高级检索
  实用休克杂志  2019, Vol. 3Issue (4): 236-239  

引用本文 [复制中英文]

丁宁, 黄钰财, 李长罗. 甘油三酯在急性胰腺炎的流行病学及发病机制中的研究现状[J]. 实用休克杂志, 2019, 3(4): 236-239.
Ding Ning, Huang Yucai, Li Changluo. Epidemiology and Pathogenesis of Triglyceride in Acute Pancreatitis[J]. Journal of Practical Shock, 2019, 3(4): 236-239.

通信作者

李长罗, E-mail:doctordingning@sina.com

文章历史

收稿日期:2019-06-07
甘油三酯在急性胰腺炎的流行病学及发病机制中的研究现状
丁宁 , 黄钰财 , 李长罗     
湖南省长沙市中心医院急诊科
摘要:急性胰腺炎(acute pancreatitis,AP)是常见的消化系统疾病,其中20%~30%可发展成重症急性胰腺炎。高甘油三酯血症(hypertriglyceride,HTG)是急性胰腺炎的危险因素之一,也与急性胰腺炎的预后有着密切的相关性。近年来,很多回顾性及前瞻性的研究,揭示了不同水平的甘油三酯(triglyceride,TG)对AP临床过程的影响。然而,目前尚无统一明确的TG水平阈值一定能导致AP的发生。有关TG导致AP的发生机制较多,并受基因、代谢、环境和个体差异的影响,但具体机制尚不特别明确,值得进一步探讨。
关键词急性胰腺炎    甘油三酯    流行病学    发病机制    
Epidemiology and Pathogenesis of Triglyceride in Acute Pancreatitis
Ding Ning , Huang Yucai , Li Changluo     
Emergency Department of Changsha, Central Hospital in Hunan Province, Changsha, China
Abstract: Acute pancreatitis(AP) is one of digestive disorders, in which 20%~30% may develop into severe acute pancreatitis. Hypertriglyceridemia (HTG) is one of risky factors of pancreatitis, which it is also closely related to the prognosis of AP. Recently, many retrospective and perspective studies have reported an effect of different levels of TG on the clinical course of AP. However, there is still no consensus on a definite threshold of TG level which clearly leads to AP.Pathogenesis of TG leading to AP probably are related to the many factors, which is still not very clear and it may be affected by genes, metabolism, environment and individual differences which needs further research.
Key words: Acute pancreatitis    Triglyceride    Epidemiology    Pathogenesis    

急性胰腺炎(acute pancreatitis,AP)是常见的消化系统疾病之一,在我国目前其发病率约1%,而20~30%的AP可发展成为重症急性胰腺炎(severe acute pancreatitis,SAP),常出现局部和全身并发症,预后差[1, 2]

目前研究表明,高甘油三酯血症(hypertriglyceride, HTG)是胰腺炎的危险因素之一,也是心脑血管疾病和全因死亡率的危险因素[3]。根据内分泌学会临床实践指南,HTG通常指甘油三酯(triglyceride,TG)水平≥1.7mmol/L[4]。而有关于严重HTG的水平,在不同的指南之间有少许差异,根据中国和美国的指南,11.3mmol/L(1 000mg/dL)是诊断严重HTG的阈值,而欧洲指南是10mmol/L(885mg/dL)[5~7]。严重HTG是胰腺炎的明确病因,也是AP预后的独立的预测指标之一[8]

一、流行病学研究

一项最新的荟萃分析报告显示,高甘油三酯血症性胰腺炎(hypertriglyceridemic acute pancreatitis,HTG-AP)的发病率逐渐上升,HTG是胰腺炎的第三大病因,约占所有AP的10%,仅次于胆道结石和酒精[9]。不同国家中HTG-AP发病率不同,我国约14.3%的AP患者有HTG的病史[10~12]。近年来,很多回顾性及前瞻性的研究,揭示了不同水平的TG对AP临床过程的影响。HTG与高脂肪酶水平有关,TG水平≥2mmol/L与普通人群AP的发病危险因素有相关性[13]。Tariq等研究结果显示,入院时TG水平≥2.26mmol/L是预测AP严重程度的独立危险因素[14]。1 539名AP患者在入院后72h内测得的TG水平,其中TG≥ 1.7 mmol/L可能与AP的严重程度和预后有关,包括与胰腺坏死、器官衰竭、持续性SIRS、ICU入院以及死亡率相关[15]。Murphy MJ.等对67 269名受试者进行的一项基于人群的研究显示,TG≥5.6mmol/L相关的AP的风险比(Hazard Ratio,HR)远高于与中度HTG(1.7~5.6mmol/L)相关的HR[16]。一项前瞻性队列研究对33346例普通人群的TG水平进行四分位数分析,并与发生AP的HR进行分析,AP发生风险与TG呈正相关, 而另一项1 233例AP患者的队列研究提示,TG水平≥5.6mmol/L时,患者的预后更差[17, 18]。TG的升高与任何器官衰竭独立相关,TG水平每升高100mg/dl,肾衰竭、休克和多器官功能衰竭的风险百分比均增加,TG水平升高与AP预后及复发亦有密切的相关性[19~21]。一项来自于北欧的115 000大规模人群研究表明,轻度至中度HTG(2~10mmol/L)可能通过低度的炎性反应导致AP的发生[22]

不同的研究得出与AP相关性的TG阈值均有差异,根据以往有关HTG-AP的相关文献,与AP相关的TG最低阈值可能为1.7mol/L[15]。然而,目前尚无统一明确的TG水平阈值一定能导致AP的发生,且有关于HTG-AP的诊断的最低血清TG水平也不一样。虽然AP患者的TG水平升高与AP严重程度、预后和复发风险增加具有一定的相关性,但迄今为止,由于缺乏大规模的随机对照干预试验,降低TG水平能否降低HTG患者发生AP的风险,以及对于AP患者来说,最有益的目标TG水平均尚不确定,需要更多的循证医学研究证据[23]

二、发病机制

关于TG导致AP的发生机制,目前尚不完全明确,主要的机制包括脂质毒性,钙超载,胰蛋白酶原激活,细胞自噬的受损及内质网应激等。

(一) 脂质毒性和钙超载

最普遍接受的理论是循环中过量的TG被胰腺脂肪酶水解成高水平的游离脂肪酸(Free Fatty Acid,FFA),并释放到胰腺的血管床中[24]。但是,TG如何触发胰腺脂肪酶将自身水解成FFA,以及脂肪酶在什么水平的情况才能水解循环中的TG,尚不清楚。

循环中快速增加的FFA水平有多种作用,它们损害微循环中的血小板和血管内皮,血液粘滞度增加,从而导致组织缺血及炎性反应的发生,最终损害胰腺腺泡细胞[25]。胰腺腺泡细胞受损越多,胰腺腺泡细胞产生的脂肪酶越多,越多的TG被水解成FFA,损伤更多的胰腺细胞。在HTG大鼠的动物实验研究中发现,随着FFA水平的升高,包括TNF和IL-6等在内的细胞因子水平升高[26]。FFA可能通过细胞因子的增加从而介导了炎症反应,亦称为脂质毒性,其与SAP发病率和死亡率的增加密切相关[27]。过量的FFA可以导致细胞膜和细胞器膜脂质过氧化,并通过由膜受体介导(如IP3受体)的异常信号转导途径导致细胞溶质Ca2+水平升高[28]。细胞Ca2+超载可激活第二信使CGMP导致线粒体通透性转换孔的开放。线粒体通透性转换孔是一种非特异性线粒体膜通道,可导致线粒体膜电位的丢失,线粒体ATP合成障碍,最终腺泡细胞坏死[29]

(二) 胰蛋白酶原激活

胰蛋白酶原激活是另一重要的病理细胞程序,可导致腺泡细胞坏死[30]

由于循环中FFA的增加,细胞因子水平升高,溶酶体和消化酶的合成增加,从而导致胰蛋白酶原颗粒的积聚。最近的研究表明溶酶体组织蛋白酶B在将胰蛋白酶原激活为胰蛋白酶中起着重要作用[31]。当胰蛋白酶和组织蛋白酶B从细胞器释放时,胰蛋白酶会导致腺泡细胞内外的自溶,组织蛋白酶B的释放会通过受体相互作用蛋白激酶(RIP)和混合线性激酶域样蛋白(MLKL)途径引起细胞坏死[32]。然而,胰蛋白酶和组织蛋白酶B从细胞器释放的机制仍不明确。研究表明,在AP期间,组织蛋白酶B从细胞器释放到胞质中很可能是通过基于活性的胰蛋白酶介导,从而激活细胞凋亡的内在途径[33]。细胞内蛋白酶的释放也能通过线粒体释放细胞色素C,激活caspase 3介导的凋亡,从而导致细胞膜破裂和细胞死亡。

(三) 自噬的受损与内质网应激

TG导致AP的发病机制也与自噬的受损和内质网(ER)应激有关。自噬是一种细胞保护机制,可以消除和利用老化、缺陷或受损的细胞质内容物。自噬是由自噬相关蛋白(ATGs)介导,它首先通过细胞器膜(如ER和高尔基体)形成的开放性双膜将细胞溶质内容物去核。实验表明,ATGs基因敲除的大鼠,其自噬水平是明显下降的,还可导致胰蛋白酶原激活、ER应激和线粒体功能障碍。FFA可以下调自噬的关键调节因子AMP活化蛋白激酶(AMPK)的表达,从而导致自噬的受损[34]

细胞Ca2+超载,线粒体功能障碍以及自噬的受损可以导致ER的应激[35]。胰腺腺泡细胞高效地产生蛋白质,当对蛋白质合成的需求和细胞中未折叠蛋白质(UPR)的积累超过了ER处理它们的能力时,可通过激活转录因子-6(ATF6)、肌醇蛋白-1(IRE1)、蛋白激酶RNA样的ER激酶(PERK)或CEBP同源蛋白(CHOP)等的介导,导致ER的应激,最终导致炎性反应和细胞坏死[36]

(四) 修复及再生受损

除了上述TG通过损伤胰腺腺泡细胞而导致AP的机制外,Yang N最近的一项研究重点关注于TG与AP中胰腺腺泡细胞的再生与修复的相关性,实验表明HTG是延缓AP大鼠胰腺腺泡细胞的再生的危险因素之一[37]。HTG能明显降低AP腺泡细胞在组织细胞学中的修复速度,并随着TG水平的增高,粪弹性蛋白酶1(Fecal Elastase-1,FE-1)水平下降。FE-1是一种由腺泡细胞合成的特异性蛋白酶,是评价胰腺外分泌功能的重要生物标志物。结果提示,随着TG水平的升高,胰腺腺泡细胞的修复及胰腺的外分泌功能均可降低。

(五) 基因表达

并不是所有高脂血症的人群都会患AP,根据一些研究,与TG相关的基因可能与AP的发生发展有关。最近的一项研究对103名被诊断为HTG,并既往发生过AP的患者进行了研究,结果显示,在这些患者中,脂蛋白酶(LPL)基因和所有的LPL分子调控基因中表现出较高的罕见变异频率[38]。对329例HTG-AP患者的队列分析表明,包括载脂蛋白A-5(APOA5)、糖基磷脂酰肌醇锚定的高密度脂蛋白结合蛋白-1(GPIHBPI)和载脂蛋白E(APOE)的遗传突变可能在HTG-AP中起作用[39]。而另一项研究发现糜蛋白酶C(CTRC)和丝氨酸肽酶抑制剂Kazal1型(SPINK1)基因与住院复发呈正相关[40]。基因与HTG-AP发生机制的相关性,需要进一步探索。

综上所述,AP患者的TG水平升高与AP严重程度、预后和复发风险增加是有一定的相关性。严重的HTG可导致胰腺的损伤加重,甚至出现坏死,导致休克及多器官功能障碍。TG导致AP可能受基因、代谢、环境和个体差异的影响,且与多种细胞机制等因素相关,随着医学发展的进一步深入,相信对这一机制的研究探讨将更加清晰明确,为临床医生对AP的诊疗策略提供更好的帮助。

参考文献
[1]
张娜, 张海燕, 郭晓红, 等. 中国近十年急性胰腺炎病因变化特点的Meta分析[J]. 中华消化病与影像杂志(电子版), 2016, 6(2): 71-75.
[2]
Banks Peter A, Bollen Thomas L, Dervenis Christos, et al. Classification of acute pancreatitis-2012:revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62(1): 102-111. DOI:10.1136/gutjnl-2012-302779
[3]
Chapman M John, Ginsberg Henry N, Amarenco Pierre, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease:evidence and guidance for management[J]. Eur Heart J, 2011, 12(1): 1345-1361.
[4]
Berglund L, Brunzell JD, Goldberg AC, et al. Evaluation and Treatment of Hypertriglyceridemia:An Endocrine Society Clinical Practice Guideline[J]. Journal of Clinical Endocrinology & Metabolism, 2012, 97(9): 2969-2989.
[5]
Tenner S, Baillie J, Dewitt J, et al. American College of Gastroenterology Guideline:Management of Acute Pancreatitis[J]. The American Journal of Gastroenterology, 2013, 108(9): 1400-1415. DOI:10.1038/ajg.2013.218
[6]
Wang CY, Zhao YP. The guidelines interpretation for diagnosis and treatment of severe acute pancreatitis[J]. Zhonghua Wai Ke Za Zhi, 2013, 51(3): 198-200.
[7]
Catapano Alberico L, Graham Ian, De Backer Guy, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias[J]. Rev Esp Cardiol (Engl Ed), 2017, 37(39): 2999-3058.
[8]
Carr RA, Rejowski BJ, Cote GA, et al. Systematic review of hypertriglyceridemia-induced acute pancreatitis:A more virulent etiology?[J]. Pancreatology, 2016, 16(4): 469-476. DOI:10.1016/j.pan.2016.02.011
[9]
Hegele RA. Monogenic dyslipidemias:window on determinants of plasma lipoprotein metabolism[J]. Am J Hum Genet, 2001, 69(6): 1161-1177. DOI:10.1086/324647
[10]
Yokoe Masamichi, Takada Tadahiro, Mayumi Toshihiko, et al. Japanese guidelines for the management of acute pancreatitis:Japanese Guidelines 2015[J]. J Hepatobiliary Pancreat Sci, 2015, 22(5): 405-432.
[11]
Leppäniemi Ari, Tolonen Matti, Tarasconi Antonio, et al. 2019 WSES guidelines for the management of severe acute pancreatitis[J]. World J Emerg Surg, 2019, 14(1): 27-45. DOI:10.1186/s13017-019-0247-0
[12]
Zhu Yin, Pan Xiaolin, Zeng Hao, et al. A Study on the Etiology, Severity, and Mortality of 3260 Patients With Acute Pancreatitis According to the Revised Atlanta Classification in Jiangxi, China Over an 8-Year Period[J]. Pancreas, 2017, 46(4): 504-509. DOI:10.1097/MPA.0000000000000776
[13]
Pedersen Simon B, Langsted Anne, Nordestgaard Børge G. Nonfasting Mild-to-Moderate Hypertriglyceridemia and Risk of Acute Pancreatitis[J]. JAMA Intern Med, 2016, 176(12): 1834-1842. DOI:10.1001/jamainternmed.2016.6875
[14]
Tariq Hassan, Gaduputi Vinaya, Peralta Richard, et al. Serum Triglyceride Level:A Predictor of Complications and Outcomes in Acute Pancreatitis?[J]. Can J Gastroenterol Hepatol, 2016, 2016: 819-847.
[15]
Wan Jianhua, He Wenhua, Zhu Yin, et al. Stratified analysis and clinical significance of elevated serum triglyceride levels in early acute pancreatitis:a retrospective study[J]. Lipids Health Dis, 2017, 16(1): 124-130.
[16]
Murphy Michael J, Sheng Xia, MacDonald Thomas M, et al. Hypertriglyceridemia and acute pancreatitis[J]. JAMA Intern Med, 2013, 173(2): 162-164. DOI:10.1001/2013.jamainternmed.477
[17]
Lindkvist Björn, Appelros Stefan, Regnér Sara, et al. A prospective cohort study on risk of acute pancreatitis related to serum triglycerides, cholesterol and fasting glucose[J]. Pancreatology, 2012, 12(4): 317-324. DOI:10.1016/j.pan.2012.05.002
[18]
Zhang Ruwen, Deng Lihui, Jin Tao, et al. Hypertriglyceridaemia-associated acute pancreatitis:diagnosis and impact on severity[J]. HPB (Oxford), 2019, 21(5): 1240-1249.
[19]
Pascual Isabel, Sanahuja Ana, García Natalia, et al. Association of elevated serum triglyceride levels with a more severe course of acute pancreatitis:Cohort analysis of 1457 patients[J]. Pancreatology, 2019, 19(5): 623-629. DOI:10.1016/j.pan.2019.06.006
[20]
Wang Qian, Wang Gang, Qiu Zhaoyan, et al. Elevated Serum Triglycerides in the Prognostic Assessment of Acute Pancreatitis:A Systematic Review and Meta-Analysis of Observational Studies[J]. J Clin Gastroenterol, 2017, 51(7): 586-593. DOI:10.1097/MCG.0000000000000846
[21]
Wu Bechien U, Batech Michael, Dong Elizabeth Y, et al. Influence of Ambulatory Triglyceride Levels on Risk of Recurrence in Patients with Hypertriglyceridemic Pancreatitis[J]. Dig Dis Sci, 2019, 64(3): 890-897. DOI:10.1007/s10620-018-5226-x
[22]
Hansen Signe EJ, Madsen Christian M, Varbo Anette, et al. Low-Grade Inflammation in the Association between Mild-to-Moderate Hypertriglyceridemia and Risk of Acute Pancreatitis:A Study of More Than 115000 Individuals from the General Population[J]. Clin Chem, 2019, 65(2): 321-332.
[23]
Wang Y, Sternfeld L, Yang F, et al. Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells[J]. Gut, 2009, 58(3): 422-430. DOI:10.1136/gut.2007.146258
[24]
Ewald Nils, Hardt Philip D, Kloer Hans-Ulrich. Severe hypertriglyceridemia and pancreatitis:presentation and management[J]. Curr Opin Lipidol, 2009, 20(6): 497-504. DOI:10.1097/MOL.0b013e3283319a1d
[25]
Valdivielso Pedro, Ramírez-Bueno Alba, Ewald Nils. Current knowledge of hypertriglyceridemic pancreatitis[J]. Eur J Intern Med, 2014, 25(8): 689-694. DOI:10.1016/j.ejim.2014.08.008
[26]
Durgampudi Chandra, Noel Pawan, Patel Krutika, et al. Acute lipotoxicity regulates severity of biliary acute pancreatitis without affecting its initiation[J]. Am J Pathol, 2014, 184(6): 1773-1784. DOI:10.1016/j.ajpath.2014.02.015
[27]
Acharya Chathur, Navina Sarah, Singh Vijay P. Role of pancreatic fat in the outcomes of pancreatitis[J]. Pancreatology, 2014, 14(5): 403-408. DOI:10.1016/j.pan.2014.06.004
[28]
Gerasimenko Julia V, Gerasimenko Oleg V, Petersen Ole H. The role of Ca2+ in the pathophysiology of pancreatitis[J]. Journal of Physiology, 2014, 592(2): 269-280. DOI:10.1113/jphysiol.2013.261784
[29]
Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas:inhibition prevents acute pancreatitis by protecting production of ATP[J]. Gut, 2016, 65(8): 1333-1346. DOI:10.1136/gutjnl-2014-308553
[30]
Dawra R, Sah RP, Dudeja V, et al. Intra-acinar Trypsinogen Activation Mediates Early Stages of Pancreatic Injury but Not Inflammation in Mice With Acute Pancreatitis[J]. Gastroenterology, 2011, 141(6): 2210-2217. DOI:10.1053/j.gastro.2011.08.033
[31]
Halangk W, Lerch MM, Brandt-Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis[J]. J Clin Invest, 2000, 106(6): 773-781. DOI:10.1172/JCI9411
[32]
Han Jiahuai, Zhong Chuanqi, Zhang Duanwu. Programmed necrosis:backup to and competitor with apoptosis in the immune system[J]. Nat Immunol, 2011, 12(2): 1143-1149.
[33]
Talukdar Rupjyoti, Sareen Archana, Zhu Hongyan, et al. Release of Cathepsin B in Cytosol Causes Cell Death in Acute Pancreatitis[J]. Gastroenterology, 2016, 151(4): 747-758. DOI:10.1053/j.gastro.2016.06.042
[34]
Antonucci Laura, Fagman JB, Kim JY, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress[J]. Proc Natl Acad Sci U S A, 2015, 112(45): 6166-6174. DOI:10.1073/pnas.1519384112
[35]
Ron David, Walter Peter. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol, 2007, 8(7): 519-529. DOI:10.1038/nrm2199
[36]
Kim Inki, Xu Wenjie, Reed JC. Cell death and endoplasmic reticulum stress:disease relevance and therapeutic opportunities[J]. Nat Rev Drug Discov, 2008, 7(12): 1013-1030. DOI:10.1038/nrd2755
[37]
Yang Na, Li Baiqiang, Pan Yiyuan, et al. Cell death and endoplasmic reticulum stress:disease relevance and therapeutic opportunities[J]. Gut, 2019, 68: 378-380. DOI:10.1136/gutjnl-2017-315560
[38]
Jin Jinglu, Sun Di, Cao Yexuan, et al. Intensive genetic analysis for Chinese patients with very high triglyceride levels:Relations of mutations to triglyceride levels and acute pancreatitis[J]. EBioMedicine, 2018, 38: 171-177. DOI:10.1016/j.ebiom.2018.11.001
[39]
Chen WJ, Sun XF, Zhang RX, et al. Hypertriglyceridemic acute pancreatitis in emergency department:Typical clinical features and genetic variants[J]. J Dig Dis, 2017, 18(6): 359-368. DOI:10.1111/1751-2980.12490
[40]
Tremblay Karine, Dubois-Bouchard Camélia, Brisson Diane, et al. Association of CTRC and SPINK1 gene variants with recurrent hospitalizations for pancreatitis or acute abdominal pain in lipoprotein lipase deficiency[J]. Front Genet, 2014, 5: 90-96.