武汉大学学报(医学版)   2016, Vol. 37Issue (4): 543-547   DOI: 10.14188/j.1671-8852.2016.04.007.
0

引用本文 

王彦峰, 胡晓燕, 叶啟发. 肾脏低温机械灌注的历史与现状[J]. 武汉大学学报(医学版), 2016, 37(4): 543-547. DOI: 10.14188/j.1671-8852.2016.04.007.
WANG Yanfeng, HU Xiaoyan, YE Qifa. The History and Current Status of Hypothermic Machine Perfusion in Kidney's Preservation[J]. Medical Journal of Wuhan University, 2016, 37(4): 543-547. DOI: 10.14188/j.1671-8852.2016.04.007.

作者简介

王彦峰,男,1964-,主任医师,教授,主要从事肝胆外科、器官移植研究

基金项目

国家自然科学基金资助项目(编号:81570079)

通讯作者

叶啟发,男,1954-,主任医师,教授,主要从事肝胆外科、器官移植研究
肾脏低温机械灌注的历史与现状
王彦峰 1, 胡晓燕 1, 叶啟发 1,2     
1. 武汉大学中南医院/武汉大学肝胆疾病研究院/武汉大学移植医学中心/ 移植医学技术湖北省重点实验室 湖北 武汉 430071;
2. 中南大学湘雅三医院/卫生部移植医学工程技术研究中心湖南 长沙 410013
[摘要] 肾移植是治疗终末期肾病的最佳手段。目前限制全世界肾移植发展的一个重要原因是供肾短缺。为扩大供体来源,越来越多的边缘供肾应用于临床,这对供体保存提出更高要求。低温机械灌注(HMP)对边缘供体的保存优于冷保存(CS),重新受到重视,现就肾脏HMP的历史与现状作一综述。
关键词肾脏    肾移植    低温机械灌注    器官保存    
The History and Current Status of Hypothermic Machine Perfusion in Kidney's Preservation
WANG Yanfeng1, HU Xiaoyan1, YE Qifa1,2     
1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University & Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China;
2. The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China
[Abstract] Renal transplantation is the best way for the treatment of end-stage renal disease.To date, kidney transplantation is limited by the shortage of kidneys in the world.To expand the boundaries of donor, more and more marginal organs start to be involved in clinical transplantation, which needs higher requirement on the organ preservation.Due to its priority to cold storage (CS) for the preservation of marginal organs, hypothermic machine perfusion (HMP) has gained widely attention again.This review will focus on the history and current status of hypothermic machine perfusion preservation in kidney's preservation.
Key words: Kidney    Kidney Transplantation    Hypothermic Machine Perfusion    Organ Preservation    

肾移植是目前治疗终末期肾病的最佳方法。自2015年1月1日起,公民逝世后器官捐献(donation after citizen's death,DCD)成为我国器官移植的唯一来源,这类器官与活体来源器官相比,经历了更长的热缺血时间,对冷缺血损伤更加敏感,移植术后原发性无功能(primary non-function, PNF)和移植物功能延迟恢复(delayed graft function,DGF)等并发症发生率明显升高,因此对供肾的保存方式提出了更高的要求[1-5]。临床上最常用的保存方式有低温机械灌注(hypothermic machine perfusion, HMP)和冷保存(cold storage, CS)两种方式。HMP通过在1-10 ℃的温度下利用灌注设备将灌注液以脉冲或连续的方式灌注肾动脉,在持续不断地提供营养成分的同时清除代谢过程中产生的废物[6-9]。CS目前仍然是临床移植肾最常用的保存方法,由于供肾的短缺,边缘供体(extended criteria donor, ECD)在临床上得到广泛应用[10, 11],HMP重新受到重视。

1 肾脏的HMP历史

如何有效保存和维护离体器官质量困扰了科学家近两个世纪,最早的报道见诸于1812年Gallois关于心脏的保存以及1855年Bernard关于肝脏的保存。灌注泵的发明推动了保存技术的进一步发展,但是,包括灌注液的选择、氧气的供应、营养物质的供给及如何减轻离体器官的损伤等问题一直争议不断。20世纪60年代,伴随器官移植在临床上取得突破性进展,离体器官的保存日益受到重视,研究最多的便是离体肾脏的保存[12]。Humphries[13-17]团队为推动肾脏HMP的研究和应用做出巨大贡献。Humphries等使用经稀释的自体血作为灌注液,选用40 mmHg灌注压,灌注犬的离体肾脏,连续灌注24 h后,移植肾功能良好。Belzer[18-20]设计了第一台机械灌注的装置,由1 L犬自体血浆加上2 mmol硫酸镁、250 ml右旋糖酐、80 U胰岛素、200 000 U青霉素以及100 mg的氢化可的松配制成灌注液(pH在7.4-7.5),灌注压设定在50-80 mmHg之间,氧分压在150-190 mmHg之间,在8-12 ℃条件下连续脉冲式灌注犬离体肾脏,72 h后肾脏移植回体内,同时切除对侧肾脏,犬存活良好。Belzer同时将该灌注设备应用于临床肾移植手术中,成功地将肾脏保存时间延长至50 h,只有8%的患者术后需要进行血液透析。然而,1969年之后,由于Collins液的出现,加上操作简单易行,CS一跃成为临床上肾脏保存的金标准。同时HMP由于机器的庞大,操作的繁复和成本因素,很快淡出视野[21]。20世纪90年代后期,由于肾移植手术疗效的突飞猛进,器官的短缺问题日益突出,ECD大量应用于临床,DGF发生率明显增高,如何保存和评价进而修复此类器管成为不可忽视的问题,因此,HMP保存技术重新受到关注[11, 14, 22, 23]

2 肾脏HMP的现状

Jochmans[24]等通过进行多中心随机对照试验(randomized controlled trial,RCT)发现:与CS组相比,HMP组可明显降低DCD供肾移植术后DGF发生率。Moers[25]等和Treckmann[26]等通过进行多中心RCT发现:肾脏HMP可明显降低ECD供肾移植术后DGF发生率,提高移植肾1年、3年生存率。Forde[27]等对93例ECD供肾肾移植患者进行回顾性研究发现:HMP组术后1月、3月的血肌酐值明显低于CS组。因此,基于逐渐积累的循证医学结果,HMP对ECD肾脏的保护作用优于CS达成共识。

目前肾脏HMP常用的仪器有脉冲式的灌注泵系统(RM3, Waters Medical Systems, Minneapolis, MN, USA),Lifeport肾脏转运系统(Organ Recovery Systems, Zaventem, Belgium)以及Kidney Assist设备(Organ Assist BV, Groningen, The Netherlands)。其中,Lifeport肾脏转运系统由于其携带方便、性能优良等优势在世界范围内得到广泛使用[28]

2.1 肾脏HMP灌注液

目前,UW液(University of Wisconsin,UW)也被称为Belzer’s液,是肾脏保存液的“金标准”,但是,由于其黏滞度过高,很少用于HMP。目前应用最多的HMP灌注液是KPS-1,又称UW-G,与UW液相比KPS-1中增加了葡萄糖、甘露醇、核糖等组分,去除了棉子糖等成分以降低灌注液的黏滞度。此外还有HTK液(histidine-tryprophane-ketoglutarar solution,HTK液)、HTK液的改良液custodiol-N液(即在HTK液的基础上添加了甘氨酸和丙氨酸)、Polysol液、Celsior液、Celsior液、高渗枸橼酸盐腺嘌呤液、IGL-1液(Institute George-Lopez-1,IGL-1)等。近期研究表明:高钾会加剧低温条件下血管痉挛,因此细胞外液型灌注液可能优于细胞内液型灌注液[4, 29, 30]

2.2 肾脏HMP评估的生化指标

与冷保存相比,HMP的优势之一是可以通过分析灌注液中的生化指标来评估供肾的质量[31]。这些标志物通常是损伤细胞释放到细胞间隙中的物质,如氧自由基介导的分子或炎症相关的分子。现已被提出可能用于评价供肾质量的灌注液中标志物有:心脏型脂肪酸结合蛋白(heart-type fatty acid binding protein,H-FABP)、乳酸脱氢酶(lactate dehydrogenase,LDH)、脂质过氧化产物(lipid peroxidation products, LPOP)、N-乙酰基-β葡萄糖苷(N-acetyl-β-D-glucosaminidase,NAG)、天冬氨酸氨基转移酶(aspartate aminotransferase,AST)、谷胱甘肽-s-转移酶(glutathione S-transferase,GST)、中性粒细胞明胶酶相关性脂质运载蛋白(neutrophil gelatinase-associated lipocalin,NGAL)、丙氨酸氨基转移酶(alanine aminopeptidase, Ala-AP)、肾脏损伤分子-1(kidney injury molecule-1,KIM-1)、白细胞介素-18(interleukin 18, IL-18)、乳酸盐、丙二醛(malondialdehyde, MDA)、总体抗氧化状态(total antioxidant status, TAS)、氧化还原的铁离子等。Hall[32]等在一项多中心RCT实验中发现GST可独立预测DGF的发生率。另外灌注液的pH值、二氧化碳分压、渗透压等指标对肾脏质量的判断可能有所帮助。核磁共振光谱学(Nuclear magnetic resonance,NMR)分析,也是一项颇有潜力的评估手段,通过对供肾灌注液进行NMR分析,发现缬氨酸、丙氨酸甘氨酸、谷氨酸盐与移植术后3个月的血肌酐有密切关系,为灌注液中损伤标志物的研究提供了新思路。但目前尚没有一个公认的标志物来评估肾脏质量,常需结合灌注参数(流量和阻力指数)、活检等综合评估供肾的活力[35-39]

2.3 肾脏HMP的灌注参数

Jochmans[24]等人首次进行了肾脏HMP过程中阻力指数与移植效果关系的实验。在DCD供肾移植中,肾脏血管阻力指数是DGF发生率以及移植物1年存活率的独立危险因素。研究表明,在合并高危因素的脑死亡供肾和DCD供肾肾移植时,供肾应满足的灌注参数是流量≥70 ml·min,阻力指数≤0.4 mmHg/(ml·min),当阻力指数>0.5 mmHg/(ml·min)时供肾需要丢弃,阻力系数在0.4-0.5 mmHg/(ml·min)之间则需要结合其他指标决定是否使用[40-42]。需要指出的是,单纯依靠灌注参数决定供肾的废弃或应用有潜在的风险。

2.4 肾脏低温氧合灌注(hypothermic oxygenated perfusion, HOPE)

Lee等[43]研究表明,低温条件下细胞代谢率保持在10%左右,因此,在低温条件下添加氧气可能会延缓细胞损伤的进程。Hoyer[44]等对热缺血30 min猪肾脏进行携氧HMP,结果发现:在灌注过程中,肾脏血管阻力低,灌注2 h后HOPE组移植肾功能明显优于无氧HMP组。Thuillier[45]等将猪肾热缺血60 min后分别行HOPE和HMP灌注22 h,自体肾移植2周后,HOPE组的血清肌酐、NGAL、AST明显较低,移植3个月后,HOPE组肌酐、尿蛋白、肾间质纤维化减少。然而也有学者认为氧浓度过高会加剧氧自由基的产生,加重细胞损伤,因此是否需要氧,以及加入氧量仍需进一步研究[46]

2.5 肾脏HMP的干预

在灌注液里加入治疗性药物进行干预,既具有针对性,也避免了全身用药的不良反应。Sedigh[47]等在肾脏HMP灌注液中加入大分子肝素共轭物(corline heparin conjugate,CHC),修复缺血再灌注损伤的血管内皮细胞,且在灌注液中多余的CHC既没有增加血管阻力,也没有损伤肾组织,证明了在灌注液中加入药物的可行性[48]

2.6 肾脏HMP可能的分子机制

Chatauret[49]等在猪DCD自体肾移植实验研究中发现:HMP组通过刺激AMPKα-eNOS-NO细胞通路减轻血管痉挛。本中心研究发现兔肾在HMP作用下发生如下改变:① kruppel-like factor 2(KLF2)及内皮型NO合成酶(endothelial nitric oxide synthase,eNOS)增加,α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)表达减少,进而减轻血管痉挛,改善微循环;② A20蛋白表达和KLF2增加,NF-κB、TGF-β表达减少,减轻炎症反应;③乙醛脱氢酶2(aldehyde Dehydrogenase 2,ALDH2)、ezrin蛋白、A20蛋白表达增加,活化caspase-3表达减少,减轻细胞凋亡和焦亡[50](部分论文待正式发表)。Wszola[51]等在研究肾脏保存实验中发现:缺氧诱导因子-1α蛋白在CS组表达增加,表明HMP可以通过抑制缺氧诱导因子-1α蛋白的表达减轻离体肾脏的缺血再灌注损伤,进而保护离体肾脏。

2.7 肾脏HMP的优势

①减轻低温条件下血管的痉挛;②提供营养物质以及氧气以更好维持能量和氧的需求;③清除代谢废物;④可通过在灌注液中加入细胞保护剂或免疫调节的药物进行干预;⑤为准确评估供肾质量提供更有效的方法;⑥可将肾移植从急诊手术转为择期手术;⑦可以降低PNF及DGF的发生率;⑧改善ECD供肾质量,从而扩大供体池;⑨通过降低DGF发生率和缩短住院时间,降低总体医疗成本[10]

3 结论和展望

伴随边缘供肾的广泛使用,如何有效评估和提高供肾的质量是当前肾移植领域的关键问题。由于在对供肾质量的评估以及灌注干预方面独特的作用,HMP得到越来越多的研究与应用。但是,HMP的作用机制、优异的质量评估指标和低温条件下的干预策略等问题仍需进一步研究,并需要更多的RCT以验证其临床价值。

参考文献
[1] O'Neill S, Gallagher K, Hughes J, et al. Challenges in early clinical drugdevelopment for ischemia-reperfusion injury in kidneytransplantation[J]. Expert Opin Drug Discov, 2015, 10(7): 753-762. DOI: 10.1517/17460441.2015.1044967.
[2] Minor T, Paul A, Efferz P, et al. Kidney transplantation after oxygenated machine perfusion preservation with Custodiol-N solution[J]. Transpl Int, 2015, 28(9): 1102-1108. DOI: 10.1111/tri.2015.28.issue-9.
[3] Hosgood SA, Nicholson ML. The first clinical case of intermediate ex vivo normothermic perfusion in renal transplantation[J]. Am J Transplant, 2014, 14(7): 1690-1692. DOI: 10.1111/ajt.12766.
[4] De Deken J, Kocabayoglu P, Moers C. Hypothermic machine perfusion in kidney transplantation[J]. Curr Opin Organ Transplant, 2016.
[5] 胡晓燕, 王彦峰, 叶啟发, 等. 低温机械灌注在离体肝脏中的保存与修复作用[J]. 中华器官移植杂志, 2015, 36(10): 632-635.
[6] Moers C, Pirenne J, Paul A, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation[J]. N Engl J Med, 2012, 366(8): 770-771. DOI: 10.1056/NEJMc1111038.
[7] St Peter SD, Imber CJ, Friend PJ. Liver and kidney preservation by perfusion[J]. Lancet, 2002, 359(9306): 604-613. DOI: 10.1016/S0140-6736(02)07749-8.
[8] Taylor MJ, Baicu SC. Current state of hypothermic machine perfusion preservation of organs: The clinical perspective[J]. Cryobiology, 2010, 60: S20-S35. DOI: 10.1016/j.cryobiol.2009.10.006.
[9] Henry SD, Guarrera JV. Protective effects of hypothermic ex vivo perfusion on ischemia/reperfusion injury and transplant outcomes[J]. Transplant Rev (Orlando), 2012, 26: 163-175. DOI: 10.1016/j.trre.2011.09.001.
[10] Dikdan GS, Mora-Esteves C, Koneru B. Review of randomized clinical trials of donor management and organ preservation in deceased donors: opportunities and issues[J]. Transplantation, 2012, 94: 425-441.
[11] 胡晓燕, 王彦峰, 叶啟发, 等. 低温机械灌注与单纯冷保存供肾对肾移植预后影响的META分析[J]. 中国组织工程研究, 2015, 19(42): 6882-6888.
[12] Fuller BJ, Lee CY. Hypothermic perfusion preservation: the future of organ preservation revisited[J]. Cryobiology, 2007, 54: 129-145. DOI: 10.1016/j.cryobiol.2007.01.003.
[13] Humphries AL, Russell R, Stoddard LD, et al. Perfusionof dog kidneys with cooled medium 199 followed by auto or allotransplantation. In: Norman JC. Organ Perfusion and Preservation[M]. New York: Appleton Century Crofts, 1968: 13-26.
[14] Humphries AL Jr, Russell R, Christopher PE, et al. Succesfulreimplantation of twenty-four-hourstored kidney to nephrectomized dog[J]. Ann N Y Acad Sci, 1964, 120: 496-505.
[15] Humphries AL Jr, Russerll R, Gregory J, et al. Hypothermic perfusion of the canine kidney for 48 hours followedby reimplantation[J]. Am Surg, 1964, 30: 748-752.
[16] Humphries AL Jr, Russell R, Stoddard LD, et al. Successful five-day kidney preservation. Perfusion with hypothermic, diluted plasma[J]. Invest Urol, 1968, 5(6): 609-618.
[17] Humphries AL Jr, Russell R, Stoddard LD, et al. Three-day kidney preservation: perfusion of kidneys with hypothermic, dilutedblood of plasma[J]. Surgery, 1968, 63(4): 646-652.
[18] Belzer FO, Ashby BS, Dunphy JE. 24-hour and 72-hour preservationof canine kidneys[J]. Lancet, 1967, 2(7515): 536-538.
[19] Belzer FO, Ashby BS, Gulyassy PF, et al. Successful seventeen-hour preservation and transplantation of human-cadaver kidney[J]. N Engl J Med, 1968, 278(11): 608-610. DOI: 10.1056/NEJM196803142781108.
[20] Belzer FO, Ashby BS, Huang JS, et al. Etiology of rising perfusion pressure in isolated organ perfusion[J]. Ann Surg, 1968, 168: 382-391. DOI: 10.1097/00000658-196809000-00008.
[21] McAnulty JF. Hypothermic organ preservation by static storage methods: Current status and a view to the future[J]. Cryobiology, 2010, 60(3 Suppl): S13-S19.
[22] Johnson CP, Roza AM, Adams MB. Local procurement with pulsatile perfusion gives excellent results and minimises initial cost associated with renal transplantation[J]. Transplant Proc, 1990, 22(2): 385-387.
[23] Bond M, Pitt M, Akoh J, et al. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model[J]. Health Technol Assess, 2009, 13: 1-156.
[24] Jochmans I, Moers C, Smits JM, et al. The prognostic value of renal resistanceduring hypothermic machine perfusion of deceased donor kidneys[J]. Am J Transplant, 2011, 11: 2214-2220. DOI: 10.1111/ajt.2011.11.issue-10.
[25] Moers C, Pirenne J, Paul A, et al. Machine perfusion or cold storage in deceased-donor kidney transpIantation[J]. N Engl J Med, 2012, 366(8): 770-771. DOI: 10.1056/NEJMc1111038.
[26] Treckmann J, Moers C, Smits JM, et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death[J]. Transplant Int, 2011, 24(6): 548-554. DOI: 10.1111/tri.2011.24.issue-6.
[27] Forde JC, Shields WP, Azhar M, et al. Single centre experience of hypothermic machine perfusion of kidneys from extendedcriteria deceased heart-beating donors: a comparative study[J]. Ir J Med Sci, 2016, 185(1): 121-125. DOI: 10.1007/s11845-014-1235-8.
[28] Bon D, Delpech PO, Chatauret N, et al. Does machine perfusion decrease ischemia reperfusion injury[J]. ? Prog Urol, 2014, 24: S44-S50. DOI: 10.1016/S1166-7087(14)70063-6.
[29] Cameron AM, Barandiaran Cornejo JF. Organ preservation review: history of organ preservation[J]. Curr Opin Organ Transplant, 2015, 20(2): 146-151. DOI: 10.1097/MOT.0000000000000175.
[30] 张洋, 叶啟发, 王忍, 等. 器官机械灌注液的研究进展[J]. 中华肝胆外科杂志, 2014, 20(7): 542-546.
[31] van Smaalen TC, Hoogland ER, van Heurn LW. Machine perfusion viability testing[J]. Curr Opin Organ Transplant, 2013, 18(2): 168-173. DOI: 10.1097/MOT.0b013e32835e2a1b.
[32] Hall IE, Bhangoo RS, Reese PP, et al. Glutathione S-transferaseiso-enzymesin perfusate from pumped kidneys are associated with delayed graft function[J]. Am J Transplant, 2014, 14: 886-896. DOI: 10.1111/ajt.v14.4.
[33] Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant[J]. Am J Transplant, 2011, 11(11): 2279-2296. DOI: 10.1111/ajt.2011.11.issue-11.
[34] Parikh CR, Hall IE, Bhangoo RS, et al. Associations of perfusate biomarkers and pump parameters with delayed graft function and deceased-donor kidney allograft function[J]. Am J Transplant, 2015.
[35] Nagelschmidt M, Minor T, Gallinat A, et al. Lipid peroxidation products in machine perfusion of older donor kidneys[J]. J Surg Res, 2013, 180(2): 337-342. DOI: 10.1016/j.jss.2012.04.071.
[36] Bhangoo RS, Hall IE, Reese PP, et al. Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: a systematic review[J]. Nephrol Dial Transplant, 2012, 27(8): 3305-3314. DOI: 10.1093/ndt/gfr806.
[37] Jochmans I, Monbaliu D, Pirenne J. Neutrophilgelatinase-associated lipocalin, a new biomarker candidate in perfusate of machine-perfused kidneys: a porcine pilot experiment[J]. Transplant Proc, 2011, 43(9): 3486-3489. DOI: 10.1016/j.transproceed.2011.09.035.
[38] de Vries B, Snoeijs MGJ, von Bonsdorff L, et al. Redox-active iron released during machine perfusion predicts viability of ischemically injured deceased donor kidneys[J]. Am J Transplant, 2006, 6: 2686-2693. DOI: 10.1111/ajt.2006.6.issue-11.
[39] Bon D, Billault C, Thuillier R, et al. Analysis of perfusates during hypothermicmachine perfusion by NMR spectroscopy: a potential tool for predictingkidney graft outcome[J]. Transplantation, 2014, 97: 810-816. DOI: 10.1097/TP.0000000000000046.
[40] Tesi RJ, Elkhammas EA, Davies EA, et al. Pulsatile kidney perfusion for evaluation of high-risk kidney donors safely expands the donor pool[J]. Clin Transplant, 1994, 8(2 Pt 1): 134-138.
[41] Light J. Viability testing in the non-heart-beating donor[J]. Transplant Proc, 2000, 32(1): 179-181. DOI: 10.1016/S0041-1345(99)00922-7.
[42] Bellingham JM, Santhanakrishnan C, Neidlinger N, et al. Donation after cardiac death: A 29-year experience[J]. Surgery, 2011, 150(4): 692-702. DOI: 10.1016/j.surg.2011.07.057.
[43] Lee CY, Jain S, Duncan HM, et al. Survival transplantation of preserved non-heart-beating donor rat livers:preservation by hypotherrnic machine perfusion[J]. Transplantation, 2003, 76(10): 1432-1436. DOI: 10.1097/01.TP.0000088674.23805.0F.
[44] Hoyer DP, Gallinat A, Swoboda S, et al. Influence of oxygen concentrationduring hypothermic machine perfusion on porcine kidneys from donation aftercirculatory death[J]. Transplantation, 2014, 98: 944-950. DOI: 10.1097/TP.0000000000000379.
[45] Thuillier R, Allain G, Celhay O, et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors[J]. J Surg Res, 2013, 184(2): 1174-1181. DOI: 10.1016/j.jss.2013.04.071.
[46] Hart NA, van der Plaats A, Faber A, et al. Oxygenation during hypothermic rat liver preservation:an in vitro slice study to demonstrate beneficial or toxic oxygenation effects[J]. Liver Transpl, 2005, 11(11): 1403-1411. DOI: 10.1002/lt.20510.
[47] Sedigh A, Larsson R, Brannstrom J, et al. Modifying the vessel walls in porcine kidneys during machine perfusion[J]. J Surg Res, 2014, 191: 455-462. DOI: 10.1016/j.jss.2014.04.006.
[48] 张驌, 付生军, 杨立. 机械灌注在边缘供肾中的研究进展[J]. 中华移植杂志:电子版, 2015, 9(4): 194-198.
[49] Chatauret N, Coudroy R, Delpech PO, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion's protection on warm ischemic kidneyuncovers greater eNOS phosphorylation and vasodilation[J]. Am J Transplant, 2014, 14(11): 2500-2514. DOI: 10.1111/ajt.12904.
[50] Zhang Y, Fu Z, Zhong Z, et al. Hypothermic machine perfusion decreases renal cell apoptosis during ischemia/reperfusion injury via the Ezrin/AKT pathway[J]. Artif Organs, 2016, 40(2): 129-135. DOI: 10.1111/aor.2016.40.issue-2.
[51] Wszola M, Kwiatkowski A, Domagala P, et al. Preservation of kidneys bymachine perfusion influences gene expression and may limit ischemia/reperfusion injury[J]. Prog Transplant, 2014, 24: 19-26. DOI: 10.7182/pit2014384.