间充质干细胞(mesenchymal stem cells, MSCs)是一种来源于中胚层的多潜能细胞,可在体外进行自我扩增和分化,最早从骨髓中分离得到。随后研究发现,MSCs可从多种组织(如脐带血、骨小梁、骨膜、滑膜、胎盘、胰腺、脂肪组织、皮肤和胸腺)中提取获得。MSCs具有多向分化潜能及归巢、免疫调节等多项功能,在多种疾病中可作为种子细胞参与组织与器官的再生和重建[1]。然而随着年龄的增加,MCSs的数量和功能会相应下降,打破组织动态平衡,从而影响机体生物学功能、降低应激反应性,最终导致衰老和死亡。目前观点认为,引起MCSs衰老的原因与端粒缩短、DNA损伤、表观遗传学及其免疫学特性改变有关,但迄今为止,深入探讨其衰老的机制的研究不多,其原因可能与衰老MSCs的异质性而具有不同的表型标记有关。此外,调控MSCs衰老过程中的基因及信号通路的研究也较少,而了解其分子机制和过程对于理解和干预MSCs与年龄相关的功能障碍的驱动和效应因素具有关键作用,可减缓或逆转与年龄相关的退行性变,以提高修复过程和维持老化组织的健康功能。
1 MSCs衰老的表现 1.1 形态学和生物学行为变化MSCs衰老的典型表征包括细胞周期停滞在G1期。透射电镜观察下,衰老的MSCs细胞核中细胞碎片聚集和颗粒细胞胞质堆积,其形态通常变扁平或肥大,胞内肌动蛋白过剩,线粒体数量减少、内质网扩张且表面附着力降低。由于脂褐质的聚集,衰老MSCs的荧光表达往往增强[2]。单细胞凝胶电泳结果显示未受损的单个MSCs细胞只有圆形荧光头部,无彗星样尾部,在衰老MSCs中则常出现DNA断裂损伤,有拖尾现象[3]。
1.2 表型变化MSCs细胞表面CD29、CD44、CD37、CD90、CD105、CD166等抗原呈阳性,而CD14、CD34、CD45、CD235a及T或B淋巴细胞的表面标记等造血谱系分子表达均为阴性[4]。但这些标志物在早代、年轻或晚代的衰老MSCs中的表达并无明显差异,提示这些标志物的价值仅限于鉴定MSCs的基本特性[5]。而当表面标志物Stro-1出现时,其它阳性或阴性抗原才可被认为标记衰老状态[6]。经长期培养和多次传代后的MSCs中CD106(VCAM-1)和CD146(MCAM)表达下调。此外,CD106在MSCs分化成脂肪细胞、成骨细胞或软骨后表达强烈下调,这提示CD106可作为MSCs尚未分化的分子标记物[7]。研究发现CD295在细胞老化时表达增多,提示其可能具有标记凋亡细胞的能力[8]。以上研究表明,MSCs的分子标志物可分为两类:一类包括稳定表达的分子如CD37、CD90和CD105,其特征是表达量不根据传代情况和细胞年龄状况而改变; 另一类如Stro-1和CD106等,其表达量受移植供体、传代或其它变量如细胞种植密度、细胞归巢或黏附特性影响。
1.3 MSCs衰老的检测成纤维细胞的集落形成单位(colony-forming unit-fibroblast, CFU-F)检测可用于评价MSCs增殖及培养后的分化潜力。将MSCs低密度地种在培养皿上,以保证其贴壁和增殖。克隆的数量体现了细胞的增殖能力。早代的MSCs比多次传代后的MSCs具有更好的集落效率[9],而衰老MSCs的CFU-F数量较小。衰老标志物β-半乳糖苷酶(β-galactosidase, SA-β-gal)被广泛应用于衰老细胞的测定,在衰老过程中,β-半乳糖苷酶检测呈阳性的MSCs比例明显增加,这可能与衰老MSCs中溶酶体活性增加及胞内pH值改变有关[10]。α-L-岩藻糖苷酶(lysosomal α-L-fucosidase, SA-α-Fuc)也可作为MSCs的衰老标志物,它可以反映细胞复制、DNA损伤和癌基因诱导所致的衰老。其与SA-β-gal相比,SA-α-Fuc可更稳定和灵敏地反映转录和酶水平[11]。
2 衰老MSCs分化潜能改变的影响因素 2.1 MSCs向成骨细胞分化MSCs具有高度扩增和多向分化的潜能,该过程受大量转录因子和信号通路调控。CCAAT/增强子结合蛋白(enhancer binding protein, C/EBP)和过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor γ, PPARγ)可促进MSCs向脂肪分化,Runt相关转录因子/核心结合因子α1(RUNX2/CBFA1)可介导成骨细胞转录,这些因子还影响细胞间互斥作用[12]。研究表明PI3K-AKT通路可介导RUNX2/CBFA1(一种成骨细胞活化剂和成骨标志物的成骨/软骨细胞谱系的重要转录因子)的表达,其表达随着年龄的增长而降低[13],这与衰老MSCs的成骨活性和骨形成效率的退化相符。核因子-κB受体配体(nuclear factor-κB ligand, RANKL)在破骨细胞的分化和维持中起着重要作用,其在晚代的MSCs中呈高表达。转化生长因子(transforming growth factor-β, TGF-β/SMAD3)信号通路是成骨细胞分化的关键通路,并可诱导细胞外调节蛋白激酶(ERK)磷酸化,而ERK抑制剂则被发现能抑制由TGF-β诱导的MSCs成骨分化过程[14]。瘦素是一种重要的旁分泌信号因子,能调节成骨、脂肪细胞和MSCs间的分化,且与年龄息息相关。其能促进MSCs向成骨细胞的增殖分化,并抑制脂肪细胞的分化倾向[15]。
2.2 MSCs向脂肪细胞分化MSCs分化成脂肪细胞的分化潜能通常不改变,而晚代的MSCs分化潜能逐渐呈降低趋势。PPARγ是一种脂肪细胞特异性转录因子,可诱导不同的靶基因参与脂质代谢和脂肪细胞分化。研究发现,随着年龄的增长,PPARγ表达逐渐降低,而受损的PPARγ和C/EBP将影响MSCs的分化命运。Wnt /β-catenin信号通路被报道可抑制C/EBP和PPARγ,因此被认为可以调控骨和脂肪细胞生成[16]。研究报道[17],胰岛素诱导的AKT磷酸化可抑制FOXO3表达并激活PPARγ,并促进MSCs分化为脂肪细胞。此外,胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)能上调成骨细胞的活性和特异性标志物mRNA的表达,碱性磷酸酶(alkaline phosphatase,ALP)和钙的矿化,同时能抑制PPARγ、脂蛋白脂肪酶(lipoprotein lipase, LPL)和脂肪细胞蛋白-2(adipocyte protein-2, AP-2)的表达。
3 MSCs衰老的机制及影响途径 3.1 端粒降解海弗利克极限(Hayflick limit)揭示了初级成纤维细胞的培养表现出有限的增殖能力,导致这种现象的原因可能与DNA损伤累计导致的渐进性端粒侵蚀有关。老化过程中端粒酶每年缩短17 bp,该现象在细胞的一生中持续存在[18]。早代的MSCs平均端粒长度取决于组织供者的年龄,胎组织提取的MSCs端粒长度约为10-11 kb,而出生后组织提取的MSCs端粒长度约为7 kb。当MSCs脱离细胞周期时,端粒长度约为5.8-10.5 kb,且DNA损伤发生在DNA端粒的末端[19]。端粒酶可阻止端粒侵蚀并诱导端粒在染色体末端恢复连续丢失的重复序列TTAGGG片段。但MSCs的端粒酶在整个细胞寿命期间无法被检测到,其作用可能与端粒酶抑制剂p53(56)和TGF-β1有关[20]。尽管端粒缩短是细胞衰老的一个标志,但其长度可因供体不同而存在差异,故端粒长度不是衡量MSCs衰老的可靠指标。
3.2 表观遗传学改变DNA甲基化作为表观遗传调控的重要机制之一,通过选择性地将甲基添加到基因组DNA序列中特定的区域,从而增加DNA稳定性并引起基因沉默。MSCs中DNA的甲基化的状态可有效监测MSCs的衰老,其通过与转录因子或甲基结合蛋白作用,导致各自启动子区的沉默[21]。组蛋白乙酰化与DNA甲基化之间的相关性表明组蛋白乙酰化可能影响DNA的甲基化。研究表明,DNA甲基转移酶(DNA methyltransferases, DNMTs)可调节多梳蛋白(polycomb)介导的组蛋白乙酰化和甲基化模式[22]。在MSCs不断衰老的过程中,DNMT1和DNMT3B的表达随之显著下降,导致DNA甲基化水平减弱,即所谓的“低甲基化”(hypomethylation),为衰老细胞的明显特征。然而DNMT3a的表达却在该过程中明显增加,并参与衰老相关的新的甲基化[22, 23]。DNMT抑制剂(如5-氮杂胞苷)可上调细胞周期相关激酶(cyclin-dependent kinase, CDK)抑制因子p16INK4a/CDKN2A、p21CIP1/WAF1和EZH1靶向的miRNAs,并促使MSCs衰老[24]。
组蛋白脱乙酰基酶类(Histone deacetylases, HDACs)可催化乙酰基从ε-氨基在组蛋白尾部的赖氨酸残基上脱除,其可作为转录因子通过染色质乙酰化和脱乙酰化来调节干细胞特性[25]。MSCs老化和组蛋白H3乙酰化在K9和K14上发生表观遗传失调引起乱序分化,但不影响启动子位点的甲基化。在MSCs衰老的过程中,HDAC抑制剂被发现可下调多梳基因(polycomb group genes, PcGs),包括BMI1、EZH2和SUZ12[26]。同时,HDAC抑制剂也能激活一组microRNA(miRNAs)(let-7al, let-7d, let-7fl, miR-23a, miR-26A和miR-30a)并在miRNA和RNA聚合酶编码区附近改变组蛋白修饰模式,而被激活的miRNAs则强烈抑制高迁移率族蛋白A2(high mobility group A2, HMGA2)的转录,从而调节细胞衰老相关基因如p16INK4a/CDKN2A[27]。此外,去乙酰化酶1(Sirtuin 1, SIRT1),一种NAD+依赖的蛋白去乙酰化酶,可预防许多与衰老有关疾病。而研究发现[28],SIRT1在衰老MSCs中表达量减少,同时其过表达则能延缓衰老的发生和分化能力的减弱。
3.3 特异性基因表达位于染色体9p21的INK4a/ARF编码两种肿瘤抑制蛋白p16INK4a/CDKN2A和p14/p19ARF,在大多数哺乳动物组织中与生长停滞相关[29]。在MSCs中,p16INK4a/CDKN2A阳性的细胞表现出明显生长迟缓和SA-β-gal的活性增强。此外,实验证明了衰老MSCs转染p16INK4a/CDKN2A后呈现出衰老延缓和细胞增殖能力增加[30],提示p16INK4a/CDKN2A是MSCs衰老的重要调节器。
HMGA2基因编码的蛋白质属于非组蛋白染色体HMGA蛋白家族,在短序列中表现出高度的短亲和性,HMGA2过表达能激活细胞增殖相关因子如细胞周期蛋白A、F、E1和CD25A[31],它也能诱导Akt磷酸化和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)及其下游(mTOR)/p70S6K通路,与细胞生长和增殖相关。HMGA2的表达随着MSCs的老化而减少,但p16INK4a/CDKN2A, p19ARF, p21CIP1/WAF1和p27KIP1的表达却随之增多[32]。
RB编码的RB蛋白可通过结合E2F并抑制其活性来调控细胞周期从G1期到S期,其机制可能为RB蛋白通过影响DNA甲基化并上调DNMT1来调控MSCs的状态[33],而RB基因的敲除则能导致其衰老[34]。因此我们可以认为RB基因参与了MSCs的衰老和活性变化。
3.4 免疫学特性许多细胞因子和生长因子都由MSCs分泌,包括白细胞介素-1(IL-1)、IL-3、IL-4、IL-6、IL-8、IL-17,表皮生长因子(epidermal growth factor, EGF),成纤维细胞生长因子(fibroblast growth factors-2, FGF-2)、FGF-4和FGF8,肝细胞生长因子(hepatocyte growth factor, HGF)等[35]。这些因子被称为衰老相关分泌表型(senescence-associated secretory phenotype, SASP)因子,影响着MSCs的衰老进程。此外,SASP介导的炎症因子也与炎症过程相关。在炎性环境中,肿瘤坏死因子(tumor necrosis factor-α, TNF-α)和干扰素(interferon-γ, IFN γ)呈高水平,MSCs被Toll样受体-4(Toll like receptor, TLR-4)激活,并通过分泌可溶性因子如IDO、PGE2、NO、TGF-β、HGF和HO而呈现免疫抑制表型[36]。此外,TNF-α和IFN-γ激活衰老MSCs中CD106表达。血红素合酶-1(hemeoxygenase, HO-1)可催化血红素生成CO和胆绿素(Biliverdin)并促进MSCs的成骨分化,同时抑制其向脂肪分化[37]。
外源性的TGF-β能触发MSCs的衰老,同时激活p16INK4a和p21CIPI。衰老MSCs的基因表达谱分析表明TGF-β以剂量依赖的方式增加,这与Smad-3(一种TGF-β的主要信号分子)表达上调相符。而抑制TGF-β受体信号则能促进未分化MSCs的增殖[38]。
4 MSCs抗衰老作用的机制及其永生化探讨为了更好地将MSCs应用于临床治疗,我们必须通过调节特定因素影响MSCs老化过程相关的微环境从而使MSCs在大量增殖的同时不影响其分化和免疫调节特性。许多衰老抑制因子在损伤反应或抗氧化应激中起作用并参与调节细胞寿命,这些抑制因子在MSCs中过度表达时,能诱导增殖潜能并延缓衰老,在一定程度上值得我们利用。在MSCs中引入端粒酶亚单位(hTERT)可使其增殖寿命大幅度增加,同时能保留正常核型、延长端粒和衰老表型,而不影响分化能力。几种小分子化合物,如阿司匹林、维生素C和FGF-2,已被证实能激活细胞内端粒酶从而实现上述效果,具有改善MSCs增殖和成骨分化研究的潜力[39]。然而,因其存在微小但可能存在的恶性转化风险,目前尚不能在临床使用。细胞遗传工程也是防止MSCs老化的一种可能途径,MSCs中p16INK4a/CDKN2A基因的敲除或RB基因的沉默能促进细胞增殖克隆和延缓衰老。然而,这些肿瘤抑制基因的敲除或沉默将破坏MSCs的分化潜能并增加肿瘤发生的风险。敲除或沉默miR-195能显著激活hTERT、AKT磷酸化和FOXO-3的表达,并促进已衰老MSCs中端粒的再延长[40]。选择性生长因子也可被用作维持MSCs的自我更新和分化,研究报道[41]外源性FGF-2、PDGF和EGF的使用也可促进MSCs的增殖并延缓其衰老。
5 总结与展望近年的研究表明,MSCs在再生医学中的治疗应用前景十分广阔。然而MSCs的增殖和功能活性在与年龄相关的衰老过程中注定下降,这一特性阻碍了其临床应用。基于MSCs衰老的不同机制及其影响各个功能的途径复杂,更确切的机制还需进一步动物、临床前和临床研究加以证实。本文主要总结了MSCs衰老的表现和组织学指标可用来评估MSCs衰老的程度。而DNA损伤、蛋白质损伤和线粒体功能障碍则导致衰老的内在过程,包括HDAC和DNA甲基转移酶的改变,端粒和端粒酶的失衡,基因和信号通路,以及分泌表型和免疫因子的改变。因此,今后的研究不仅要对MSCs衰老的分子机制进行进一步探索,更要针对延缓或逆转MSCs的衰老过程及功能减退进行研究,以期为MSCs更好地应用于临床提供理论基础。
[1] | Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update[J]. Cell Transplantation, 2016, 25(5): 829-848. DOI: 10.3727/096368915X689622. |
[2] | Ghaneialvar H, Soltani L, Rahmani HR, et al. Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes[J]. Indian Journal of Clinical Biochemistry, 2018, 33(1): 46-52. DOI: 10.1007/s12291-017-0641-x. |
[3] | Awasthi KK, Awasthi A, Verma R, et al. Silver nanoparticles and carbon nanotubes induced DNA damage in mice evaluated by single cell gel electrophoresis[J]. Macromolecular Symposia, 2016, 357(1): 210-217. |
[4] | Mafi P, Hindocha S, Mafi R, et al. Adult mesenchymal stem cells and cell surface characterization - a systematic review of the literature[J]. Open Orthopaedics Journal, 2011, 5(Suppl 2): 253-260. |
[5] | Yu Y, Park YS, Kim HS, et al. Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: role for CCN1 in replicative senescence-associated increase in osteogenic differentiation[J]. Journal of Anatomy, 2015, 225(5): 510-518. |
[6] | Ali DN, Seyed-Mojtaba H, Bita T, et al. Identification of mesenchymal stem cell marker STRO-1 in oral reactive lesions by immunofluorescence method[J]. Journal of Dentistry, 2015, 16(3 Suppl): 246-250. |
[7] | Lu S, Ge M, Zheng Y, et al. CD106 is a novel mediator of bone marrow mesenchymal stem cells via NF-κB in the bone marrow failure of acquired aplastic anemia[J]. Stem Cell Research & Therapy, 2017, 8(1): 178. |
[8] | Laschober GT, Brunauer R, Jamnig A, et al. Leptin receptor/CD295 is upregulated on primary human mesenchymal stem cells of advancing biological age and distinctly marks the subpopulation of dying cells[J]. Experimental Gerontology, 2009, 44(1-2): 57-62. DOI: 10.1016/j.exger.2008.05.013. |
[9] | Páll E, Florea A, Soriȶǎu O, et al. Comparative assessment of oral mesenchymal stem cells isolated from healthy and diseased tissues[J]. Microscopy & Microanalysis, 2015, 21(5): 1 249-1 263. |
[10] | Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells[J]. Bone, 2003, 33(6): 919-926. DOI: 10.1016/j.bone.2003.07.005. |
[11] | Venugopal A, Sudheer KC, Siva KN, et al. Kinetic and biophysical characterization of a lysosomal α-l-fucosidase from the fresh water mussel, Lamellidens corrianus[J]. International Journal of Biological Macromolecules, 2017, 104(Pt A): 432-441. |
[12] | Cavaliere F, Donno C, D'Ambrosi N. Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation[J]. Frontiers in Cellular Neuroscience, 2015, 9: 211. |
[13] | Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review[J]. Stem Cells & Development, 2015, 24(10): 1 150-1 163. |
[14] | Tu B, Peng ZX, Fan QM, et al. Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway[J]. Experimental Cell Research, 2014, 320(1): 164-173. DOI: 10.1016/j.yexcr.2013.10.013. |
[15] | Skalska U, Kontny E. Adiponectin isoforms and leptin impact on rheumatoid adipose mesenchymal stem cells function[J]. Stem Cells Int, 2016, 2016: 6532860. |
[16] | Xu C, Wang J, Zhu T, et al. Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation[J]. Current Stem Cell Research & Therapy, 2016, 11(3): 247-254. |
[17] | Lee HM, Joo BS, Lee CH, et al. Effect of glucagon-like peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes[J]. Journal of Menopausal Medicine, 2015, 21(2): 93-103. DOI: 10.6118/jmm.2015.21.2.93. |
[18] | Hwang ES. Senescence suppressors: their practical importance in replicative lifespan extension in stem cells[J]. Cellular & Molecular Life Sciences Cmls, 2014, 71(21): 4 207-4 219. |
[19] | Trivanovi D, Jaukovi A, Popovi B, et al. Mesenchymal stem cells of different origin: Comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression[J]. Life Sciences, 2015, 141: 61-73. DOI: 10.1016/j.lfs.2015.09.019. |
[20] | Zhao Q, Wang XY, Yu XX, et al. Expression of human telomerase reverse transcriptase mediates the senescence of mesenchymal stem cells through the PI3K/AKT signaling pathway[J]. International Journal of Molecular Medicine, 2015, 36(3): 857-864. DOI: 10.3892/ijmm.2015.2284. |
[21] | Fu G, Ren A, Qiu Y, et al. Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells[J]. Current Stem Cell Research & Therapy, 2016, 11(3): 235-246. |
[22] | Lee S, Kim HS, Roh KH, et al. DNA methyltransferase inhibition accelerates the immunomodulation and migration of human mesenchymal stem cells[J]. Scientific Reports, 2015, 5: 8 020. DOI: 10.1038/srep08020. |
[23] | Lee CW, Huang WC, Huang HD, et al. DNA Methyltransferases modulate hepatogenic lineage plasticity of mesenchymal stromal cells[J]. Stem Cell Reports, 2017, 9(1): 247-263. DOI: 10.1016/j.stemcr.2017.05.008. |
[24] | Larque AB, Conde L, Hakim S, et al. p16 INK4a overexpression is associated with CDKN2A mutation and worse prognosis in HPV-negative laryngeal squamous cell carcinomas[J]. Virchows Arch, 2015, 466(4): 375-382. DOI: 10.1007/s00428-015-1725-8. |
[25] | Sengupta N, Seto E. Regulation of histone deacetylase activities[J]. Journal of Cellular Biochemistry, 2004, 93(1): 57-67. DOI: 10.1002/(ISSN)1097-4644. |
[26] | Ahmadvand M, Noruzinia M, Soleimani M, et al. Comparison of expression signature of histone deacetylases(HDACs) in mesenchymal stem cells from multiple myeloma and normal donors[J]. Asian Pacific Journal of Cancer Prevention Apjcp, 2016, 17(7): 3 605-3 610. |
[27] | Lee S, Jung JW, Park SB, et al. Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging[J]. Cellular & Molecular Life Sciences, 2011, 68(2): 325-336. |
[28] | Zhou L, Chen X, Liu T, et al. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells[J]. Journal of Tissue Engineering & Regenerative Medicine, 2018, 12(2): e1 008-e1 021. |
[29] | Revess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16[J]. International journal of cancer, 2012, 130(8): 1 715-1 725. DOI: 10.1002/ijc.v130.8. |
[30] | Feng X, Xing J, Feng G, et al. p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response[J]. Mechanisms of Ageing & Development, 2014, 141-142: 46-55. |
[31] | Xie H, Wang J, Jiang L, et al. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells[J]. Toxicology in vitro, 2016, 34(16): 146-152. |
[32] | Yu KR, Park SB, Jung JW, et al. HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway[J]. Stem Cell Research, 2013, 10(2): 156-165. DOI: 10.1016/j.scr.2012.11.002. |
[33] | Lin SP, Chiu FY, Wang Y, et al. RB maintains quiescence and prevents premature senescence through upregulation of DNMT1 in mesenchymal stromal cells[J]. Stem Cell Reports, 2014, 3(6): 975-986. DOI: 10.1016/j.stemcr.2014.10.002. |
[34] | Alessio N, Bohn W, Rauchberger V, et al. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells[J]. Cellular & Molecular Life Sciences, 2013, 70(9): 1 637-1 651. |
[35] | Rodier F, Campisi J. Four faces of cellular senescence[J]. The Journal of cell biology, 2011, 192(4): 547-556. DOI: 10.1083/jcb.201009094. |
[36] | Snyder J, Rin SA, Hamid Q, et al. Mesenchymal stem cell printing and process regulated cell properties[J]. Biofabrication, 2015, 7(4): 044-106. |
[37] | Wu B, Song HL, Yang Y, et al. Improvement of liver transplantation outcome by heme oxygenase-1-transduced bone marrow mesenchymal stem cells in rats[J]. Stem Cells International, 2016, 2016: 9 235 073. |
[38] | Wu J, Niu J, Li X, et al. TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production[J]. BMC Developmental Biology, 2014, 14(1): 1-9. DOI: 10.1186/1471-213X-14-1. |
[39] | Farahzadi R, Mesbahnamin SA, Zarghami N, et al. L-carnitine effectively induces hTERT gene expression of human adipose tissue-derived mesenchymal stem cells obtained from the aged subjects[J]. International Journal of Stem Cells, 2016, 9(1): 107-114. DOI: 10.15283/ijsc.2016.9.1.107. |
[40] | Okada M, Kim HW, Matsuura K, et al. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase[J]. Stem Cells, 2016, 34(1): 148-159. DOI: 10.1002/stem.2211. |
[41] | Gharibi B, Hughes FJ. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells[J]. Stem Cells Translational Medicine, 2012, 1(11): 771-782. DOI: 10.5966/sctm.2010-0031. |