2. 中南大学湘雅三医院/卫生部移植医学工程技术研究中心 湖南 长沙 410013;
3. 武汉大学中南医院/武汉大学肝胆疾病研究院/武汉大学移植医学中心/移植医学技术湖北省重点实验室 湖北 武汉 430071
2. The 3rd Xiangya Hospital of Central South University & Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China;
3. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, & Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
目前,肾移植已经成为治疗终末期肾病唯一有效的方法。但是,尽管肾移植术后1年存活率已经达到97.6%,但免疫排斥反应仍然是移植术后移植物失活的主要原因[1]。近年来随着术前配型技术及术后免疫抑制剂的应用,超急性排斥反应已经很少发生,急性细胞性排斥反应的发生率也降到了10%。然而,抗体介导的排斥反应(antibody-mediated rejection,AMR)的比例却有所增高,正逐渐成为肾移植术后排斥反应发生的主要类型[2]。研究证明,AMR的发生与供体特异性抗体(donor specific antibodies,DSA)有密切关联,DSA能介导急性AMR。
1 供体特异性抗体的概念供体特异性抗体(DSA)是指受者在接受器官和(或)组织移植前,体内既有针对供者组织抗原的特异性抗体,主要来自于主要组织相容性复合体[MHC, 或人类白细胞抗原(HLA)]暴露的输血、妊娠、既往器官/组织移植史[3],ABO血型不相配(ABO incompatible,ABOi)移植、异种移植及人类白细胞抗原不相配(HLAi)的同种异体移植及其他的非HLA抗体(如抗内皮细胞抗体、抗波形蛋白抗体、抗MICA抗体和抗MICB)。根据DSA产生的时间,可将其分为移植前DSA及移植后DSA,移植后DSA预后常常较差[4]。DSA主要参与体液免疫过程,是患者术后并发超急性排斥反应的原因之一。此外,DSA还能介导慢性排斥反应[5]。
2 供体特异性抗体介导排斥反应的损伤机制高滴度的DSA与移植物血管内皮细胞发生抗原抗体反应导致补体激活,血管内皮细胞凋亡,血管壁完整性受到破坏,随后并发组织局部缺血性损伤[6]。完整的血管内皮细胞由于有乙酰肝素表面分子的表达而带负电荷。这种负电荷与血浆中的蛋白相斥[7]。亚细胞结构暴露于DSA中可导致补体介导的同种异体移植物损伤,这种损伤是由于内皮细胞激活诱导细胞间形成一道“沟”,细胞表面负电荷丧失使表面的乙酰肝素分子脱落,暴露皮下基质于凝血因子和血小板,导致血管内血栓形成[8]。除了补体介导的同种异体移植物损伤外,在人类同种异体移植物急性AMR损伤模型中可以发现,MHCⅠ型抗体也可诱导血管内皮细胞的凋亡[9, 10],其发生在移植后数天以内,并且依赖补体。通过成纤维细胞生长因子受体的改变,MHC Ⅰ型抗体也能相应地诱导潜在损伤性增殖改变[11]。如此一来,不同DSA活性水平通过不同的机制来导致同种异体移植物损伤,如补体依赖及非补体依赖途径的坏死及内皮细胞凋亡。这种事件的序列发生为急性抗体介导的排斥反应(AAMR)的干预治疗提供了逻辑目标。例如可通过物理清除或者失活作用降低DSA的活性,减少DSA的产生,抑制补体的激活等。此外,AMR主要由B细胞参与[12],这为治疗提供了一系列的目标靶点。
3 供体特异性抗体介导的排斥反应诊断DSA介导的AMR病理变化包括,管周毛细血管内中性粒细胞浸润,内皮细胞脱落,动脉纤维素样坏死,血栓形成,间质溶血,肾小球外周毛细血管C4d沉积。这种变化的发生基于术后供体产生的抗HLA抗体及非HLA抗体。抗体介导的排斥反应多发生在肾移植术后1-3个月间。主要表现为短期内血肌酐急速升高,并伴随轻微或者明显的少尿及高血压。
针对AMR的班芙(Banff)评分系统的问世,使得区别排斥反应到底是细胞免疫排斥反应还是体液免疫排斥反应不再是那么的困难。对于那些术前DSA阴性而发生急性排斥反应患者,其排斥反应类型是否是AMR也能作出诊断[13, 14]。
最初的Banff评分系统糅合血清学和组织学标准划定得分标准,对排斥反应进行分类,提高了AMR的诊断准确率[15]。急性AMR的诊断基于以下3条标准:①PTC-C4d阳性,即有抗原抗体反应的证据,目前普遍认为C4d是抗体参与排斥反应的直接证据,因此C4d在PTC部位的沉积最能说明问题,其次如免疫球蛋白或者补体在动脉纤维素样坏死部位的沉积等;②抗供体抗体阳性,即受者血清学检查发现针对供体的抗原的抗体,也就是DSA+表现;③形态学改变,形态学应具备急性排斥性损伤的表现,例如动脉内膜炎、动脉纤维素样坏死,小血管壁上有以单个核细胞为主的细胞浸润、间质水肿与血管损害[14]。
尽管Banff评分系统认为C4d沉积是检测移植术后AMR的金标准,是体液排斥反应的一个特异性标志物,然而越来越多的移植物活检显示存在C4d阴性的AMR,对C4d阴性的AMR若不治疗,将会引起移植物损伤及肾小球肾炎,甚至导致移植肾失活[16-18]。因而在2013年的Banff同种异体移植病理会议上,专家组也再次对Banff系统进行修订,建立了统一的C4d阴性的AMR诊断标准,进一步完善了Banff评分标准,使其成为目前广泛接受的诊断标准[19]。
4 供体特异性抗体与肾移植预后的关系DSA+患者有发生超急性排斥反应的风险无可争议。但是DSA滴度与AMR的发生率是否有关则存在争议。有学者[20, 21]认为,超急性排斥反应的发生不仅依赖于DSA的存在与否,也同DSA滴度有关。低滴度的DSA抗体可能不会诱发超急性排斥反应。然而,它的出现表明受者既往有针对供体的免疫反应,从而使患者移植术后更易并发AMR或者急性排斥反应。但Thammanichanond等[22]认为,术前DSA的强度与术后排斥反应的发生率无关。但两者均为单中心的非随机对照研究结果,仍需大量实践去验证。
Higgins等[23]通过回顾性分析84例DSA+患者发现,肾移植术后第1年急性排斥反应的发生率为53.1%,而DSA-患者为22%(P < 0.003)。但同时作者也指出,纵使DSA+,但若CDC交叉配型的结果是阴性,则肾移植成功率也高。而Thammanichanond等[22]同样也提出了相反的观点,即DSA+、CDC-,AMR的发生率也高。对于以上两者完全相反的结论,可能是检测DSA方法不同导致。因此,对于DSA+的患者,是否可行肾移植术,应多方分析,综合考虑。
目前,针对DSA+患者肾移植术后短期疗效有诸多研究,脱敏治疗后长期效果却知之甚少。Miura等[18]对11例DSA+患者肾移植术后行3-8年的随访,发现移植术后早期并发急性AMR (AAMR)和持续微血管损伤是肾移植术后慢性排斥反应的高危因素,哪怕其肾功能一直比较稳定。因此,对于既往DSA+的肾移植患者,其术后远期随访中,应该强制制定远期免疫移植计划(依据危险因子、程序性活检监测和DSA检测),并根据定期的检查结果调整治疗方案。
但是大量研究表明,正常器官或者功能正常的移植物能够吸附大量的抗供体抗体,而使得DSA在血液中的滴度非常低[24-26]。哪怕在缺乏T细胞或者B细胞的补体依赖的淋巴细胞毒试验结果情况下,若患者体内检测到DSA,急性或慢性AMR的发生率也随之增加[27],若实施DSA清除治疗,则AMR的发生率也随之下降[28],这也意味着抗DSA生成可能是治疗AMR的一种策略[12],而很多治疗方案也正是以此为理论基础。
5 供体特异性抗体介导的排斥反应治疗对于DSA阳性患者,目前治疗方法多样化。国外的治疗中心多采用血浆置换(免疫吸附)联合他克莫司(FK506)、吗替麦考酚酯(MMF)及免疫球蛋白(IVIG)治疗那些经激素冲击治疗无效的AMR患者。血浆置换用于清除患者循环中的DSA,FK506及MMF抑制DSA的产生。对于DSA滴度较弱的患者,常规免疫抑制剂即可获得比较理想的疗效[29]。而对于DSA滴度较高的患者,则需要考虑综合治疗。
利妥昔单抗是一种与CD20抗原特异性结合的单克隆抗体。其与B淋巴细胞上的CD20结合,从而引起B细胞溶解。细胞溶解的可能机制包括补体依赖性细胞毒性(CDC)和抗体依赖性细胞的细胞毒性(ADCC)。从理论上说,利妥昔单抗通过结合并清除表达CD20的B细胞来抑制DSA的产生,从而达到保护效果。但是,其概念本身就有问题。首先,因为浆细胞(效应B细胞)不表达CD20抗原,所以利妥昔单抗对浆细胞无效。其次,利妥昔单抗对循环中已经存在的DSA无清除作用。因此,单用利妥昔单抗治疗AMR无效[30-32],Vieira等[32]已经通过试验证实。而血浆置换联合利妥昔单抗治疗AMR,则具有显著疗效,可使得移植物两年存活率上升到90%[30]。但对于DSA阳性的等待肾源的患者,行利妥昔单抗治疗能有效的降低肾移植术后近期远期AMR的发生率,提高肾脏的存活时间[33]。
静脉用丙种球蛋白(IVIG)是强大的免疫调节剂[34],IVIG联合血浆置换治疗对DSA+的肾移植也能取得较好的效果[35-37]。然而,IVIG+血浆置换治疗后排斥反应的发生率仍然较高,且这种方法更适合于等待活体供肾的患者[38]。
硼替佐米是一种蛋白酶体抑制剂,用于肾移植术后常规抗排斥治疗无效的AMR。最近发现蛋白酶抑制剂硼替佐米可对抗浆细胞清除循环中的DSA,提升肾功能,但是其在清除浆细胞的同时也清除了带有保护性抗原的记忆B细胞,这可能导致用药后免疫力极度低下,该效应对成人影响较小[39],但对于儿童应谨慎对待[40]。另外,停用硼替佐米后DSA滴度容易出现反弹[41, 42]。这与其只清除成熟的浆细胞而对未成熟的B细胞无杀灭作用有关。
血浆置换联合低剂量IVIG注射清除DSA仅适合于等待活体供肾的患者。高剂量IVIG注射既适合于尸体供肾也适合于活体供肾[43],但是在其达到最佳移植状态前,常常需要治疗4个月以上。而IVIG+利妥昔单抗的联合用药方案能有效清除体内的DSA,缩短DSA+患者等待移植时间[44]。
肾移植术后早期并发尿量减少及血肌酐升高,可用高剂量甲基强的松龙冲击治疗,并检测患者体内DSA滴度,若DSA滴度升高,则连续3 d行血液滤过直到患者DSA被完全清除,若激素冲击治疗无效,可应用单克隆抗体(如OKT3)或者多克隆抗体(如抗人T细胞兔免疫球蛋白,ATG)[23],随后转用他克莫司(FK506)及霉酚酸酯(MMF)治疗可提高此类排斥反应的预后效果。
对于移植前既有DSA的患者,应建立系统的脱敏治疗方案,该方案在约翰霍普金斯医院用于脱敏治疗,取得了98%的成功率(图 1)[45]。
|
图 1 系统的脱敏治疗方案 |
移植后应注意是否产生新的DSA (de novo DSA,dDSA),尤其是HLA-DQ抗体,其常常导致移植肾的失活,预后较差[46-48]。因此,早期诊断、检测和及时清除DQ抗体是治疗的关键[49],因为dDSA抗体阳性患者的中期疗效与DSA阴性患者无异[50]。
6 预防 6.1 移植前预防目前,国际上报道的肾功能衰竭患者对HLA致敏的发生率约为30%[45],HLA致敏是肾移植术的禁忌证。而HLA脱敏的患者肾移植术后肾功能明显好于HLA致敏患者。但是,受者体内DSA强度决定了HLA脱敏的效果[45, 51]。所以对于DSA滴度较高的患者,最好选择血浆置换、IVIG等技术效果比较成熟的方法降低来DSA滴度,或者等待合适配型的供体,再行同种异体肾移植术。
目前有研究发现,那些长期以来依靠透析维持生命的肾功能衰竭患者更容易产生抗HLA抗体[52]。一旦这类患者对HLA致敏,则配型成功率就大大降低。因此对于此类患者最好的解决办法就是缩短移植术前透析时间,以及尽量避免常规输血来治疗肾性贫血。因为输血仍然是导致受体对移植物致敏的一个主要原因[53],而致敏常常诱发免疫排斥及移植物失活,或者增加等待合适供体的时间。尽管既往数据表明输血有助于移植物存活,但自环孢素出现后,这种优势俨然不复存在[54]。所以,减少透析时间及输血次数是避免HLA致敏的一个重要原因。
通过DSA的滴度预测移植效果,来决定是否行同种异体肾移植术。Riethmüller等[55]对比3代交叉配型技术,流式细胞交叉配型(flow cytometry XM)检测DSA Ⅰ型抗体的平均荧光强度(mean fluorescence intensity,MFI)达到900时,诊断AMR的敏感性为75%,特异度为90%。而随着DSA Ⅰ型抗体滴度增加,当MFI达到5 200时,灵敏度与特异度分别为50%和100%。液相交叉配型技术(Luminex XM,LXM)的准确率高于流式细胞交叉配型(flow cytometry XM)和B细胞补体依赖的细胞毒性实验(complement-dependent cytotoxicity crossmatch,CXM)。因此,对于致敏患者,若DSA Ⅰ抗体滴度较高,则其术后并发AMR及肾功能异常的风险也随之升高。
6.2 移植后预防对于大多数患者,术前低DSA滴度意味着较低的AMR风险,也容易导致淋巴细胞毒交叉配型(CDC-XM)阴性结果[21, 56]。然而,一旦并发AMR情况就非常糟糕,常常导致早期移植物失活。另外,个别移植中心的AMR发生率较高,可能是由于缺乏常规活检而导致,而导致无症状的AMR被漏诊。Loupy等[56]通过对54例DSA+肾患者肾移植术后3个月型常规活检,发现有31%患者符合诊断无症状抗体介导的排斥反应(SAMR)。因此,对于肾移植术后患者,尤其是DSA+经脱敏治疗后的患者,术后应常规行移植肾活检,以明确是否有AMR发生、发展及其病理情况。同时,术后早期行DSA监测可动态了解DSA并预测移植肾远期功能,因为只有DSA在移植后仍然保持较高的滴度且超过阈值才能引起移植肾功能延迟恢复(DGF)或者移植物失活。
综上所述,术前检测DSA十分重要,其有助于临床医师确定能否实施手术,有AMR高危险因子的患者,监测DSA可指导治疗。
| [1] | Wu K, Budde K, Lu H, et al. The severity of acute cellular rejection defined by banff classification is associated with kidney allograft outcomes[J]. Transplantation, 2014, 97(11): 1 146-1 154. DOI: 10.1097/01.TP.0000441094.32217.05. |
| [2] | Terasaki PI, Ozawa M. Predicting kidney graft failure by HLA antibodies:a prospective trial[J]. Am J Transplant, 2004, 4(3): 438-443. DOI: 10.1111/ajt.2004.4.issue-3. |
| [3] | Sautner T, Gnant M, Banhegyi C, et al. Risk factors for development of panel reactive antibodies and their impact on kidney transplantation outcome[J]. TransplInt, 1992, 5(Suppl 1): S116-S120. |
| [4] | Campbell P. Clinical relevance of human leukocyte antigen antibodies in liver, heart, lung and intestine transplantation[J]. Curr Opin Organ Transplant, 2013, 18(4): 463-469. DOI: 10.1097/MOT.0b013e3283636c71. |
| [5] | Kimball PM, Baker MA, Wagner MB, et al. Surveillance of alloantibodies after transplantation identifies the risk of chronic rejection[J]. Kidney Int, 2011, 79(10): 1 131-1 137. DOI: 10.1038/ki.2010.556. |
| [6] | Cascalho M, Platt JL. Basic mechanisms of humoral rejection[J]. Pediatr Transplant, 2005, 9(1): 9-16. DOI: 10.1111/ptr.2005.9.issue-1. |
| [7] | Platt JL, Vercellotti GM, Lindman BJ, et al. Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacuterejection[J]. J Exp Me, 1990, 171(4): 1 363-1 368. DOI: 10.1084/jem.171.4.1363. |
| [8] | Saadi S, Platt JL. Transient perturbation of endothelial integrity induced by natural antibodies and complement[J]. J Exp Med, 1995, 181(1): 21-31. DOI: 10.1084/jem.181.1.21. |
| [9] | Cailhier JF, Laplante P, Hebert MJ. Endothelial apoptosis and chronic transplant vasculopathy:recent results, novel mechanisms[J]. Am J Transplant, 2006, 6(2): 247-253. DOI: 10.1111/ajt.2006.6.issue-2. |
| [10] | Liptak P, Kemeny E, Morvay Z, et al. Peritubular capillary damage in acute humoral rejection:an ultrastructural study on human renal allografts[J]. Am J Transplant, 2005, 5(12): 2 870-2 876. DOI: 10.1111/j.1600-6143.2005.01102.x. |
| [11] | Reed EF. Signal transduction via MHC class Ⅰ molecules in endothelial and smooth muscle cells[J]. Crit Rev Immunol, 2003, 23(1-2): 109-128. DOI: 10.1615/CritRevImmunol.v23.i12. |
| [12] | Lynch RJ, Silva IA, Chen BJ, et al. Cryptic B cell response to renal transplantation[J]. Am J Transplant, 2013, 13(7): 1 713-1 723. DOI: 10.1111/ajt.12308. |
| [13] | Crespo M, Pascual M, Tolkoff-Rubin N, et al. Acute humoral rejection in renal allograft recipients:I. Incidence, serology and clinical characteristics[J]. Transplantation, 2001, 71(5): 652-658. DOI: 10.1097/00007890-200103150-00013. |
| [14] | Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology:updates and future directions[J]. Am J Transplant, 2008, 8(4): 753-760. DOI: 10.1111/ajt.2008.8.issue-4. |
| [15] | Higgins R, Zehnder D, Chen K, et al. The histological development of acute antibody-mediated rejection in HLA antibody-incompatible renal transplantation[J]. Nephrol Dial Transplant, 2010, 25(4): 1 306-1 312. DOI: 10.1093/ndt/gfp610. |
| [16] | Haas M. C4d-negative antibody-mediated rejection in renal allografts:evidence for its existence and effect on graft survival[J]. Clin Nephrol, 2011, 75(4): 271-278. DOI: 10.5414/CNP75271. |
| [17] | Takeda A, Otsuka Y, Horike K, et al. Significance of C4d deposition in antibody-mediated rejection[J]. Clin Transplant, 2012, 26(Suppl 24): 43-48. |
| [18] | Miura M, Harada H, Fukasawa Y, et al. Long-term histopathology of allografts in sensitized kidney recipients[J]. Clin Transplant, 2012, 26(Suppl 24): 32-36. |
| [19] | Haas M, Sis B, Racusen LC, et al. Banff 2013 meeting report:inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions[J]. Am J Transplant, 2014, 14(2): 272-283. DOI: 10.1111/ajt.12590. |
| [20] | Crew RJ, Ratner LE. Overcoming immunologic incompatibility:transplanting the difficult to transplantpatient[J]. Semin Dial, 2005, 18(6): 474-481. DOI: 10.1111/sdi.2005.18.issue-6. |
| [21] | David-Neto E, Souza PS, Panajotopoulos N, et al. The impact of pretransplant donor-specific antibodies on graft outcome in renal transplantation:a six-year follow-up study[J]. Clinics (Sao Paulo), 2012, 67(4): 355-361. DOI: 10.6061/clinics. |
| [22] | Thammanichanond D, Ingsathit A, Mongkolsuk T, et al. Pre-transplant donor specific antibody and its clinical significance in kidney transplantation[J]. Asian Pac J Allergy Immunol, 2012, 30(1): 48-54. |
| [23] | Higgins R, Lowe D, Hathaway M, et al. Human leukocyte antigen antibody-incompatible renal transplantation:excellent medium-term outcomes with negative cytotoxic crossmatch[J]. Transplantation, 2011, 92(8): 900-906. DOI: 10.1097/TP.0b013e31822dc38d. |
| [24] | Briggs D, Zehnder D, Higgins RM. Development of non-donor-specific HLA antibodies after kidney transplantation:frequency and clinical implications[J]. ContribNephrol, 2009, 162: 107-116. |
| [25] | Higgins R, Lowe D, Hathaway M, et al. Rises and falls in donor-specific and third-party HLA antibody levels after antibody incompatible transplantation[J]. Transplantation, 2009, 87(6): 882-888. DOI: 10.1097/TP.0b013e31819a6788. |
| [26] | Ishida H, Hirai T, Kohei N, et al. Significance of qualitative and quantitative evaluations of anti-HLA antibodies in kidney transplantation[J]. TransplInt, 2011, 24(2): 150-157. |
| [27] | Hirai T, Kohei N, Omoto K, et al. Significance of low-level DSA detected by solid-phase assay in association with acute and chronic antibody-mediated rejection[J]. TransplInt, 2012, 25(9): 925-934. |
| [28] | Kohei N, Hirai T, Omoto K, et al. Chronic antibody-mediated rejection is reduced by targeting B-cell immunity during an introductory period[J]. Am J Transplant, 2012, 12(2): 469-476. DOI: 10.1111/j.1600-6143.2011.03830.x. |
| [29] | Yoo PS, Bonnel A, Kamoun M, et al. Clinical outcomes among renal transplant recipients with pre-transplant weakly reactive donor-specific antibodies[J]. Clin Transplant, 2014, 28(1): 127-133. DOI: 10.1111/ctr.12289. |
| [30] | Kaposztas Z, Podder H, Mauiyyedi S, et al. Impact of rituximab therapy for treatment of acute humoral rejection[J]. Clin Transplant, 2009, 23(1): 63-73. DOI: 10.1111/ctr.2009.23.issue-1. |
| [31] | Vo AA, Lukovsky M, Toyoda M, et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation[J]. N Engl J Med, 2008, 359(3): 242-251. DOI: 10.1056/NEJMoa0707894. |
| [32] | Vieira CA, Agarwal A, Book BK, et al. Rituximab for reduction of anti-HLA antibodies in patients awaiting renal transplantation:1. Safety, pharmacodynamics, and pharmacokinetics[J]. Transplantation, 2004, 77(4): 542-548. DOI: 10.1097/01.TP.0000112934.12622.2B. |
| [33] | Ishida H, Furusawa M, Shimizu T, et al. Influence of preoperative anti-HLA antibodies on short-and long-term graft survival in recipients with or without rituximab treatment[J]. TransplInt, 2014, 27(4): 371-382. |
| [34] | Kazatchkine MD, Kaveri V. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin[J]. N Engl J Med, 2001, 345(10): 747-755. DOI: 10.1056/NEJMra993360. |
| [35] | Atsumi H, Asaka M, Kimura S, et al. A case of second renal transplantation with acute antibody-mediated rejection complicated with BK virus nephropathy[J]. Clin Transplant, 2010, 24(Suppl 22): 35-38. |
| [36] | Rocha PN, Butterly DW, Greenberg A, et al. Beneficial effect of plasmapheresis and intravenous immunoglobulin on renal allograft survival of patients with acute humoral rejection[J]. Transplantation, 2003, 75(9): 1 490-1 495. DOI: 10.1097/01.TP.0000060252.57111.AC. |
| [37] | Slatinska J, Honsova E, Burgelova M, et al. Plasmapheresis and intravenous immunoglobulin in early antibody-mediated rejection of the renal allograft:a single-center experience[J]. TherApher Dial, 2009, 13(2): 108-112. DOI: 10.1111/j.1744-9987.2009.00664.x. |
| [38] | Gloor JM, Degoey SR, Pineda AA, et al. Overcoming a positive crossmatch in living-donor kidney transplantation[J]. Am J Transplant, 2003, 3(8): 1 017-1 023. DOI: 10.1034/j.1600-6143.2003.00180.x. |
| [39] | Everly MJ, Terasaki PI, Hopfield J, et al. Protective immunity remains intact after antibody removal bymeans of proteasome inhibition[J]. Transplantation, 2010, 90(12): 1 493-1 498. DOI: 10.1097/TP.0b013e3181ff87b1. |
| [40] | Claes DJ, Yin H, Goebel J. Protective immunity and use of bortezomib for antibody-mediated rejection in a pediatric kidney transplant recipient[J]. Pediatr Transplant, 2014, 18(4): E100-E105. DOI: 10.1111/petr.2014.18.issue-4. |
| [41] | Sureshkumar KK, Hussain SM, Marcus RJ, et al. Proteasome inhibition with bortezomib:an effective therapy for severe antibody mediated rejection after renal transplantation[J]. Clin Nephrol, 2012, 77(3): 246-253. DOI: 10.5414/CN107156. |
| [42] | Nguyen S, Gallay B, Butani L. Efficacy of bortezomib for reducing donor-specific antibodies in children and adolescents on a steroid minimization regimen[J]. Pediatr Transplant, 2014, 18(5): 463-468. DOI: 10.1111/petr.2014.18.issue-5. |
| [43] | Jordan SC, Tyan D, Stablein D, et al. Evaluation of intravenous immunoglobulin as an agent to lower allosensitization and improve transplantation in highly sensitized adult patients with end-stage renal disease:report of the NIH IG02 trial[J]. J Am SocNephrol, 2004, 15(12): 3 256-3 262. |
| [44] | Vo AA, Lukovsky M, Toyoda M, et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation[J]. N Engl J Med, 2008, 359(3): 242-251. DOI: 10.1056/NEJMoa0707894. |
| [45] | Montgomery RA, Warren DS, Segev DL, et al. HLA incompatible renal transplantation[J]. Curr Opin Organ Transplant, 2012, 17(4): 386-392. DOI: 10.1097/MOT.0b013e328356132b. |
| [46] | Terasaki PI, Cai J. Human leukocyte antigen antibodies and chronic rejection:from association to causation[J]. Transplantation, 2008, 86(3): 377-383. DOI: 10.1097/TP.0b013e31817c4cb8. |
| [47] | Campos EF, Tedesco-Silva H, Machado PG, et al. Post-transplant anti-HLA class Ⅱ antibodies as risk factor for late kidney allograft failure[J]. Am J Transplant, 2006, 6(10): 2 316-2 320. DOI: 10.1111/ajt.2006.6.issue-10. |
| [48] | Willicombe M, Brookes P, Sergeant R, et al. De novo DQ donor-specific antibodies are associated with a significant risk of antibody-mediated rejection and transplant glomerulopathy[J]. Transplantation, 2012, 94(2): 172-177. DOI: 10.1097/TP.0b013e3182543950. |
| [49] | Freitas MC, Rebellato LM, Ozawa M, et al. The role of immunoglobulin-G subclasses and C1q in de novo HLA-DQ donor-specific antibody kidney transplantation outcomes[J]. Transplantation, 2013, 95(9): 1 113-1 119. DOI: 10.1097/TP.0b013e3182888db6. |
| [50] | Devos JM, Gaber AO, Teeter LD, et al. Intermediate-term graft loss after renal transplantation is associated with both donor-specific antibody and acute rejection[J]. Transplantation, 2014, 97(5): 534-540. DOI: 10.1097/01.TP.0000438196.30790.66. |
| [51] | Montgomery RA, Zachary AA, Racusen LC, et al. Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients[J]. Transplantation, 2000, 70(6): 887-895. DOI: 10.1097/00007890-200009270-00006. |
| [52] | Gloor J, Stegall MD. Sensitized renal transplant recipients:current protocols and future directions[J]. Nat Rev Nephrol, 2010, 6(5): 297-306. DOI: 10.1038/nrneph.2010.34. |
| [53] | Fidler S, Swaminathan R, Lim W, et al. Peri-operative third party red blood cell transfusion in renal transplantation and the risk of antibody-mediated rejection and graft loss[J]. Transpl Immunol, 2013, 29(1-4): 22-27. DOI: 10.1016/j.trim.2013.09.008. |
| [54] | Scornik JC, Bromberg JS, Norman DJ, et al. An update on the impact of pre-transplant transfusions and allosensitization on time to renal transplant and on allograft survival[J]. BMC Nephrol, 2013, 14: 217-219. DOI: 10.1186/1471-2369-14-217. |
| [55] | Riethmüller S, Ferrari-Lacraz S, Müller MK, et al. Donor-specific antibody levels and three generations of crossmatches to predict antibody-mediated rejection in kidney transplantation[J]. Transplantation, 2010, 90(2): 160-167. DOI: 10.1097/TP.0b013e3181e36e08. |
| [56] | Loupy A, Suberbielle-Boissel C, Hill GS, et al. Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies[J]. Am J Transplant, 2009, 9(11): 2 561-2 570. DOI: 10.1111/ajt.2009.9.issue-11. |
2016, Vol. 37
