禽类具有发达的视觉效应,光照环境能够对禽类的生长发育、生产性能、行为和免疫功能产生影响[1-2]。在此过程中,松果体发挥了重要的作用。松果体是重要的神经内分泌腺体,能够将外界光信息转换为褪黑激素的合成与释放,进而调节机体的免疫、激素合成以及生殖等生理活动[3-5]。乙酰基转移酶(arylalkylamine N-acetyltransferase,AANAT)是褪黑激素合成过程中的关键酶。在松果体,褪黑激素的合成和AANAT的活性之间都保持着高度保守的同步关系[6]。因此可以通过检测AANAT mRNA转录水平,来评价褪黑激素的合成能力。有研究表明,单色光可以影响肉鸡视网膜和松果体上褪黑激素的分泌,以及AANAT mRNA的转录[7]。
本实验室前期研究中,试验结果表明,肉雏鸡生长早期以及孵化期选用绿光照明,可不同程度地改善肉鸡小肠黏膜结构,提高小肠对营养物质的吸收能力[8-9],并且育成期给予单色绿光能够促进肉鸡肌肉生长,提高其生产性能以及肌肉的抗氧化能力[10-11]。在脊椎动物中,生长轴在调节动物生长发育起到关键作用。生长激素释放激素是由下丘脑合成,并且作用于垂体促进生长激素的合成和释放[12-13]。还有研究表明在鸡胚孵化期间给予绿光刺激,能够显著促进鸡胚肝的发育及抗氧化能力,通过JAK2/STAT3通路促进IGF-1分泌[14-15],并且单色绿光条件下孵化鸡胚,通过IGF-1作用促进肉雏鸡的生长[16-18]。近年来研究表明,褪黑激素介导了单色光影响肉鸡肝分泌IGF-1的能力[19],但是,单色绿光对鸡胚的刺激作用是否经由褪黑激素来介导尚不清楚。本实验室前期研究均为在鸡胚孵化过程中采用白光、红光、绿光和蓝光照射,黑暗组作为对照组,结果显示绿光对鸡胚发育进程中的作用效果最为明显[9, 14, 18]。因此,本试验旨在研究孵化期间给予单色绿光刺激对鸡胚的松果体褪黑激素合成的影响,探索外界光照信息影响鸡胚生长发育的机制,对更好的指导禽类生产提供理论依据。
1 材料与方法 1.1 动物处理AA肉鸡受精蛋120只,购自北京华都肉鸡公司,蛋质量(65±3) g,随机均匀放置于提前进行光照改造的孵化器中。随机分为2个处理组(n=60),即黑暗组(对照组)和绿光组(GL, 560 nm),在E15、E17和E21胚龄,绿光组和黑暗组中分别挑选5只鸡蛋,称量鸡胚胎质量并取材,进行4次重复试验。孵化过程采用标准化管理,温度控制在37.5 ℃,湿度控制在50%。
1.2 光源与光照制度光源为专用发光二极管(LED,light-emitting diode)。LED详细信息:绿光(λ=560 nm,额定电压2.78 V),光照制度采用24 h全光照。使用照度计(MS6610,上海隆拓仪器设备有限公司)进行光照强度标定检验。蛋壳上的光照强度为15 lx。
1.3 取材在15胚龄(E15)、18胚龄(E18) 和21胚龄(E21),取出绿光组和黑暗组的受精蛋,迅速分离出胚胎,称取胚胎质量(胚重),并采集新鲜血液,加肝素4 ℃静置6 h,3 000 r·min-1离心3 min,取上清。然后快速取出松果体,固定于4%的多聚甲醛磷酸缓冲液(0.1 mol·L-1,pH=7.4),部分保存于-80 ℃。
1.4 石蜡切片制作与HE染色取固定于4%的多聚甲醛磷酸缓冲液(0.1 mol·L-1,pH=7.4)48 h以上的松果体,按常规方法制备石蜡切片,片厚5 μm,常规HE染色。
1.5 测定外周血褪黑激素和生长激素含量使用抗鸡褪黑激素ELISA试剂盒(USCN Life Science and Technology Company, Wuhan city, China),检测范围为12.35~1 000 pg·mL-1;使用抗鸡生长激素ELISA试剂盒(USCN Life Science and Technology Company, Wuhan city, China),检测范围为0.156~10 ng·mL-1,按照说明书方法操作。
1.6 RT-PCR检测松果体AANAT mRNA水平使用TRIzon试剂(CW0580A, CWBIO Company, China)提取总RNA。使用反转录试剂盒(#K1622, Fermentas, USA)将RNA反转录成cDNA。反应流程:2 μg总RNA和1 μL oligo dT18引物在PCR仪中65 ℃反应5 min,冰浴5 min。然后加入反转录酶、RNA酶、5×reaction buffer和10 mmol dNTP,混匀再次反应42 ℃ 1 h,70 ℃ 5 min。最后将合成的cDNA产品储存于-20 ℃备用。
取1 μL cDNA进行PCR扩增AANAT mRNA,其中用GAPDH作为内参(生工生物工程股份有限公司;Sangon Biotech),PCR引物序列如表 1(均为本实验室设计)。反应体系:1 μL cDNA模板、5 μL the GoTaq Green Master Mix (M7123, Promega, Madison, USA),0.2 μL引物F,0.2 μL引物R(引物序列,表 1),3.6 μL无RNA水按说明书要求混匀,于PCR仪中反应: 95 ℃ 5 min;94 ℃ 30 s,56 ℃ 30 s,72 ℃ 30 s,30个循环。用2%琼脂糖凝胶EB染色进行电泳检测,用Gel Pro analyzer软件对条带灰度值进行分析。
使用SPSS 21(SPSS, Inc, Chicago IL, USA)软件对所取得数据进行统计,采用单因素方差分析(ANOVA),结果表示为“x±sx”,P<0.05为差异显著。
2 结果 2.1 单色绿光对鸡胚质量的影响图 1显示,三个日龄阶段的鸡胚,黑暗组和绿光组中E21时鸡胚质量分别为E15的2.7和3.1倍(P<0.05)。光组之间进行比较,结果显示绿光组中鸡胚质量高于同日龄黑暗条件下的胚重,其中E15时绿光组与黑暗组中鸡胚质量差异不显著(P>0.05),E18时绿光组相较于黑暗组中鸡胚质量高11.19%(P<0.05),E21日龄的鸡胚质量差异更为显著,绿光组高于黑暗组21.41% (P<0.05)。
由图 2发现,E15、E18、E21胚龄松果体切片HE染色后相比较,可见随着胚龄的增加,绿光组和黑暗组松果体小叶结构均变大,小叶数目增多,结构更完整,分化程度更高;图 2A与图 2D相比,绿光组松果体率先有较大程度的细胞分化,图 2B和图 2E相比,可见绿光组松果体比黑暗组松果体腺泡发育更完整,腺泡结构更多,图 2C与图 2F相比较,绿光组松果体细胞内容物更为丰富,并且腺体结构更为清晰。
ELISA试验(图 3)结果显示,在黑暗组中,E21外周血中褪黑激素的含量是E15和E18胚龄中褪黑激素的含量2.6和1.9倍(P<0.05),且E15与E18时差异不显著(P>0.05);绿光组中,E18时的褪黑激素含量显著高于E15时的褪黑激素含量49.9% (P<0.05),E21时褪黑激素水平是E15和E18时肉鸡外周血中褪黑激素含量的1.8和2.8倍(P<0.05)。在E15胚龄,绿光组中鸡胚的外周血褪黑激素含量与黑暗组差异不显著(P>0.05);E18胚龄,绿光组中鸡胚的外周血褪黑激素含量比黑暗组高18.20% (P<0.05);E21胚龄,绿光组鸡胚的外周血褪黑激素含量比黑暗组高13.13% (P<0.05)。
采用RT-PCR的方法,检测三个胚龄,单色绿光组与黑暗组松果体中褪黑激素合成酶AANAT mRNA水平的变化。从结果(图 4)中发现在黑暗组中,E21中AANAT mRNA水平较E15和E18胚龄中AANAT转录水平高29.84%~47.06% (P<0.05),且E15与E18差异不显著(P>0.05);而绿光组中,E18时AANAT mRNA水平较E15时AANAT mRNA高17.76%(P<0.05),E21时AANAT mRNA水平较E15和E18时松果体中AANAT mRNA转录水平高26.37%~48.81%(P<0.05)。在E15胚龄,绿光组中鸡胚松果体AANAT mRNA的转录与黑暗组差异不显著(P<0.05);E18胚龄,绿光组中鸡胚松果体AANAT mRNA的转录水平较黑暗组高15.95%(P<0.05);E21胚龄,绿光组中鸡胚松果体AANAT mRNA的转录较黑暗组高12.85%(P<0.05)。
ELISA检测结果表明(图 5),从E15到E21,鸡胚血浆中GH含量呈不断上升趋势。光色之间比较显示:在E15,绿光组中鸡胚血浆内的GH含量与黑暗组差异不显著;从E18开始同日龄绿光组中鸡胚血浆内的GH含量显著高于黑暗组,分别高于对照组45.72%、16.08% (P<0.05),并且与血浆褪黑激素含量极显著正相关(P<0.001, r2=0.980)。
随着人民生活水平的提高,禽类养殖的需求极度增加,如何采用科学的方法进行禽类养殖变得关键。在商业孵化中,鸡胚孵化常在黑暗条件下进行人工孵化,孵化周期为21 d[20]。但是,早期的研究指出孵化期间给予白光刺激能够提高禽类胚胎的质量[21], 并且L. Zhang等的研究显示,胚胎期单色绿光刺激可以不通过眼睛,促进肉鸡胚胎及出壳后的肉鸡生长[22]。此外,接受光刺激缩短鸡胚的孵化时间,在火鸡胚胎也同样出现了类似的结果,并且对孵化率没有影响[23-25]。这表明在禽类胚胎孵化期间利用光刺激可以作为一个缩短孵化时间的工具。I. Rozenboim等在肉鸡鸡胚孵化期间使用间歇单色绿色LED光源,显著增加了雏鸡的体重和肌肉质量[26]。本试验中肉鸡鸡胚孵化期间采用单色绿光(λ=560 nm)24 h照射,试验中取不同日龄鸡胚进行称重比较,发现相同日龄下,绿光组鸡胚质量均高于黑暗组,并且在E21时绿光组鸡胚质量高于黑暗组21.41%,差异显著,由此说明,光色对鸡胚的生长发育有显著的影响,绿光对鸡胚的增重相比黑暗条件有显著提高。ELISA检测鸡胚血浆中生长激素(GH)含量,其中E18、E21两光组差异显著,分别较对照组高45.72%、16.08%,也从另一方面验证了单色绿光可以促进鸡胚的发育,与本实验室前期研究相一致[18]。这提示在禽类养殖业商业孵化雏鸡的过程中,适宜的给予单色绿光刺激相比于传统的黑暗条件,会有更好的经济效益。
3.2 单色绿光促进鸡胚褪黑激素的合成释放我们一般认为松果体和视网膜能够大量合成褪黑激素,而松果体是合成褪黑激素的最重要器官之一,褪黑激素在松果体细胞内合成,并受一系列信号分子的调控。合成褪黑激素的前体物质为5-羟色胺(5-HT),其能够由L-tryptophan(L-色氨酸)转换而来,由5-HT转运体进入细胞膜。随后,在甲基转移酶(HIOMT)和乙酰基转移酶(AANAT)两个合成关键酶的作用下,5-HT经中间体N-acetylserotonin,最终合成褪黑激素。有学者报道,通过鸡胚松果体体外培养,结果发现在E10检测到褪黑激素(达到检测下限5 pg·mL-1),这与E10褪黑激素合成过程中的一个限速酶——HIOMT的微量检测结果相类似[27]。褪黑激素另一个关键酶AANAT则在E11检测到,其节律性表达出现在E17—E19,而鸡胚褪黑激素的节律性表达可能出现在E13[6, 28]。
本实验室前期研究表明单色绿光可以促进出壳后肉鸡合成和分泌褪黑激素的能力[2],褪黑激素介导了单色光影响肉鸡胸腺T淋巴细胞增殖[29]、扁桃体B-淋巴细胞增殖[30],从而提高机体免疫功能,通过褪黑激素受体Mel 1c提高了肉鸡肝的分泌IGF-1功能[14-15, 19]。本研究,探讨孵化期间给予单色绿光对褪黑激素合成和分泌的影响发现:对比绿光组和黑暗组E15、E18、E21的松果体HE染色切片,均可发现相同日龄下,绿光组松果体发育较黑暗组提前,ELISA检测动物外周血中褪黑激素的含量,E18绿光组褪黑激素含量比黑暗组高18.20%,E21绿光组褪黑激素含量比黑暗组高13.13%。因此可以得到初步结论,在鸡胚胚胎后期发育过程中,随着日龄的增长,松果体逐步发育,外周血中褪黑激素含量增多;胚胎期间给予绿光照射,能够促进松果体的发育,以及促进褪黑激素合成。与此同时,RT-PCR检测单色绿光组与黑暗组松果体中褪黑激素合成酶AANAT mRNA水平的变化,E18胚龄,绿光组中鸡胚松果体AANAT mRNA的转录显著高于黑暗组;E21绿光组中鸡胚松果体AANAT mRNA的转录显著高于黑暗组,进一步验证了单色绿光促进松果体的发育而促进褪黑激素的合成,同时也说明单色绿光在胚胎期即可以促进鸡胚合成分泌褪黑激素的能力。有学者研究表明褪黑激素介导了单色光影响促生长释放激素在下丘脑的表达,从而促进了生长激素的分泌[31-32]。本试验结果显示,血浆内褪黑激素的含量与生长激素呈极显著正相关(P<0.001),并且本试验结果说明褪黑激素参与调解生长激素的分泌。
4 结论在鸡胚孵化过程中,给予绿光照射可以通过促进松果体发育以及褪黑激素的合成分泌,进而影响生长激素的释放,最终促进鸡胚的生长发育。
[1] | CAO J, LIU W, WANG Z, et al. Green and blue monochromatic lights promote growth and development of broilers via stimulating testosterone secretion andmyofiber growth[J]. J Appl Poult Res, 2008, 17(2): 211–218. DOI: 10.3382/japr.2007-00043 |
[2] | XIE D, WANG Z X, DONG Y L, et al. Effects of monochromatic light on immune response of broilers[J]. Poult Sci, 2008, 87(8): 1535–1539. DOI: 10.3382/ps.2007-00317 |
[3] | PANG S F, PANG C S, POON A M S, et al. An overview of melatonin and melatonin receptors in birds[J]. Avian Poult Biol Rev, 1996, 7(4): 217–228. |
[4] | REITER R J. Oxidative processes andantioxidative defense mechanisms in the aging brain[J]. FASEB J, 1995, 9(7): 526–533. |
[5] | SINGH M, JADHAV H R. Melatonin: functions and ligands[J]. Drug Discov Today, 2014, 19(9): 1410–1418. DOI: 10.1016/j.drudis.2014.04.014 |
[6] | BINKLEY S. Pineal gland biorhythms:N-acetyltransferase in chickens and rats[J]. Fed Proc, 1976, 35(12): 2347–2352. |
[7] | JIN E H, JIA L J, LI J, et al. Effect of monochromatic light on melatonin secretion andarylalkylamine N-acetyltransferase mRNA expression in the retina and pineal gland of broilers[J]. Anat Rec, 2011, 294(7): 1233–1241. DOI: 10.1002/ar.v294.7 |
[8] |
谢电, 陈耀星, 王子旭, 等. 单色光对肉雏鸡小肠黏膜形态结构的影响[J]. 中国农业科学, 2009, 42(3): 1084–1090.
XIE D, CHEN Y X, WANG Z X, et al. Effects of monochromatic light on structure of small intestinal mucosa in broilers[J]. Scientia Agricultura Sinica, 2009, 42(3): 1084–1090. (in Chinese) |
[9] | YU Y, WANG Z, CAO J, et al. Effects of monochromatic light stimuli on the development and Muc2 expression of goblet cells in broiler small intestines during embryogenesis[J]. Poult Sci, 2014, 93(7): 1801–1808. DOI: 10.3382/ps.2013-03805 |
[10] | LIU W J, WANG Z X, CHEN Y X. Effects of monochromatic light on developmental changes in satellite cell population of pectoral muscle in broilers during earlyposthatch period[J]. Anat Rec, 2010, 293(8): 1315–1324. DOI: 10.1002/ar.21174 |
[11] | KE YY, LIU W J, WANG Z X, et al. Effects of monochromatic light on quality properties and antioxidation of meat in broilers[J]. Poult Sci, 2011, 90(11): 2632–2637. DOI: 10.3382/ps.2011-01523 |
[12] | HERMAN V, WEISS M, BECKER D, et al. Hypothalamic hormonal regulation of human growth hormone gene expression insomatotroph adenoma cell cultures[J]. Endocr Pathol, 1990, 1(4): 236–244. DOI: 10.1007/BF02915417 |
[13] | KIARIS H, CHATZISTAMOU I, PAPAVASSILIOU A G, et al. Growth hormone-releasing hormone: not only aneurohormone[J]. Trends Endocrinol Metab, 2011, 22(8): 311–317. DOI: 10.1016/j.tem.2011.03.006 |
[14] | WANG T J, WANG Z X, CAO J, et al. Monochromatic light affects the development of chick embryo liver via an anti-oxidation pathway involving melatonin and the melatonin receptor Mel1c[J]. Can J Anim Sci, 2014, 94(3): 391–400. DOI: 10.4141/cjas2013-177 |
[15] | WANG T J, DONG Y L, WANG Z X, et al. Secretion pathway of liver IGF-1 via JAK2/STAT3 in chick embryo under the monochromatic light[J]. Growth Factors, 2016, 34(1-2): 51–63. DOI: 10.3109/08977194.2016.1170679 |
[16] | ROZENBOIM I, El HALAWANI M E, KASHASH Y, et al. The effect of monochromaticphotostimulation on growth and development of broiler birds[J]. Gen Comp Endocrinol, 2013, 190: 214–219. DOI: 10.1016/j.ygcen.2013.06.027 |
[17] | ZHANG L, ZHANG H J, WANG J, et al. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic andposthatch muscle growth of broiler chickens[J]. Animal, 2014, 8(1): 86–93. DOI: 10.1017/S1751731113001882 |
[18] | BAI X J, WANG Y, WANG Z X, et al. In ovo exposure to monochromatic lights affect posthatch muscle growth and satellite cell proliferation of chicks: role of IGF-1[J]. Growth Factors, 2016, 34(3-4): 107–118. DOI: 10.1080/08977194.2016.1199553 |
[19] | LI S Q, CAO J, WANG Z X, et al. Melatonin mediates monochromatic light-induced insulin-like growth factor 1 secretion of chick liver: involvement of membrane receptors[J]. Photochem Photobiol, 2016, 92(4): 595–603. DOI: 10.1111/php.2016.92.issue-4 |
[20] |
刘三好, 李国强, 卢磊. 家禽孵化控温的关键技术[J]. 畜牧与饲料科学, 2008, 29(3): 113.
LIU S H, LI G Q, LU L. The key technology of poultry incubation temperature control[J]. Animal Husbandry and Feed Science, 2008, 29(3): 113. (in Chinese) |
[21] | SIEGEL P B, ISAKSON S T, COLEMAN F N, et al. Photoacceleration of development in chick embryos[J]. Comp Biochem Physiol, 1969, 28(2): 753–758. DOI: 10.1016/0010-406X(69)92108-2 |
[22] | ZHANG L, ZHU X D, WANG X F, et al. Green Light-emitting Diodes light stimuli during incubation enhancesposthatch growth without disrupting normal eye development of broiler embryos and hatchlings[J]. Asian-Australas J Anim Sci, 2016, 29(11): 1562–1568. DOI: 10.5713/ajas.15.0976 |
[23] | WALTER J H, VOITLE R A. Effects of photoperiod during incubation on embryonic and post-embryonic development of quail and chickens[J]. Br Poult Sci, 1973, 14(6): 533–540. DOI: 10.1080/00071667308416062 |
[24] | COLEMAN M A, MCDANIEL G R. The effect of light and specific gravity on embryo weight and embryonic mortality[J]. Poult Sci, 1975, 54(5): 1415–1421. DOI: 10.3382/ps.0541415 |
[25] | KICKA M A, STINO F K R, KAMAR G A R. Influence of fluorescent light during incubation on hatch time and embryonic development of the chicken, turkey and duck egg[J]. Arch Geflugelkd, 1982, 46: 49–52. |
[26] | ROZENBOIM I, PIESTUN Y, MOBARKEY N, et al. Monochromatic light stimuli during embryogenesis enhance embryo development andposthatch growth[J]. Poult Sci, 2004, 83(8): 1413–1419. DOI: 10.1093/ps/83.8.1413 |
[27] | WAINWRIGHT S D. Course of the increase inhydroxyindole-O-methyltransferase activity in the pineal gland of the chick embryo and young chick[J]. J Neurochem, 1974, 22(1): 193–196. DOI: 10.1111/jnc.1974.22.issue-1 |
[28] | BINKLEY S, GELLER E B. Pineal enzymes in chickens: development of daily rhythmicity[J]. Gen Comp Endocrinol, 1975, 27(4): 424–429. DOI: 10.1016/0016-6480(75)90063-5 |
[29] | CHEN F J, REHEMAN A, CAO J, et al. Effect of melatonin on monochromatic light-induced T-lymphocyte proliferation in the thymus of chickens[J]. J Photochem Photobiol B Biol, 2016, 161: 9–16. DOI: 10.1016/j.jphotobiol.2016.05.001 |
[30] | LI J, CAO J, WANG Z X, et al. Melatonin plays a critical role in inducing B lymphocyte proliferation of the bursa of Fabricius in broilers via monochromatic lights[J]. J Photochem Photobiol B Biol, 2015, 142: 29–34. DOI: 10.1016/j.jphotobiol.2014.11.002 |
[31] | ZEMAN M, BUYSE J, LAMOSOVÁ D, et al. Role of melatonin in the control of growth and growth hormone secretion in poultry[J]. Domest Anim Endocrinol, 1999, 17(2-3): 199–207. DOI: 10.1016/S0739-7240(99)00037-5 |
[32] | ZHANG L W, CAO J, WANG Z X, et al. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks[J]. Acta Histochem, 2016, 118(3): 286–292. DOI: 10.1016/j.acthis.2016.02.005 |