﻿ 控压钻井自动分流管汇系统设计与数值模拟研究

Design and Numerical Simulation of an Automatic Diverter Manifold in Managed Pressure Drilling
XI Fengliang, XU Chaoyang, MA Jinshan, QI Jintao, XU Haichao
Drilling Technology Service Company, CNPC Bohai Drilling Engineering Co. Ltd., Tianjin, 300280, China
Abstract: Back-pressure compensation system in managed pressure drilling can be characterized by high cost and a large occupied drilling field site.Under such circumstances, an automatic diverting manifold system has been developed to replace the existing system.With its simple structure and high adaptability, the innovative automatic diverter manifold with different operation modes of single drilling pump, with dual pumps and large flow rates in conventional drilling operations which can satisfy the demands of different operation mode shifts in finely managed pressure drilling.A mathematical flow model for the innovative automatic diverter manifold system has been established based on mass conservation, momentum conservation and control over throttle valves, and the numerical flow method is used to solve the mathematical flow model.Both the fluid flow calculation results and computational fluid dynamics simulation results show that this automatic manifold system can control wellhead pressure within set pressure and meet the needs of fine pressure control drilling.
Key words: managed pressure drilling     diverter manifold     wellhead back pressure     pressure control

1 控压钻井自动分流管汇系统设计

1.1 自动分流管汇系统的结构

 图 1 控压钻井自动分流管汇系统结构示意 Fig.1 Schematic structure of an automatic diverter manifold in managed pressure drilling

1.2 电气自动控制系统 1.2.1 总体方案

1.2.2 电气自动控制系统的构成

 图 2 自动分流管汇电气自动控制系统原理 Fig.2 Operation principles of automatic control system for automatic diverter manifold
2 自动分流管汇系统工作流程

 图 3 带有自动分流管汇的精细控压钻井装备 Fig.3 Managed pressure drilling system with an automatic diverter manifold
2.1 正常控压钻进

2.2 起下钻或接卸单根

3 井口压力控制数值模拟 3.1 模型建立与数值求解

 图 4 控压钻井自动分流管汇的简化物理模型 Fig.4 Simplified physical model of automatic diverter manifold for managed pressure drilling

 (1)

 (2)

 (3)

3.2 计算结果 3.2.1 双泵工作模式

 图 5 双泵工作模式下井口压力随时间变化的计算结果 Fig.5 Numerical simulation results for variation of wellhead pressures versus time in dual-pump working mode

3.2.2 单泵工作模式

 图 6 单泵工作模式下井口压力随时间变化的计算结果 Fig.6 Numerical simulation results for variation of wellhead pressures versus time for single-pump working mode

3.3 计算流体动力学模拟

κ输运方程为：

 (4)
 (5)

ε输运方程为：

 (6)

 (7)

 图 7 节流管段物理模型 Fig.7 Physical model

 图 8 双泵工作模式井下口压力随时间变化的CFD模拟结果 Fig.8 CFD numerical simulation results for variation of wellhead pressures versus time in dual-pump working mode
 图 9 单泵工作模式下井口压力随时间变化的CFD模拟结果 Fig.9 CFD numerical simulation results for variation of wellhead pressures versus time in single-pump working mode
4 结论与建议

1) 设计了一种用于精细控压钻井的自动分流管汇系统。该管汇系统利用钻井泵代替回压补偿系统完成控压钻井的工况转换，具有双泵工作模式、单泵工作模式、常规钻井大排量模式等3种工作模式，适应能力强，结构简单。

2) 计算结果和CFD模拟结果表明，采用设计的自动分流管汇进行控压钻井，可将井口压力稳定控制在预设压力，能够满足控压钻井需求。

3) 模块化、通用化是目前钻井装备发展的趋势，应开展自动分流管汇的模块化设计，以及其模块化应用于不同方式控压钻井的研究。

4) 本文只是在理论上研究了自动分流管汇的工作性能，应进一步进行室内试验，并尽快研制出样机进行现场试验。

 [1] 周英操, 崔猛, 查永进. 控压钻井技术探讨与展望[J]. 石油钻探技术, 2008, 36(4): 1–4. ZHOU Yingcao, CUI Meng, ZHA Yongjin. Discussion and prospect of managed pressure drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 1–4. [2] 周英操, 杨雄文, 方世良, 等. PCDS-Ⅰ精细控压钻井系统研制与现场试验[J]. 石油钻探技术, 2011, 39(4): 7–12. ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Development and field test of PCDS-Ⅰ precise managed pressure drilling system[J]. Petroleum Drilling Techniques, 2011, 39(4): 7–12. [3] 伊明, 陈若铭, 杨刚. 控压钻井技术研究[J]. 新疆石油天然气, 2010, 6(4): 32–37. YI Ming, CHEN Ruoming, YANG Gang. Research on managed pressure drilling technology[J]. Xinjiang Oil & Gas, 2010, 6(4): 32–37. [4] 于水杰, 李根生, 罗洪斌, 等. MPD技术及UBD技术在钻井工程中的应用分析[J]. 西部探矿工程, 2009, 21(7): 89–92. YU Shuijie, LI Gensheng, LUO Hongbin, et al. Application analysis of MPD and UBD in drilling engineering[J]. West-China Exploration Engineering, 2009, 21(7): 89–92. [5] 彭明佳, 刘伟, 王瑛, 等. 精细控压钻井重浆帽设计及压力控制方法[J]. 石油钻采工艺, 2015, 37(4): 16–19. PENG Mingjia, LIU Wei, WANG Ying, et al. Design of heavy grout and pressure control method for fine pressure-control drilling[J]. Oil Drilling & Production Technology, 2015, 37(4): 16–19. [6] 向雪琳, 朱丽华, 单素华, 等. 国外控制压力钻井工艺技术[J]. 钻采工艺, 2009, 32(1): 27–30. XIANG Xuelin, ZHU Lihua, SHAN Suhua, et al. Foreign managed pressure drilling technology[J]. Drilling & Production Technology, 2009, 32(1): 27–30. [7] 孔祥伟, 林元华, 邱伊婕. 微流量控压钻井中节流阀动作对环空压力的影响[J]. 石油钻探技术, 2014, 42(3): 22–26. KONG Xiangwei, LIN Yuanhua, QIU Yijie. Effect of choke valve action on annular pressure with micro-flux control in MPD drilling[J]. Petroleum Drilling Techniques, 2014, 42(3): 22–26. [8] ROES V C, REITSMA D, SMITH L, et al. First deepwater application of dynamic annular pressure control succeeds[R]. SPE 98077, 2006. [9] GEORGR H M, PATRICK P B B. Reynolds distinct variations of managed pressure drilling exhibit application potential[J]. World Oil, 2006, 227(3): 41–44. [10] VIEIRA P, ARNONE M A, COOKI, et al. Constant bottomhole pressure:managed pressure drilling technique applied in an exploratory well in Saudi Arabia[R].SPE 113679, 2008. [11] 樊凯, 衣利杰, 王伟, 等. 控制压力钻井在委内瑞拉圣华金油田的应用[J]. 西部探矿工程, 2010, 22(11): 61–62, 66. FAN Kai, YI Lijie, WANG Wei, et al. Applications of MPD in the San Joaquin Oilfield of Venezuela[J]. West-China Exploration Engineering, 2010, 22(11): 61–62, 66. DOI:10.3969/j.issn.1004-5716.2010.11.020 [12] 宋荣荣, 孙宝江, 王志远, 等. 控压钻井气侵后井口回压的影响因素分析[J]. 石油钻探技术, 2011, 39(4): 19–24. SONG Rongrong, SUN Baojiang, WANG Zhiyuan, et al. Analysis of the influence factors of wellhead back pressure in managed pressure drilling after gas invasion[J]. Petroleum Drilling Techniques, 2011, 39(4): 19–24. [13] 张涛, 李军, 柳贡慧, 等. 控压钻井自动节流管汇压力调节特性研究[J]. 石油钻探技术, 2014, 42(2): 18–22. ZHANG Tao, LI Jun, LIU Gonghui, et al. Pressure regulation characteristics of automatic choke manifold in managed pressure drilling[J]. Petroleum Drilling Techniques, 2014, 42(2): 18–22. [14] NAS S W, GEDGE B G, NGUYEN V B. Advantages of managed pressure drilling and the recent deployment of the technology in Vietnam[R]. SPE 136513, 2010. [15] 宋周成, 何世明, 安文华, 等. 塔中62-27井控压钻井实践[J]. 钻采工艺, 2009, 32(2): 104–105. SONG Zhoucheng, HE Shiming, AN Wenhua, et al. Application of manage pressure drilling technology in Tazhong Well 62-27[J]. Drilling and Production Technology, 2009, 32(2): 104–105. [16] 彭明佳, 周英操, 郭庆丰, 等. 窄密度窗口精细控压钻井重浆帽优化技术[J]. 石油钻探技术, 2015, 43(6): 24–28. PENG Mingjia, ZHOU Yingcao, GUO Qingfeng, et al. Optimization of heavy mud cap in narrow density window precise managed pressure drilling[J]. Petroleum Drilling Techniques, 2015, 43(6): 24–28. [17] 中国石油大学(北京), 北京信息科技大学. 控压钻井的井口回压控制系统和井口回压控制方法: CN103256015B[P]. 2015-10-21. China University of Petroleum(Beijing), Beijing Information Science & Technology University. Control system and control method of wellhead back pressure of manage pressure drilling:CN103256015B[P]. 2015-10-21. http://www.cnki.com.cn/Journal/B-B2-HGBJ-2013-10.htm [18] 中国石油大学(华东), 金湖奥尔机械有限公司. 用于施加井口回压的双节流控制泥浆泵分流管汇及其方法: CN102828712B[P]. 2014-02-19. China University of Petroleum(Huadong), Jinhu Creole Machinery Company Limited. Double flow control mud pump diverter pipe manifold for applying wellhead back pressure and method thereof:CN102828712B[P]. 2014-02-19. [19] 中国石油天然气集团公司, 中国石油集团钻井工程技术研究院. 一种适应大流量变化的单节流通道控压钻井方法与装置: CN104100219B[P]. 2016-08-03. China National Petroleum Corporation, CNPC Drilling Engineering Technology Research Institute. A single throttling channel manage pressure drilling method and device suitable for large flow change:CN104100219B[P]. 2016-08-03. [20] 怀利E B, 斯特里特V L. 瞬变流[M]. 北京: 水利电力出版社, 1983: 35-105. WYLIE E B, STREETER V L. Transient flow[M]. Beijing: Water & Power Press, 1983: 35-105.

#### 文章信息

XI Fengliang, XU Chaoyang, MA Jinshan, QI Jintao, XU Haichao

Design and Numerical Simulation of an Automatic Diverter Manifold in Managed Pressure Drilling

Petroleum Drilling Techniques, 2017, 45(5): 23-29.
http://dx.doi.org/10.11911/syztjs.201705005