﻿ 膨胀波纹管在小井眼的安全应用工况模拟试验研究

Simulation and Experimental Study on the Safe Application Condition of Expandable Profile Liner in Slim Holes
TU Yulin, YANG Hongqi, HU Yanfeng, TAO Xinghua, LIU Xiaodan
Sinopec Research Institute of Petroleum Engineering, Beijing, 100101, China
Abstract: Although the expandable profile liner technology has been successfully applied to sealing collapsed coal seams and mudstones in inclined sections of slim holes and provides a new means to solve the formation collapse problem, the uncertainty of applicable working condition limits the widespread use of the technology.To determine the safe working conditions of expandable profile liner in slim holes and secure the application, the finite element method was used to simulate and analyze the influence factors for application of ϕ149.2 mm expandable profile liner in inclined sections.An expansion test of expandable profile liner was made in wellbore hole simulator to analyze the influence of borehole curvature and hole diameter on the application.Under same conditions, the greater the hole diameter was, the larger the diameter of the expanded liner wouldbe; the larger the borehole curvature was, the greater the Mises stress and the higher the ellipticity wouldbe.The results of the test and numerical analysis were consistent.The safe working conditions for the ϕ149.2 mm expandable profile liner were defined through analysis, thus the safe application could be guaranteed.
Key words: expandable profile liner     slim hole     inclined section     safe application     working condition     finite element method

1 有限元模拟分析模型

 图 1 ϕ149.2 mm膨胀波纹管有限元模型 Fig.1 Model of ϕ149.2 mm expandable profile liner
 图 2 膨胀波纹管管材的应力-应变曲线 Fig.2 Stress-strain curves of expandable profile liner

2 模拟结果分析

2.1 井径

 图 3 下入和膨胀过程中膨胀波纹管截面形状的变化 Fig.3 Cross section change of expandable profile liner during running and expansion
2.1.1 波谷处内径

 图 4 不同井径条件下膨胀波纹管波谷处内径与膨胀压力的关系 Fig.4 Relationship between the inner diameter at the trough of the expandable profile liner and the expansion pressure in different hole diameters
2.1.2 不圆度

 图 5 井径对膨胀波纹管不圆度的影响 Fig.5 Influence of hole diameter on ellipticity of expandable profile liner
2.2 井眼曲率 2.2.1 波谷处直径

 图 6 不同井眼曲率下波谷处内径与膨胀压力的关系 Fig.6 Relationship between the inner diameter at the trough of the profile liner and the expansion pressure in different borehole curvatures
2.2.2 不圆度

ϕ168.0 mm井眼中, 不同井眼曲率条件下膨胀波纹管膨胀后不圆度与膨胀压力的关系如图 7所示。从图 7可以看出, 井眼曲率一定时, 随膨胀压力增大, 不圆度逐渐减小。膨胀压力为0~15.0 MPa时, 在相同膨胀压力下, 井眼曲率对不圆度的影响较小; 膨胀压力大于15.0 MPa时, 井眼曲率为30.0°/30m时的不圆度较井眼曲率为10.0~20.0°/30m时大2.0%~2.6%。

 图 7 井眼曲率对膨胀波纹管不圆度的影响 Fig.7 Influence of borehole curvature on ellipticity of expandable profile liner

ϕ168.0 mm井眼中, 不同井眼曲率条件下膨胀波纹管的最大应力与膨胀压力的关系如图 8所示。从图 8可以看出, 井眼曲率为30.0°/30m时膨胀波纹管的最大Mises应力明显比井眼曲率为10.0~20.0°/30m时大。因此, 为了保障施工安全, 要将井眼曲率控制在20.0°/30m以内。

 图 8 井眼直径为168.0 mm时井眼曲率对最大应力的影响 Fig.8 Influence of borehole curvature on maximum stress with wellbore diameter of 168.0 mm
3 弯曲井筒内膨胀试验

 井筒编号 井眼曲率/((°)·(30m)-1) 段长/m 井斜角变化率/ ((°)·(30m)-1) 方位角变化率/((°)·(30m)-1) 1 30.0 10.00 30.0 0 2 30.0 10.00 24.0 69.6 3 30.0 10.00 18.0 171.5 4 30.0 10.00 20.1 90.0

 编号 井眼曲率/((°)·(30m)-1) 弯管通径/mm 膨胀压力/MPa 1 30.0 168.0 35.6 2 30.0 168.0 38.1 3 30.0 168.0 8.5 4 30.0 168.0 35.0

4 膨胀试验与数值模拟结果对比分析 4.1 试验1结果与数值模拟结果

 图 9 井斜角变化率为30.0°/30m时波谷处内径与膨胀压力的关系 Fig.9 Relationship between the inner diameter and expansion pressure when the rate of inclination change is 30.0°/30m
4.2 试验2结果与数值模拟结果

 图 10 井斜角变化率为24.0°/30m、方位角变化率为69.6°/30m时波谷处内径与膨胀压力的变化关系 Fig.10 Relationship between the inner diameter at the trough of the profile liner and expansion pressure when the rate of inclination change is 24.0°/30m and the rate of azimuth change is 69.6°/30m

4.3 试验4结果与数值模拟结果

 图 11 井斜角变化率为20.1°/30m、方位角变化率为90.0°/30m条件下内径与膨胀压力的关系 Fig.11 Relationship between the inner diameter and expansion pressure when the rate of inclination change is 20.1°/30m and the rate of azimuth change is 90°/30m

5 结论

1) 采用有限元法和试验方法分析了井径、井眼曲率对ϕ149.2 mm膨胀波纹管膨胀的影响规律, 试验结果和模拟分析结果一致性较好。

2) 通过对比试验结果和模拟分析结果, 确定了斜井段应用ϕ149.2 mm膨胀波纹管的安全工况条件。

3) 现场施工时应当在安全的工况范围内应用ϕ149.2 mm膨胀波纹管, 以保障施工安全。

 [1] 张建兵, 练章华, 贾应林. 采用膨胀套管技术优化复杂深井超深井下部井身结构[J]. 石油钻采工艺, 2008, 30(4): 1–4. ZHANG Jianbing, LIAN Zhanghua, JIA Yinglin. Optimization of bottom casing program of complicated deep and ultra-deepwells based on expandable casing techniques[J]. Oil Drilling & Production Technology, 2008, 30(4): 1–4. [2] 刘鹏, 夏柏如, 陶兴华, 等. 膨胀波纹管在大牛地气田定向井段的应用[J]. 石油钻探技术, 2017, 45(2): 61–67. LIU Peng, XIA Bairu, TAO Xinghua, et al. The application of solid expandable liners in directional well sections of the Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(2): 61–67. [3] 胥豪, 崔海林, 张玲, 等. 塔河油田膨胀管井钻井技术[J]. 石油钻采工艺, 2013, 35(4): 26–29. XU Hao, CUI Hailin, ZHANG Ling, et al. Expandable tubular drilling technology in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2013, 35(4): 26–29. [4] 胡彦峰, 涂玉林, 陶兴华. #981;149.2mm膨胀波纹管在塔河油田侧钻井的应用[J]. 石油机械, 2013, 41(1): 27–30. HU Yanfeng, TU Yulin, TAO Xinghua. Application of the ϕ149.2 mm expandable bellows in sidetracked wells of Tahe Oilfield[J]. China Petroleum Machinery, 2013, 41(1): 27–30. [5] 胡彦峰, 涂玉林, 汪胜武, 等. 膨胀波纹管技术降低钻井风险实践[J]. 西部探矿工程, 2011, 25(2): 91–94, 97. HU Yanfeng, TU Yulin, WANG Shengwu, et al. Expandable profiled liner technology minimized drilling risk[J]. West-China Exploration Engineering, 2011, 25(2): 91–94, 97. [6] 杨海波, 侯婷, 冯德杰, 等. 免钻式膨胀管补贴技术研究与现场试验[J]. 石油钻探技术, 2017, 45(5): 73–77. YANG Haibo, HOU Ting, FENG Dejie, et al. Research and field test of non-drilling plug expandable casing patching technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73–77. [7] 刘桂君. 膨胀波纹管封隔坍塌煤层技术在大牛地成功应用[J]. 西部探矿工程, 2016, 28(3): 80–81, 85. LIU Guijun. The expandable profile liner sealing instable coal formation technology is successfully applied in Daniudi Gas Field[J]. West-China Exploration Engineering, 2016, 28(3): 80–81, 85. [8] 张辉, 王锦昌, 王翔, 等. 膨胀波纹管技术在大斜度井易垮塌地层的应用[J]. 断块油气田, 2015, 22(3): 394–397. ZHANG Hui, WANG Jinchang, WANG Xiang, et al. Application of expandable convoluted tubing technique in easy collapsed formation of highly deviated well[J]. Fault-Block Oil & Gas Field, 2015, 22(3): 394–397. [9] 吴明畏, 张伟, 刘进余, 等. 可膨胀波纹管堵漏技术应用[J]. 石油矿场机械, 2013, 42(11): 72–75. WU Mingwei, ZHANG Wei, LIU Jinyu, et al. Expandable bellows plugging technology applied research[J]. Oil Field Equipment, 2013, 42(11): 72–75. DOI:10.3969/j.issn.1001-3482.2013.11.018 [10] 杨顺辉, 黄永洪, 陶兴华, 等. 可膨胀波纹管技术在韦15-19井的应用[J]. 石油钻探技术, 2007, 35(3): 55–57. YANG Shunhui, HUANG Yonghong, TAO Xinghua, et al. The application of expandable convoluted tubing technique in Well Wei 15-19[J]. Petroleum Drilling Techniques, 2007, 35(3): 55–57. [11] 刘鹏, 夏柏如, 程光明, 等. 膨胀波纹管端头整形装置的研制及应用[J]. 石油钻探技术, 2017, 45(3): 77–82. LIU Peng, XIA Bairu, CHENG Guangmin, et al. The development and application of restoration device for expandable profile liner ends[J]. Petroleum Drilling Techniques, 2017, 45(3): 77–82. [12] 胡彦峰, 涂玉林, 肖京男, 等. 提高膨胀波纹管挤毁强度的方法探讨[J]. 石油矿场机械, 2015, 44(2): 10–13. HU Yanfeng, TU Yulin, XIAO Jingnan, et al. Approach to improve the collapsing strength of the expandable bellow[J]. Oil Field Equipment, 2015, 44(2): 10–13. [13] 李虎, 段庆全, 朱冰冰, 等. 膨胀波纹管抗外挤强度的影响因素分析[J]. 焊管, 2017, 40(3): 1–4. LI Hu, DUAN Qingquan, ZHU Bingbing, et al. Influence factors analysis of expansion bellows collapse resistance strength[J]. Welded Pipe and Tube, 2017, 40(3): 1–4. [14] 刘晓丹, 张海平, 陶兴华. 热处理和振动时效复合法消除膨胀波纹管残余应力[J]. 热加工工艺, 2015, 44(6): 189–192. LIU Xiaodan, ZHANG Haiping, TAO Xinghua. Composition of heat treatment and vibratory stress relief on elimination of residual stress of expandable corrugated pipe[J]. Hot Working Technology, 2015, 44(6): 189–192. [15] 陶兴华, 朱宏武, 王镇全, 等. 膨胀波纹管胀管器结构设计与试验[J]. 石油机械, 2011, 39(7): 30–33. TAO Xinghua, ZHU Hongwu, WANG Zhenquan, et al. The structural design and experiment of the expandable bellows expander[J]. China Petroleum Machinery, 2011, 39(7): 30–33. [16] 陶兴华, 朱宏武, 张宏, 等. 波纹管成型及膨胀过程力学性能分析[J]. 石油机械, 2011, 39(3): 12–15. TAO Xinghua, ZHU Hongwu, ZHANG Hong, et al. An analysis of the mechanical properties of the forming and expansion process of the bellow[J]. China Petroleum Machinery, 2011, 39(3): 12–15. [17] 陈晓君, 宋刚, 孟庆鸿, 等. 小口径勘探用可膨胀波纹管ANSYS模拟与实验分析[J]. 探矿工程(岩土钻掘工程), 2014, 41(11): 37–40, 45. CHEN Xiaojun, SONG Gang, MENG Qinghong, et al. ANSYS simulation of expandable convoluted tubing for small diameter bore prospecting and experimental analysis[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2014, 41(11): 37–40, 45. DOI:10.3969/j.issn.1672-7428.2014.11.012 [18] 尹飞, 高宝奎, 张进, 等. 油井堵漏可膨胀波纹管的有限元分析[J]. 石油机械, 2012, 40(5): 66–69. YIN Fei, GAO Baokui, ZHANG Jin, et al. Finite element analysis of the expandable bellows for oil well plugging[J]. China Petroleum Machinery, 2012, 40(5): 66–69. [19] 郭慧娟, 王辉, 耿莉, 等. 可膨胀波纹管有限元分析与现场应用[J]. 石油机械, 2008, 36(9): 99–101. GUO Huijuan, WANG Hui, GENG Li, et al. Finite element analysis and field use of expandable bellows[J]. China Petroleum Machinery, 2008, 36(9): 99–101.

#### 文章信息

TU Yulin, YANG Hongqi, HU Yanfeng, TAO Xinghua, LIU Xiaodan

Simulation and Experimental Study on the Safe Application Condition of Expandable Profile Liner in Slim Holes

Petroleum Drilling Techniques, 2018, 46(2): 69-74.
http://dx.doi.org/10.11911/syztjs.2018034