﻿ 螺杆驱动旋冲钻井工具设计及试验研究

1. 中国石油大学(华东)石油工程学院, 山东 青岛 266580;
2. 中国石化石油工程技术研究院, 北京 100101

The Design and Experimental Study of PDM Driven Rotary Percussion Drilling Tool
MA Guangjun1, 2, WANG Jiachang2, ZHANG Haiping2
1. School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, Shandong, 266580, China;
2. Sinopec Research Institute of Petroleum Engineering, Beijing, 100101, China
Abstract: In order to improve the efficiency of rock-breaking in drilling operation, a new type of mechanical rotary percussion drilling tool driven by PDM has been designed, which combined high-speed PDM with high-frequency percussion device. On basis of structural design, a calculation model with single-time percussion power, percussion frequency and other key parameters has been established for vertical wells, and converted into a model calculation and analysis. Calculation results showed that single-time percussion power is only a function of cam stroke and WOB. When the drill string assembly is determined and has a certain length of greater than 500 m, and is composed of drill pipe with the size of φ127.0 mm, a single percussion power is positively proportional to the WOB, thus the percussion power can be adjusted by changing the WOB. The engineering prototype testing showed that the newly developed tools had a suitable structure, which can make high-speed rotation and high-frequency percussion to the bit that driven by the PDM, it has the potential to further improve its wear resistance.
Key words: percussion tool    PDM    rotary percussion drilling    parameter design    percussion power    percussion frequency

1 工具基本结构

 图1 旋冲钻井工具基本结构 Fig.1 Basic structure of the rotary percussion drilling tool

 图2 圆柱凸轮沿基圆展开的轮廓线(2个周期) Fig.2 Expanded outline of the cylindrical cam along the base circle (two cycles)
2 冲击功与冲击频率的计算

2.1 冲击功的计算 2.1.1 钻柱轴向形变计算模型

 图3 直井钻柱受力变形示意 Fig.3 Schematic diagram of the deformation of the drill string under stresses in vertical wells

Δ式中：ΔLc1为钻铤位于低端时的压缩量,m；ΔLc2为钻铤位于高端时的压缩量,m；ΔLc为高、低点钻铤变形量之差，m；Ec为钻铤的弹性模量,Pa；qc为钻铤在钻井液中的线重,N/m；Ac为钻铤横截面积，m2Hc为钻铤长度，m；Δp为钻铤分别在高、低端时的钻压差，N。

2.1.2 冲击功计算模型

 图4 冲击功计算方法示意 Fig.4 Schematic diagram for the calculation of percussion power

2.2 冲击频率的计算

3 实例计算及分析

 井深/m 钻压差/kN 井深/m 钻压差/kN 10 3 584.4 60 597.4 20 1 792.2 70 512.1 30 1 194.8 80 448.1 40 896.1 90 398.3 50 716.9 100 358.4

 井深/m 钻杆长度/m 钻压差/kN 井深/m 钻杆长度/m 钻压差/kN 110 10 221.5 300 200 26.8 120 20 160.3 400 300 18.3 130 30 125.6 600 500 11.2 140 40 103.2 800 600 8.1 150 50 87.6 1 000 900 6.3 160 60 76.1 1 200 1 100 5.2 170 70 67.3 1 400 1 200 4.4 180 80 60.3 1 600 1 500 3.8 190 90 54.6 1 800 1 700 3.4 200 100 49.9 2 000 1 900 3.0

1) 井深为0~500 m时，钻柱分别在高、低端时的钻压差随着井深增加而迅速降低，井深大于500 m后逐渐趋于0。

2) 井深在100 m以内时，钻柱全部为钻铤，钻铤刚性大，若使钻铤发生10 mm变形，需要巨大推力。但因为钻柱顶部并非固定端约束，实际最大钻压只是钻铤的浮重，且实际钻井时，井深100 m以内一般为表层钻进，不会采用旋冲钻进方式，所以不会发生这种情况。

3) 井深大于100 m时，钻柱下部为100 m钻铤，上部为若干根钻杆，钻杆刚性相对较小，钻柱发生10 mm轴向变形所需要增加的推力随着钻杆长度的增加而迅速下降。因此当井深超过一定深度后，可以用钻压值乘以凸轮推程h，进行冲击功的简便计算。

4) 基于螺杆钻具驱动的新型机械式旋冲钻井提速工具不适合采用全部由大刚性钻铤组成的钻柱，至少需要加入长度100 m的127.0 mm钻杆(或特定数量的其他型号钻杆)，因此可以满足绝大部分直井的钻井要求。

 图5 不同钻压下冲击功与钻柱长度的关系 Fig.5 The relationship between percussion power and the length of drill string under different WOB

4 样机测试

 图6 不同排量下最大冲击力与钻压的关系曲线 Fig.6 Relationship between the maximum impact force and WOB at different flow rates

5 结 论

1) 新型机械式旋冲钻井工具以螺杆转动为驱动力，钻头能同时进行高速旋转与高频冲击，实现旋转和冲击联合破岩，达到提高钻速的目的。

2) 冲击功计算结果表明，钻柱结构确定时，单次冲击功仅是推程和初始钻压的函数，特别是当钻柱中存在足够数量钻杆时，冲击功与钻压值成正比，这一特性有助于在实际钻井过程中实时调整冲击功。

3) 工程样机测试结果表明，该工具能够将螺杆的部分旋转动力转化为往复冲击力，最大冲击力与钻压成线性关系，间接验证了冲击功计算模型的合理性。

4) 建立的冲击功计算模型适用于螺杆转速不高和直井钻井的情况，当转速较高时，钻柱纵向振动特性将影响冲击功的大小；另外，定向井及水平井中摩阻、扭矩也不能忽略，需要进一步研究这2种情况下的冲击功计算模型。

 [1] 黄仁山.油气工业可借鉴的冲击回转钻进技术[J].石油钻探技术,1996,24(4):18-20,64.HUANG Renshan.The percussion rotary drilling technique that can be learned by oil and gas industry[J].Petroleum Drilling Techniques,1996,24(4):18-20,64. [2] 付加胜,李根生,田守嶒,等.液动冲击钻井技术发展与应用现状[J].石油机械,2014,42(6):1-6.FU Jiasheng,LI Gensheng,TIAN Shouceng,et al.The current development and application of hydraulic percussion drilling technology[J].China Petroleum Machinery,2014,42(6):1-6. [3] 李广国,索忠伟,王甲昌,等.射流冲击器配合PDC钻头在超深井中的应用[J].石油机械,2013,41(4):31-34.LI Guangguo,SUO Zhongwei,WANG Jiachang,et al.Application of jet hammer and PDC bit in superdeep well[J].China Petroleum Machinery,2013,41(4):31-34. [4] 刘天科.自激振荡式旋转冲击钻井工具在胜利油田的应用[J].石油钻采工艺,2012,34(4):54-56.LIU Tianke.Application of self-oscillating rotary percussion drilling tools in Shengli Oilfield[J].Oil Drilling & Production Technology,2012,34(4):54-56. [5] 蒋宏伟,刘永胜,翟应虎,等.旋冲钻井破岩力学模型的研究[J].石油钻探技术,2006,34(1):13-16.JIANG Hongwei,LIU Yongsheng,ZHAI Yinghu,et al.Research on rock-crushing mechanics model in rotary and percussive drilling[J].Petroleum Drilling Techniques,2006,34(1):13-16. [6] 闫铁,李玮,毕雪亮,等.一种基于破碎比功的岩石破碎效率评价新方法[J].石油学报,2009,30(2):291-294.YAN Tie,LI Wei,BI Xueliang,et al.A new evaluation method for rock-crushing efficiency based on crushing work ratio[J].Acta Petrolei Sinica,2009,30(2):291-294. [7] 陶兴华.液动射流式冲击器工作数学模型的建立[J].石油钻探技术,2005,33(1):44-47.TAO Xinghua.A mathematic model of hydraulic percussion tool[J].Petroleum Drilling Techniques,2005,33(1):44-47. [8] 韩志勇.垂直井眼内钻柱的轴向力计算及强度校核[J].石油钻探技术,1995,23(增刊1):8-13,84.HAN Zhiyong.Study on axial force calculating and strength testing for drilling in vertical holes[J].Petroleum Drilling Techniques,1995,23(supplement 1):8-13,84. [9] 黄根炉,韩志勇.设计井眼中钻柱轴向变形分析与计算[J].石油钻探技术,1999,27(6):4-5.HUANG Genlu,HAN Zhiyong.Analysis and calculations of axial deformation of drill string in borehole plan[J].Petroleum Drilling Techniques,1999,27(6):4-5. [10] 李国华,鲍洪志,陶兴华.旋冲钻井参数对破岩效率的影响研究[J].石油钻探技术,2004,32(2):4-7.LI Guohua,BAO Hongzhi,TAO Xinghua.Effects of drilling conditions on crushing rocks while rotary percussion drilling[J].Petroleum Drilling Techniques,2004,32(2):4-7.

文章信息

MA Guangjun, WANG Jiachang, ZHANG Haiping

The Design and Experimental Study of PDM Driven Rotary Percussion Drilling Tool

Petroleum Drilling Techniques, 2016, 44(3): 50-54.
http://dx.doi.org/10.11911/syztjs.201603009