼肌组织中高表达,表明FXR1在牛骨骼肌组织发育过程中起到了重要作用。在骨骼肌中同样高表达的还有MNF1基因,该基因可通过调节线粒体呼吸链的活动影响胰岛素分泌和骨骼肌分化[33]。在大白猪×民猪的自交群体中,MNF1基因与脚重、头重、屠体长、屠体重、6~7肋骨背膘厚、肝脏重等性状显著相关,表明该基因可能作用于生长性状[34]ADAR是一个多基因家族,其家族成员在神经系统中表达量相对较高[35-36],这与本研究在“Expression Atlas”数据库中获得的该基因在牛脑组织中高表达的情况相一致。在GO分析中,该基因参与到成骨细胞分化通路(GO:0001649)中,然而由于缺乏骨组织的表达数据,无法进一步推断该基因作为骨发育候选基因的可能性。IGF1是动物生长发育所必需的生长调节因子,与哺乳动物的肌肉生长密切相关。IGF1基因的多态性与秦川牛[37]、墨西哥肉牛[38]、安格斯牛[39]等的生长性状显著相关。IGF1基因被认为是牛分子选育中的关键候选基因,对肉牛育种有重要意义[40]。因此,可考虑其为肉牛生长性状相关的关键候选基因。尽管未有关联分析报道显示其余3个候选基因FXR1、ADARMNF1与牛生长性状直接相关,但是IGF1基因的发现间接证明了本研究方法的可行性并提高了其余3个基因作为候选基因的可能性。不过,这3个基因在牛中的生物学功能仍然需要进一步验证。而且,由于生长性状是复杂性状和基因功能研究的片面性,不能排除本研究候选的16个基因组区域内其他基因为主效基因的可能性。

本研究采用南阳牛和黑安格斯牛两个品种作为对比,在一定程度上增加了研究结果的假阳性和复杂性。安格斯牛起源于欧洲普通牛,南阳牛起源于东亚普通牛、欧亚普通牛和中国瘤牛[41]。因为遗传背景不同,安格斯牛与南阳牛在基因组上存在众多差异,这在比较品种间差异基因组区域时也有所体现,在筛选得到的33个基因组区域除与生长性状QTL有重合外,还与免疫性状、产奶性状、繁殖性状等QTLs重合;或将Fst和π ratio值筛选阈值设为大于95%,则共有1 644个差异基因组区域。尽管本研究通过品种间差异极显著区域(阈值为99%)和与生长性状QTLs重合两种途径筛选了16个基因组区域进行研究,但是不排除该16个区域为其他品种间差异造成。同样,由于生长性状的复杂性以及QTL数据库的不完整性,其他17个区域的可能性并不能被完全排除。对于筛选得到的候选基因仍然需要进一步验证。此外,简化基因组虽然具备通量高、成本低等特点,能够用于全基因组SNP的鉴定,但是也具有基因组覆盖程度低的局限性。本研究中,部分基因组区域未能被覆盖(图 1),也可能导致一些关键基因无法被发现。

4 结论

本研究通过比较南阳牛和黑安格斯牛两个品种间的差异基因组区域获得了16个与生长性状QTLs重合的基因组区域,包含4个可作为肉牛生长性状相关的候选基因。其中,IGF1可作为影响肉牛生长的关键候选基因,FXR1、ADARMNF1基因可优先进行进一步验证研究。

参考文献
[1] 魏成斌, 张彬, 施巧婷, 等. 南阳牛种质资源个性描述[J]. 河南农业科学, 2013, 42(9): 124–127.
WEI C B, ZHANG B, SHI Q T, et al. Characteristics describing of Nanyang cattle genetic resource[J]. Journal of Henan Agricultural Sciences, 2013, 42(9): 124–127. (in Chinese)
[2] 滑留帅, 陈付英, 王璟, 等. 南阳牛基础母牛生长和繁殖规律研究[J]. 中国牛业科学, 2017, 43(4): 7–11.
HUA L S, CHEN F Y, WANG J, et al. Study on the growth and reproduction traits in Nanyang cows[J]. China Cattle Science, 2017, 43(4): 7–11. (in Chinese)
[3] 梅楚刚, 王炜康, 昝林森. 安格斯牛生长发育规律、行为学特征及理化指标分析[J]. 家畜生态学报, 2018, 39(11): 38–43.
MEI C G, WANG W K, ZAN L S. The growth development patterns, behavior characteristics, and physiochemical indexes of Angus beef cattle[J]. Journal of Domestic Animal Ecology, 2018, 39(11): 38–43. (in Chinese)
[4] STEPHAN W. Selective sweeps[J]. Genetics, 2019, 211(1): 5–13.
[5] XU L Y, BICKHART D M, COLE J B, et al. Genomic signatures reveal new evidences for selection of important traits in domestic cattle[J]. Mol Biol Evol, 2015, 32(3): 711–725.
[6] KEMPER K E, SAXTON S J, BOLORMAA S, et al. Selection for complex traits leaves little or no classic signatures of selection[J]. BMC Genomics, 2014, 15: 246.
[7] ZHAO F P, MCPARLAND S, KEARNEY F, et al. Detection of selection signatures in dairy and beef cattle using high-density genomic information[J]. Genet Sel Evol, 2015, 47: 49.
[8] 张统雨, 樊红樱, 朱才业, 等. 利用可变窗口FST方法检测不同尾型呼伦贝尔羊尾部脂肪沉积相关基因[J]. 畜牧兽医学报, 2018, 49(7): 1354–1365.
ZHANG T Y, FAN H Y, ZHU C Y, et al. Identification of candidate genes involved in fat deposition in Hulun Buir Sheep tails using FST within the variable window sizes[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(7): 1354–1365. (in Chinese)
[9] 滑留帅, 辛晓玲, 王璟, 等. 利用混池重测序鉴定萨福克绵羊超数排卵关键调控基因[J]. 畜牧兽医学报, 2019, 50(9): 1813–1821.
HUA L S, XIN X L, WANG J, et al. Identification of key regulatory genes for superovulation in Suffolk sheep by pool resequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(9): 1813–1821. (in Chinese)
[10] 刘嫣然, 吴森, 王晓宇, 等. 秦川肉牛FGF2基因多态性与其生长和肉质性状的关联分析[J]. 西北农林科技大学学报:自然科学版, 2017, 45(6): 16–22, 29.
LIU Y R, WU S, WANG X Y, et al. Association of FGF2 gene polymorphism with growth and meat quality traits of Qinchuan beef cattle[J]. Journal of Northwest A&F University: Natural Science Edition, 2017, 45(6): 16–22, 29. (in Chinese)
[11] CHANG T, XIA J, XU L, et al. A genome-wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle[J]. Anim Genet, 2018, 49(4): 312–316.
[12] HU Z L, PARK C A, REECY J M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB[J]. Nucleic Acids Res, 2019, 47(D1): D701–D710.
[13] 徐怀超, 昝林森, 王洪宝, 等. CRTC3基因多态性及基因型组合与秦川牛生长性状的关联分析[J]. 畜牧兽医学报, 2016, 47(11): 2184–2190.
XU H C, ZAN L S, WANG H B, et al. Association of CRTC3 gene polymorphisms and genotype combination with growth traits of Qinchuan cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(11): 2184–2190. (in Chinese)
[14] ZHUANG Z W, XU L Y, YANG J, et al. Weighted single-step genome-wide association study for growth traits in Chinese Simmental beef cattle[J]. Genes, 2020, 11(2): 189.
[15] SMITH J L, WILSON M L, NILSON S M, et al. Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle[J]. BMC Genomics, 2019, 20(1): 926.
[16] SUN X W, LIU D Y, ZHANG X F, et al. SLAF-seq:an efficient method of large-scale De novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700.
[17] WANG W H, WANG J Y, ZHANG T, et al. Genome-wide association study of growth traits in Jinghai Yellow chicken hens using SLAF-seq technology[J]. Anim Genet, 2019, 50(2): 175–176.
[18] XIE D W, DAI Z G, YANG Z M, et al. Genome-wide association study identifying candidate genes influencing important agronomic traits of Flax (Linum usitatissimum L.) using SLAF-seq[J]. Front Plant Sci, 2018, 8: 2232.
[19] 陈付英, 牛晖, 施巧婷, 等. 郏县红牛生长发育性状全基因组关联分析[J]. 中国牛业科学, 2018, 44(5): 24–28.
CHEN F Y, NIU H, SHI Q T, et al. Genome-wide association analysis on growth traits of Jiaxian Red cattle[J]. China Cattle Science, 2018, 44(5): 24–28. (in Chinese)
[20] 吕世杰, 陈付英, 张子敬, 等. 南阳牛生长性状相关基因组区域全基因组关联分析[J]. 中国畜牧兽医, 2020, 47(1): 74–82.
LYU S J, CHEN F Y, ZHANG Z J, et al. Genomic regions associated with growth traits in Nanyang cattle using genome-wide association analysis[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(1): 74–82. (in Chinese)
[21] KIM J, HANOTTE O, MWAI O A, et al. The genome landscape of indigenous African cattle[J]. Genome Biol, 2017, 18(1): 34.
[22] ZHANG X G, ZHANG J H, HE X Y, et al. Genome-wide association study of major agronomic traits related to domestication in peanut[J]. Front Plant Sci, 2017, 8: 1611.
[23] QIN M, LI C H, LI Z X, et al. Genetic diversities and differentially selected regions between Shandong indigenous pig breeds and western pig breeds[J]. Front Genet, 2020, 10: 1351.
[24] R Core Team.R: a language and environment for statistical computing[R].Vienna, Austria: R Foundation for Statistical Computing, 2018.
[25] PFEIFER B, WITTELSBVRGER U, RAMOS-ONSINS S E, et al. PopGenome:an efficient Swiss army knife for population genomic analyses in R[J]. Mol Biol Evol, 2014, 31(7): 1929–1936.
[26] DURINCK S, SPELLMAN P T, BIRNEY E, et al. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt[J]. Nat Protoc, 2009, 4(8): 1184–1191.
[27] HUANG D W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44–57.
[28] HUANG D W, SHERMAN B T, LEMPICKI R A. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res, 2009, 37(1): 1–13.
[29] PAPATHEODOROU I, FONSECA N A, KEAYS M, et al. Expression Atlas:gene and protein expression across multiple studies and organisms[J]. Nucleic Acids Res, 2018, 46(D1): D246–D251.
[30] PETRYSZAK R, KEAYS M, TANG Y A, et al. Expression Atlas update-an integrated database of gene and protein expression in humans, animals and plants[J]. Nucleic Acids Res, 2016, 44(D1): D746–D752.
[31] MIENTJES E J, WILLEMSEN R, KIRKPATRICK L L, et al. Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo[J]. Hum Mol Genet, 2004, 13(13): 1291–1302.
[32] PADJE S V, CHAUDHRY B, SEVERIJNEN L A, et al. Reduction in fragile X related 1 protein causes cardiomyopathy and muscular dystrophy in zebrafish[J]. J Exp Biol, 2009, 212(16): 2564–2570.
[33] CAMBIER L, RASSAM P, CHABI B, et al. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory Chain activity[J]. PLoS One, 2012, 7(2): e31815.
[34] LIU X, WANG L G, LIANG J, et al. Genome-Wide Association Study for certain carcass traits and organ weights in a Large White×Minzhu intercross porcine population[J]. J Integr Agric, 2014, 13(12): 2721–2730.
[35] SAVVA Y A, RIEDER L E, REENAN R A. The ADAR protein family[J]. Genome Biol, 2012, 13(12): 252.
[36] 张跃博, 欧阳峰正, 王立刚, 等. 猪ADAR1基因cDNA全长克隆、序列信息及组织表达分析[J]. 畜牧兽医学报, 2019, 50(6): 1135–1144.
ZHANG Y B, OUYANG F Z, WANG L G, et al. The full-length cloning, sequence information and expression analysis of porcine ADAR1 gene[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1135–1144. (in Chinese)
[37] GUI L S, WANG Z Y, JIA J L, et al. IGF-1 gene polymorphisms influence bovine growth traits in Chinese Qinchuan Cattle[J]. Kafkas Univ Vet Fak Derg, 2018, 24(3): 387–392.
[38] REYNA X F, MONTOYA H M, CASTRELLÓN V V, et al. Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle[J]. Genet Mol Res, 2010, 9(2): 875–883.
[39] ROGBERG-MUÑOZ A, CANTET R J C, FER-NÁNDEZ M E, et al. Longitudinal analysis of the effects of IGF1-SnaBI genotypes on the growth curve of Angus bull calves[J]. Livest Sci, 2013, 154(1-3): 55–59.
[40] 牛召珊, 董雅娟, 宋少康, 等.IGF-1基因在牛育种上的应用及展望[C]//中国畜牧兽医学会动物繁殖学分会第十五届学术研讨会论文集.天津: 中国畜牧兽医学会, 2010: 299-306.
NIU Z S, DONG Y J, SONG S K, et al.Application and prospect of IGF-1 gene in cattle breeding[C]//Proceedings of the 15th Session of Animal Reproduction Branch of Chinese Association of Animal Husbandry and Veterinary Medicine. Tianjin: Chinese Society of Animal Husbandry and Veterinary Medicine, 2010: 299-306.(in Chinese)
[41] CHEN N B, CAI Y D, CHEN Q M, et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J]. Nat Commun, 2018, 9(1): 2337.