畜牧兽医学报  2020, Vol. 51 Issue (3): 524-533. DOI: 10.11843/j.issn.0366-6964.2020.03.012    PDF    
发酵菜籽粕在生长育肥猪上的营养价值评定
周晓容1, 孙佩佩2, 刘志云1, 钟晓霞1, 刘作华1, 杨飞云1     
1. 重庆市畜牧科学院, 养猪科学重庆市市级重点实验室, 重庆 402460;
2. 西南大学动物科技学院, 重庆 400715
摘要:本研究旨在评定固态发酵菜籽粕(fermented rapeseed meal,FRSM)在生长育肥猪上的营养价值。将16头体重为(71.25±1.23)kg的健康"杜×长×大"去势公猪随机分到4个处理,每个处理4个重复,每个重复1头猪,4个处理组分别饲喂玉米-豆粕型基础饲粮、菜籽粕(rapeseed meal,RSM)饲粮、发酵菜籽粕(fermented rapeseed meal,FRSM)饲粮(分别等氮替代基础饲粮35%的氮)以及无氮饲粮。代谢试验预试期3 d,正式期4 d,采用全收粪尿法测定养分消化率。结果表明:1)发酵菜籽粕混合物发酵后较发酵前pH下降了1.68,粗蛋白质(CP)、水溶性蛋白质(WSP)、酸溶性蛋白质(ASP)和粗脂肪(EE)的含量分别提高了1.91%、52.88%、44.40%和24.27%,17种氨基酸含量均有所提高;中性洗涤纤维(NDF)降低了5.21%;异硫氰酸酯(ITC)和噁唑烷硫酮(OZT)的降解率分别达到92.20%和100.00%,单宁和植酸含量分别降低了35.81%和24.22%。2)FRSM干物质的表观消化率为75.28%,显著高于RSM(P < 0.05);FRSM的消化能、氮表观(真)消化率和氮表观(真)利用率分别为13.84 MJ·kg-1、70.89%(72.84%)和68.12%(71.12%),均极显著高于RSM(P < 0.01);FRSM的钙、磷和粗灰分的表观消化率与RSM差异不显著(P>0.05)。3)FRSM氨基酸(除半胱氨酸外)的表观(真)消化率均显著或极显著高于RSM(P < 0.05或P < 0.01)。综上,通过双菌固态发酵菜籽粕,降低了抗营养因子的含量,提高了菜籽粕在生长育肥猪上的养分消化率和利用率,有效地改善了菜籽粕的饲用价值。
关键词发酵菜籽粕    生长育肥猪    养分消化率    氮利用率    
Evaluation of Nutritional Value of Fermented Rapeseed Meal in Growing-finishing Pigs
ZHOU Xiaorong1, SUN Peipei2, LIU Zhiyun1, ZHONG Xiaoxia1, LIU Zuohua1, YANG Feiyun1     
1. Chongqing Academy of Animal Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China;
2. College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Abstract: The aim of this study was to assess the nutritional value of solid-state fermentation rapeseed meal(FRSM) by metabolic test in growing-finishing pigs. Sixteen healthy Duroc×Landrace×Yorkshire crossbred barrows with initial body weight of (71.25±1.23) kg were randomly assigned to 4 dietary treatments, with 4 replicates per treatment and 1 pig per repeat. The 4 diets were corn-soybean meal basal diet, rapeseed meal (RSM) diet, fermented rapeseed meal (FRSM) diet (35% nitrogen(N) of basal diet were substituted by RSM or FRSM) and N-free diet. In order to evaluate the nutritional value of fermented rapeseed meal, the metabolic trial lasted for 7 days, the adaptation period was 3 days and the formal period was 4 days.All feces and urine were collected during formal period in order to determine the digestibility of nutrients. Results showed that:1)The pH of fermented rapeseed meal mixture decreased by 1.68 after fermentation, and the contents of crude protein(CP), water-soluble protein(WSP), acid-soluble protein(ASP) and crude fat(EE) increased by 1.91%, 52.88%, 44.40% and 24.27%, respectively; The contents of 17 amino acids were increased. The neutral detergent fiber(NDF) of FRSM decreased by 5.21%; Isothiocyanate(ITC) degradation rate was 92.20%, oxazolidinone(OZT) degradation rate was 100.00%; Tannin and phytic acid decreased by 35.81% and 24.22%, respectively. 2) The apparent digestibility of dry matter of FRSM was 75.28%, which was significantly higher than that of RSM (P < 0.05);Digestible energy, nitrogen apparent (true) digestibility and nitrogen apparent (true) availability of FRSM were 13.84 MJ·kg-1, 70.89% (72.84%) and 68.12% (71.12%), respectively, which were all extremely significantly higher than those of RSM(P < 0.01). The apparent digestibility of calcium, phosphorus and crude ash were not significant different between FRSM and RSM (P>0.05). 3) All amino acids (except cysteine) apparent (true) digestibility of FRSM were significantly or extremely significantly higher than those of RSM (P < 0.05 or P < 0.01). In summary, by solid state fermentation of RSM with two bacteria, the content of anti-nutritional factors were reduced, the nutrient digestibility and utilization rate of rapeseed meal were increased, and the feeding value of rapeseed meal was effectively improved in growing-finishing pigs.
Key words: fermented rapeseed meal    growing-finishing pigs    nutrient digestibility    nitrogen availability    

近年来,随着我国规模化、集约化养殖业的快速发展,饲料资源短缺现象日趋严重,尤其是蛋白质饲料资源缺乏问题异常突出,已成为制约我国饲料工业和养殖业健康稳定发展的瓶颈问题。2018年,我国大豆进口量约为8 803.1万吨[1],大豆进口依存度高达80%。菜籽粕是世界第二大产量的蛋白质饼粕,2017年全球产量为4 051万吨[2]。我国菜籽粕资源丰富,年产量约700万吨[3],是一类具有较大开发价值的蛋白质饲料资源。菜籽粕粗蛋白质含量约35%~45%,其氨基酸组成合理,富含胆碱、生物素、维生素B1、B2及大量微量元素[4],但菜籽粕蛋白质消化吸收率低[5],含有硫苷(glucosinolate,GS)、单宁和植酸等多种抗营养因子[4],影响饲料适口性[6]甚至会对动物肝脏和甲状腺功能产生毒性[7-8],严重限制了其在畜禽饲料中的应用。近年来,菜籽粕的脱毒处理方法中,微生物发酵脱毒法因其操作简单、处理成本低[9]、对营养物质的破坏作用小、脱毒效果明显[10]等优点而成为研究热点。研究报道,微生物发酵菜籽粕不仅可以降低菜籽粕纤维物质含量,有效去除硫苷及其代谢产物等抗营养因子,还可改善蛋白质品质[11-14]。但有关发酵菜籽粕在动物体内的消化利用率报道较少。因此,本试验旨在评定双菌固态发酵菜籽粕在育肥猪上的营养价值,为更合理地利用发酵菜籽粕提供参考。

1 材料与方法 1.1 试验原料

菜籽粕(rapeseed meal,RSM):购自御康农业科技有限公司。发酵菜籽粕(fermented rapeseed meal,FRSM):将RSM与麦麸按7:3的比例混合,然后接种10%的微生物混合菌液,菌液活菌数≥1× 109 CFU·mL-1,蔗糖1%,料水比1:1.2。将上述物质混合均匀后,装至发酵桶密封,厌氧发酵72 h以上,当可以明显嗅到酸香味即发酵结束。菌种:短乳杆菌和短小芽孢杆菌均为本实验室保藏菌种,菌种比例为1:2。取发酵菜籽粕于65 ℃烘箱内烘干,制备发酵菜籽粕风干样品,用于营养成分检测和代谢试验发酵菜籽粕组饲粮配制。

1.2 试验设计与饲粮

采用单因子试验设计,用顶替法测定消化率。选择16头体重(71.25±1.23) kg的健康“杜×长×大”去势公猪,随机分成4组,每组4个重复,每重复1头。Ⅰ组:基础饲粮,Ⅱ组:RSM饲粮,Ⅲ组:FRSM饲粮,Ⅳ组:无氮饲粮。

饲粮参照NRC(2012)生长育肥猪营养需要配制。基础饲粮是玉米-豆粕型饲粮,两种替代饲粮分别用RSM和FRSM等氮替代35%基础饲粮中的氮,无氮饲粮主要由玉米淀粉配制。试验饲粮组成及营养水平见表 1

表 1 试验饲粮组成及营养水平(饲喂基础) Table 1 Composition and nutrient levels of experimental diets (as-fed basis) 
1.3 饲养管理

代谢试验在重庆市畜牧科学院双河实验基地进行,所有试验猪采用代谢笼单独饲养,预试期3 d,正试期4 d。粉料饲喂,每天饲喂3次(09:00、13:00、17:00),自由饮水,并观察动物的采食和健康状况。每头猪试验期的日采食量为预试期的平均日采食量。

1.4 样品采集与处理 1.4.1 饲料样品采集

于发酵第1天(即发酵菜籽粕混合物制作完成时)和发酵第5天分别取发酵菜籽粕混合样,用于测定发酵前后pH、营养和抗营养物质含量;采集代谢试验用RSM、FRSM及4组试验饲料样各300 g左右,于4 ℃保存待测营养成分。

1.4.2 粪、尿样采集

正式试验期间,采用全收粪尿法,随排随收,每天08:00计算前1天的粪样和尿样。粪样按照重量的5%加入10%硫酸,尿样按照体积的2%加入10%硫酸,将混匀的粪样和尿样置于-20 ℃冰箱保存。试验结束时,将每头猪4 d的尿样混匀,置于-20 ℃冰箱保存,待测。每头猪的4 d粪样混合均匀后,按Ⅰ组、Ⅱ组和Ⅲ组取样50%,Ⅳ组全取,于65 ℃烘干,制备风干样,待测。

1.5 测定指标及计算方法 1.5.1 测定指标及方法

干物质(dry matter, DM):参照GB/T 6435—2014采用DHG-9246A鼓风干燥箱测定;

粗蛋白质(crude protein, CP):参照GB/T 6432—1994采用FOSS2300自动凯氏定氮仪测定;

水溶性蛋白质(water soluble protein, WSP):称取2 g(精确至0.001 g)样品置于150 mL三角瓶中,用移液管加入25 mL的pH为6.75±0.05的四硼酸钠-磷酸二氢钠缓冲液(缓冲液于39 ℃水浴锅中预热),在39 ℃下震荡水浴1 h,用快速滤纸过滤,用移液管取5 mL滤液置凯式管中,然后参照GB/T 6432—1994采用FOSS2300自动凯氏定氮仪测定;

酸溶性蛋白质(acid soluble protein, ASP):准确称取样品1 g(精确至0.001 g),加入体积分数为15%的三氯乙酸(TCA)溶液溶解并定容至50 mL,静置5 min后过滤;吸取10.00—25.00 mL滤液,然后参照GB/T 6432—1994采用FOSS2300自动凯氏定氮仪测定;

异硫氰酸酯(isothiocyanate, ITC)和噁唑烷硫酮(Oxazolidinone,OZT)参考文献[15]中的紫外法进行检测;

粗灰分(crude ash, Ash):参照GB/T 6438—2007测定;

钙(calcium, Ca):参照GB/T 6436—2002测定;

磷(phosphorus,P):参照GB/T 6437—2002采用TU-1901紫外分光光度计测定;

能量(energy):参照GB/T 213—2008采用6400氧弹量热仪测定;

氨基酸(amino acid,AA):参照GB/T 18246—2000采用L-8900氨基酸自动分析仪测定。

1.5.2 待测营养物质消化率计算公式

饲粮营养物质消化率参照全收粪法计算,公式:

营养物质表观消化率(%)=[(食入营养物质—粪中营养物质)/食入营养物质]×100;无氮饲粮用于估测内源氮和内源氨基酸损失,计算公式:

氮真消化率(%)={[食入氮—(粪氮—内源粪氮)]/食入氮}×100;

氮表观利用率(%)=[(食入氮—粪氮—尿氮)/食入氮]×100;

氮真利用率(%)={[食入氮—(粪氮—内源粪氮)—(尿氮-内源尿氮)]/食入氮}×100;

氨基酸真消化率(%)={[食入氨基酸—(粪中氨基酸—内源氨基酸)]/食入氨基酸}×100;

菜籽粕和发酵菜籽粕营养物质消化率通过下面公式计算:

$ \begin{array}{l} \quad \mathrm{D}=[100 \times(\mathrm{A}-\mathrm{B}) / \mathrm{F}]+\mathrm{B} ; \mathrm{F}=\mathrm{C}_{1} \times \mathrm{f} /\left[\mathrm{C}_{1} \times \mathrm{f}+\right. \\ \left.\mathrm{C}_{0} \times(1-\mathrm{f})\right] \end{array} $

式中:D为待测饲料中某营养物质的消化率(%);A为试验饲粮中某营养物质的消化率(%);B为基础饲粮中某营养物质的消化率(%);F为试验饲粮营养物质中待测原料营养物质所占的比例(%);f为试验饲粮中掺入待测原料的比例;C0为基础饲粮中某营养物质的含量;C1为待测原料中某营养物质的含量。

1.6 数据统计与分析

采用SPSS 22.0软件对试验数据进行统计分析,用LSD法进行差异显著性比较。分析结果用“平均值±标准误”表示。

2 结果 2.1 发酵菜籽粕混合物发酵前后营养物质和主要抗营养因子含量比较

麦麸通常用作固态发酵培养基,一方面为微生物提供碳氮源,另一方面使培养基质地疏松,同时可以吸附住培养基中水分,有利于微生物的生长。本研究按照实验室所筛选的发酵菌种和发酵工艺,将RSM与麦麸按7:3的比例混合制作发酵菜籽粕混合物,并比较其发酵前后营养和抗营养物质含量。由表 2可知,与发酵前相比,发酵菜籽粕混合物pH由5.60降至3.92,营养物质粗蛋白质、水溶性蛋白质、酸溶性蛋白质和粗脂肪的含量分别提高了1.91%、52.88%、44.40%和24.27%,17种氨基酸含量均有所提高。中性洗涤纤维和酸性洗涤纤维分别降低了5.21%和0.38%;异硫氰酸酯的降解率达到92.20%,噁唑烷硫酮的降解率达到100.00%;单宁和植酸分别降低了35.81%和24.22%。

表 2 发酵菜籽粕混合物发酵前后的营养成分(绝干基础) Table 2 Nutrient composition before and after fermentation of fermented rapeseed meal mixture (DM basis) 
2.2 菜籽粕和发酵菜籽粕的养分消化率

表 3可知,FRSM干物质的表观消化率较RSM提高10.32%(P < 0.05);FRSM的消化能较RSM高2.16 MJ·kg-1(P < 0.01);FRSM的氮表观(真)消化率和氮表观(真)利用率极显著高于RSM(P < 0.01),分别高17.02%(16.40%)和29.43%(27.64%);FRSM与RSM钙、磷和粗灰分的表观消化率差异不显著(P>0.05)。

表 3 菜籽粕和发酵菜籽粕的养分消化率(风干基础) Table 3 Nutrient digestibility of RSM and FRSM(air-dry basis) 
2.3 菜籽粕和发酵菜籽粕氨基酸的表观(真)消化率

表 4可知,发酵菜籽粕氨基酸的表观(真)消化率均高于菜籽粕,其中两者半胱氨酸的表观消化率(真)差异不显著(P>0.05),FRSM组氨酸和精氨酸的表观(真)消化率显著(P < 0.05)高于RSM,其他氨基酸的表观(真)消化率均极显著(P < 0.01)高于RSM;FRSM必需氨基酸中Val、Met、Ile、Leu、Thr、Phe、Lys、His、Arg的表观(真)消化率分别比RSM高17.72%(16.79%)、26.05%(24.27%)、27.23%(21.71%)、14.68%(17.80%)、63.59%(58.13%)、14.15%(13.26%)、73.29%(65.66%)、4.61%(4.47%)、4.87%(4.33%);FRSM的非必需氨基酸Pro、Cys、Ser、Tyr、Glu、Gly、Ala、Asp的表观(真)消化率分别比RSM高11.08%(11.21%)、2.97%(1.97%)、14.02%(11.88%)、16.48%(15.12%)、10.76%(8.19%)、16.60%(16.12%)、37.69%(31.25%)、33.90%(25.80%)。

表 4 菜籽粕和发酵菜籽粕氨基酸的表观(真)消化率(风干基础) Table 4 Apparent digestibility and true digestibility of amino acids of RSM and FRSM (air-dry basis) 
3 讨论 3.1 发酵菜籽粕混合物发酵前后营养物质和主要抗营养因子含量的变化

菜籽粕中存在大量抗营养因子是限制菜籽粕在畜禽日粮中大量应用的主要因素。研究表明,通过发酵处理菜籽粕可降低其抗营养因子含量,改变菜籽蛋白结构,并能增加菜籽粕中多肽、有机酸等益生物质的含量,有效改善菜籽粕的营养价值[11-14]。本研究中,发酵菜籽粕混合物通过发酵,其pH降至4.0以下,酸度增加,营养物质粗蛋白、水溶性蛋白质、酸溶性蛋白质、粗脂肪以及17种氨基酸含量均得到不同程度地提高,与上述研究结果一致。在本试验中,采用筛选的短乳杆菌和短小芽孢杆菌双菌固态发酵菜籽粕,异硫氰酸酯和嗯唑烷硫酮降解率高达92.20%和100.00%,具有较强的降解作用,这与胡永娜等[16-17]研究结果一致。胡永娜等[16]采用枯草芽孢杆菌、产朊假丝酵母和粪肠球菌混合发酵菜籽粕,结果发现,异硫氰酸酯和噁唑烷硫酮的降解率分别高达96.20%和83.13%。付敏等[17]采用枯草芽孢杆菌、黑曲霉和白曲霉复合发酵菜籽粕,结果发现硫苷降解率高达93.53%,噁唑烷硫酮全部被降解。孙林等[11]选用6%植物乳杆菌、6%蜡样芽胞杆菌、2%酪酸羧状芽孢杆菌和6%枯草芽孢杆菌,34 ℃发酵2 d时,菜籽粕中植酸的降解率高达90.15%,单宁降解率达98.17%。在本试验中,短乳杆菌和短小芽孢杆菌双菌对菜籽粕单宁和植酸的降解能力较低,分别为35.81%和24.22%。这可能与发酵所用菌种、发酵基质中含水量、pH、温湿度等多种因素有关。

3.2 菜籽粕和发酵菜籽粕的常规养分消化率

本研究结果表明,FRSM较RSM极显著提高了氮表观(真)消化率和氮表观(真)利用率,与Vig和Walia[18]研究证明,微生物发酵可以提高RSM蛋白质消化率的结果一致。这是因为微生物利用其庞杂的微生物区系和复杂的微生物酶系,对RSM的抗营养成分及酶解底物进行发酵分解,有效降低了抗营养因子的含量,同时微生物在发酵过程中其数量经适应期、对数生长期、稳定期后大幅度增加,分泌大量的胞外酶分解发酵基质,在蛋白酶作用下将大分子球蛋白质降解为易于消化吸收的小分子蛋白(如水溶性蛋白质和酸溶性蛋白质)、小肽、寡肽等物质,提高氮的利用率[19-20]。此外,微生物在发酵过程中,还可以利用其降解产物或外界物质(如培养基中的碳源和氮源)将非蛋白氮合成菌体蛋白,提高蛋白质的含量,引起蛋白质消化率升高[21]。本研究结果表明FRSM干物质的表观消化率显著高于RSM,这与付敏等[22]、Shi等[23]和Xu等[24]通过固态混菌发酵菜籽粕(饼)的结果一致。这可能是通过微生物发酵降低了可溶性非淀粉多糖在消化道食糜的粘度,增加内源酶的扩散,提高了酶与养分的接触面积,同时微生物分泌的纤维素酶、木聚糖酶和葡聚糖酶通过协同作用,破坏植物性饲料的细胞壁,使被细胞壁包裹的大分子营养物质充分释放出来被消化利用,从而促进了干物质的利用,提高干物质的消化率[25-26]。本研究结果表明,FRSM的消化能极显著高于RSM,可能是因为RSM在发酵过程中产生的活性肽类物质可以提高猪的采食量[27],从而提高消化能。另外,纤维素占RSM中总多糖含量的24.1%[28],固态发酵过程中部分中性洗涤纤维和酸性洗涤纤维被降解,使其没有完全在猪肠道中发酵,导致FRSM中可发酵糖的浓度增加,从而提高了FRSM的消化能[29]

3.3 菜籽粕和发酵菜籽粕氨基酸的表观(真)消化率

本研究结果表明,FRSM氨基酸(除半胱氨酸)消化率均显著或极显著高于RSM。这是因为RSM中含有GS、单宁、植酸和纤维等抗营养因子。首先,GS在芥子酶作用下会产生OZT、ITC等有毒物质,降低饲料适口性,引起甲状腺肿大,降低营养物质的消化吸收[30]。其次,研究表明单宁含量与必需氨基酸和非必需氨基酸的消化率之间存在显著的反比关系[31]。Jansman等[32]给大鼠饲喂富含单宁的蚕豆克,结果表明随着单宁含量的不断增加,大鼠粪便中必需氨基酸(r2=0.97)和非必需氨基酸(r2=0.27~ 0.99)的表观消化率呈线性下降,且必需氨基酸的消化率受到的影响程度低于非必需氨基酸,特别是脯氨酸、甘氨酸和谷氨酸。据推测,氨基酸消化率显著降低可能与膳食单宁与腮腺分泌的富含脯氨酸的蛋白质和内源蛋白质的相互作用,降低胃蛋白酶,胰蛋白酶和胰凝乳蛋白酶和肠道刷状缘肽酶的活性有关[33]。再者,植酸与蛋白质结合形成的二元复合物会抑制胃肠道蛋白酶对蛋白质的水解作用,降低蛋白质的消化率[34]。Antony和Chandra[35]通过发酵处理小米粟,其植酸含量降低23%~26%,胃蛋白酶和胰酶对小米粟蛋白的体外消化率提高了14%~ 26%。另外,通过补充微生物植酸酶释放肌醇六磷酸结合蛋白,也可以提高蛋白质/氨基酸的消化率和利用率,尤其对苏氨酸消化率的改善最大[36],这与本试验苏氨酸消化率提高幅度最大的结果一致。除此之外,纤维含量过高也会降低蛋白质和氨基酸的消化率[37],水溶性纤维的胶凝和粘度特性减少肠内容物的混合,阻断酶-底物的相互作用,形成营养吸收的生理屏障,从而降低了营养物质的消化和吸收[38]。本研究通过短乳杆菌和短小芽孢杆菌双菌固态发酵RSM,其纤维、抗营养因子含量和物质结构发生变化,抗营养因子含量显著降低,降低了不溶性纤维和抗营养因子对氨基酸消化率的不良作用,同时通过微生物发酵增加了酸溶性蛋白质、水溶性蛋白质和游离氨基酸的含量,从而显著提高了FRSM氨基酸的表观(真)消化率。

4 结论

本研究通过双菌固态发酵降低了菜籽粕抗营养因子的含量,改善了菜籽粕的饲用品质,提高了菜籽粕在育肥猪上的养分消化率和利用率。

参考文献
[1] 章健雯. 中美贸易战对我国大豆进口贸易的影响及对策研究[J]. 现代营销:经营版, 2019(8): 40–41.
ZHANG J W. The influence of Sino US trade war on China's soybean import trade and the Countermeasures[J]. Modern Marketing (Business Edition), 2019(8): 40–41. (in Chinese)
[2] USDA.Oilseeds: world markets and trade.US Department of Agriculture[Z].Washington, DC: Foreign Agricultural Service, 2017.
[3] 田刚, 王乐成, 余冰, 等. 比较研究固态发酵菜籽粕和菜籽粕对生长肉兔的营养价值[J]. 动物营养学报, 2017, 29(3): 795–805.
TIAN G, WANG L C, YU B, et al. Comparison of nutritional value between rapeseed meal and solid-state fermented rapeseed meal for growing rabbits[J]. Chinese Journal of Animal Nutrition, 2017, 29(3): 795–805. (in Chinese)
[4] 张宗舟. 菜籽饼的营养价值与有毒成分[J]. 农牧产品开发, 2001(4): 9–10.
ZHANG Z Z. Nutritional value and toxic components of rapeseed cake[J]. Agriculture Products Development, 2001(4): 9–10. DOI: 10.3969/j.issn.1671-4393.2001.04.003 (in Chinese)
[5] TRIPATHI M K, MISHRA A S. Glucosinolates in animal nutrition:a review[J]. Anim Feed Sci Technol, 2007, 132(1-2): 1–27. DOI: 10.1016/j.anifeedsci.2006.03.003
[6] 臧海军, 张克英. 菜籽饼粕中硫代葡萄糖苷的危害与脱毒措施研究[J]. 饲料工业, 2007, 28(2): 62–64.
ZANG H J, ZHANG K Y. Research progress of glucosinolate in colza seed cake and meal[J]. Feed Industry, 2007, 28(2): 62–64. DOI: 10.3969/j.issn.1001-991X.2007.02.020 (in Chinese)
[7] 瞿明仁. 菜籽饼粕中有害成分[J]. 饲料与畜牧, 1994(6): 24–25.
QU M R. Harmful components in rapeseed meal[J]. Feed and Husbandry, 1994(6): 24–25. (in Chinese)
[8] PUSZ A.油菜籽中的抗营养因子[J].李建凡译.国外畜牧科技, 1990, 17(2): 26-28.
PUSZ A.Anti-nutritional factors in Rapeseed[J].LI J F, trans.Animal Science Abroad, 1990, 17(2):26-28.(in Chinese)
[9] 魏晶石, 汪正华, 沈俭. 菜籽粕生物降解法脱毒及综合利用[J]. 西部粮油科技, 1999, 24(6): 49–52.
WEI J S, WANG Z H, SHEN J. Detoxication and utilization of rapeseed cake by bio-degradation[J]. China Western Cereals & Oils Technology, 1999, 24(6): 49–52. DOI: 10.3969/j.issn.1007-6395.1999.06.021 (in Chinese)
[10] 张宗舟.菜籽饼生物脱毒的微生物筛选复配、脱毒机理与应用效果研究[D].兰州: 甘肃农业大学, 2003.
ZHANG Z Z.On separation and combination of detoxicating microbes, detoxicated theory and applied effect in biology detoxicating method of RSM[D].Lanzhou: Gansu Agricultural University, 2003.(in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10733-2004021100.htm
[11] 孙林, 刘平, 卓伟伟, 等. 微生物发酵生产高蛋白多肽菜籽粕的研究[J]. 中国油脂, 2017, 42(12): 94–98.
SUN L, LIU P, ZHUO W W, et al. Production of high protein and polypeptide rapeseed meal by microbial fermentation[J]. China Oils and Fats, 2017, 42(12): 94–98. DOI: 10.3969/j.issn.1003-7969.2017.12.024 (in Chinese)
[12] 魏炳栋, 党修利, 邱玉朗, 等. 乳酸菌固态发酵酶解对豆粕、棉籽粕和菜籽粕粗蛋白质、pH、酸度及抗营养因子含量的影响[J]. 中国畜牧兽医, 2014, 41(11): 107–114.
WEI B D, DANG X L, QIU Y L, et al. Effect of lactic acid bacteria solid-state fermentation on crude protein, pH, acidity and antinutritional factor content of soybean meal, cottonseed meal and rapeseed meal[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(11): 107–114. (in Chinese)
[13] 刘林, 郭艳, 邱树毅, 等. 微生物固态发酵法提升冷榨菜籽饼粕营养价值的研究(Ⅰ)——菌种的选择与复配[J]. 食品科技, 2011, 36(8): 16–19.
LIU L, GUO Y, QIU S Y, et al. Study on improving the nutritive value of cold-pressed rapeseed cake with microbes under solid-state fermentation[J]. Food Science and Technology, 2011, 36(8): 16–19. (in Chinese)
[14] 黄茜, 钮琰星, 倪光远, 等. 菜籽饼粕饲用品质改良菌株的筛选与混合发酵[J]. 食品与发酵工业, 2009, 35(10): 73–76.
HUANG Q, NIU Y X, NI G Y, et al. The study of screening and mixing the strains improving feeding quality of rapeseed meal[J]. Food and Fermentation Industries, 2009, 35(10): 73–76. (in Chinese)
[15] 潘雷, 李爱科, 程茂基, 等. 异硫氰酸酯(ITC)的硫脲紫外法和银量法测定对比研究[J]. 安徽农业科学, 2009, 37(17): 7823–7825.
PAN L, LI A K, CHENG M J, et al. Study on the determination of isothiocyanate content with thiourea ultraviolet method and argentimetry[J]. Journal of Anhui Agricultural Sciences, 2009, 37(17): 7823–7825. DOI: 10.3969/j.issn.0517-6611.2009.17.008 (in Chinese)
[16] 胡永娜, 李爱科, 王之盛, 等. 微生物固态发酵菜籽粕营养特性的研究[J]. 中国粮油学报, 2012, 27(3): 76–80.
HU Y N, LI A K, WANG Z S, et al. Study on the nutritional character of rapeseed meal by microbial solid state fermentation[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(3): 76–80. DOI: 10.3969/j.issn.1003-0174.2012.03.017 (in Chinese)
[17] 付敏, 何军, 余冰, 等. 混菌固态发酵对菜籽饼营养价值及抗营养因子含量的影响[J]. 动物营养学报, 2013, 25(7): 1579–1586.
FU M, HE J, YU B, et al. Effects of mixed microbial solid-state fermentation on nutrient values and antinutritional factor contents of rapeseed cake[J]. Chinese Journal of Animal Nutrition, 2013, 25(7): 1579–1586. DOI: 10.3969/j.issn.1006-267x.2013.07.023 (in Chinese)
[18] VIG A P, WALIA A. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal[J]. Bioresour Technol, 2001, 78(3): 309–312. DOI: 10.1016/S0960-8524(01)00030-X
[19] 余冰, 傅娅梅, 叶楠, 等. 固态发酵对复合蛋白质饲料营养价值改善效果的研究[J]. 动物营养学报, 2009, 21(4): 546–553.
YU B, FU Y M, YE N, et al. Study on improvement of nutritional value of compound protein feed through solid state fermentation[J]. Chinese Journal of Animal Nutrition, 2009, 21(4): 546–553. DOI: 10.3969/j.issn.1006-267x.2009.04.020 (in Chinese)
[20] HÖLKER U, HÖFER M, LENZ J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi[J]. Appl Microbiol Biotechnol, 2004, 64(2): 175–186. DOI: 10.1007/s00253-003-1504-3
[21] BAU H M, VILLAUME C, LIN C F, et al. Effect of a solid-state fermentation using Rhizopus oligosporus sp. T-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal[J]. J Sci Food Agric, 1994, 65(3): 315–322. DOI: 10.1002/jsfa.2740650309
[22] 付敏, 何军, 余冰, 等. 发酵菜籽饼在生长猪上的营养价值评定[J]. 动物营养学报, 2014, 26(7): 1916–1924.
FU M, HE J, YU B, et al. Evaluation of nutrient value of fermented rapeseed cake in growing pigs[J]. Chinese Journal of Animal Nutrition, 2014, 26(7): 1916–1924. DOI: 10.3969/j.issn.1006-267x.2014.07.025 (in Chinese)
[23] SHI C Y, HE J, YU J, et al. Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal[J]. PLoS One, 2016, 11(4): e0153230. DOI: 10.1371/journal.pone.0153230
[24] XU F Z, LI L M, XU J P, et al. Effects of fermented rapeseed meal on growth performance and serum parameters in ducks[J]. Asian-Australas J Anim Sci, 2011, 24(5): 678–684. DOI: 10.5713/ajas.2011.10458
[25] MAHAJAN A, DUA S. Improvement of functional properties of rapeseed (Brassica campestris var toria) meal by reducing antinutritional factors employing enzymatic modification[J]. Food Hydrocoll, 1998, 12(3): 349–355. DOI: 10.1016/S0268-005X(98)00030-7
[26] FANG Z F, PENG J, LIU Z L, et al. Responses of non-starch polysaccharide-degrading enzymes on digestibility and performance of growing pigs FED A diet based on corn, soya bean meal and Chinese double-low rapeseed meal[J]. J Anim Physiol Anim Nutr, 2007, 91(7-8): 361–368. DOI: 10.1111/j.1439-0396.2006.00664.x
[27] 陈昭琪, 丁之恩, 蔡海莹, 等. 发酵菜籽粕对肉鸡生长性能、营养物质消化吸收及肉品质的影响[J]. 动物营养学报, 2017, 29(8): 2969–2976.
CHEN Z Q, DING Z E, CAI H Y, et al. Effect of fermented rapeseed meal on growth performance, nutrient digestion and absorption and meat quality of broilers[J]. Chinese Journal of Animal Nutrition, 2017, 29(8): 2969–2976. DOI: 10.3969/j.issn.1006-267x.2017.08.042 (in Chinese)
[28] SIDDIQUI I R, WOOD P J. Carbohydrates of rapeseed:a review[J]. J Sci Food Agric, 1977, 28(6): 530–538. DOI: 10.1002/jsfa.2740280610
[29] SHI C Y, HE J, YU J, et al. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value[J]. J Anim Sci Biotechnol, 2015, 6(1): 13. DOI: 10.1186/s40104-015-0015-2
[30] 兰时乐, 毛小伟, 肖调义, 等. 菜籽粕混合菌固体发酵脱毒条件的响应面优化研究[J]. 动物营养学报, 2013, 25(3): 617–627.
LAN S L, MAO X W, XIAO T Y, et al. Detoxification conditions of solid-state fermentation from rapeseed meal by mixture strains using response surface methodology[J]. Chinese Journal of Animal Nutrition, 2013, 25(3): 617–627. DOI: 10.3969/j.issn.1006-267x.2013.03.021 (in Chinese)
[31] ELKIN R G, FREED M B, HAMAKER B R, et al. Condensed tannins are only partially responsible for variations in nutrient digestibilities of sorghum grain cultivars[J]. J Agric Food Chem, 1996, 44(3): 848–853. DOI: 10.1021/jf950489t
[32] JANSMAN A J M, FROHLICH A A, MARQUARDT R R. Production of proline-rich proteins by the parotid glands of rats is enhanced by feeding diets containing tannins from faba beans (Vicia faba L.)[J]. J Nutr, 1994, 124(2): 249–258. DOI: 10.1093/jn/124.2.249
[33] JANSMAN A J M. Tannins in feedstuffs for simple-stomached animals[J]. Nutr Res Rev, 1993, 6(1): 209–236.
[34] GRACIA M I, ARANIBAR M J, LAZARO R, et al. Alpha-amylase supplementation of broiler diets based on corn[J]. Poult Sci, 2003, 82(3): 436–442. DOI: 10.1093/ps/82.3.436
[35] ANTONY U, CHANDRA T S. Enzymatic treatment and use of starters for the nutrient enhancement in fermented flour of red and white varieties of finger millet (Eleusine coracana)[J]. J Agric Food Chem, 1999, 47(5): 2016–2019. DOI: 10.1021/jf980564a
[36] RAVINDRAN V, CABAHUG S, RAVINDRA G, et al. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels.Ⅱ.Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention[J]. Br Poult Sci, 2000, 41(2): 193–200. DOI: 10.1080/00071660050022263
[37] EGGUM B O. The influence of dietary fibre on protein digestion and utilization in monogastrics[J]. Arch Tierernahr, 1995, 48(1-2): 89–95. DOI: 10.1080/17450399509381831
[38] ANDERSON J W, DEAKINS D A, FLOORE T L, et al. Dietary fiber and coronary heart disease[J]. Crit Rev Food Sci Nutr, 1990, 29(2): 95–147. DOI: 10.1080/10408399009527518