脓毒症、创伤、休克、重症肺炎、多次输血、机械通气均可能导致急性肺损伤,患者出现进行性低氧血症乃至呼吸窘迫,死亡率极高,对急性肺损伤的研究一直是科研中的重点。基质金属蛋白酶(matrix metalloproteinases,MMPs)是一类锌离子依赖的蛋白酶家族,包含多个亚群,其中有24种在人体表达,具有降解细胞外基质(extracelluar matrix,ECM)和免疫调节的作用,广泛参与肿瘤转移、炎症反应等多种疾病过程。近年来,基质金属蛋白酶-8被发现在急性肺损伤中具有重要地位。
一、MMP-8的特点与作用 (一) 特点中性粒细胞胶原酶-8(neutrophil collagenase,MMP-8),可降解Ⅰ、Ⅱ、Ⅲ型胶原以及聚集蛋白聚糖,主要由多形中性粒细胞(PMN)产生,间质细胞、巨噬细胞、活化的成纤维细胞等多种细胞亦可产生少量分子量较小的异构体MMP-8,与其他胶原酶不同,MMP-8并不是由成熟的PMN直接合成,而是由PMN的前体在髓内发育阶段就合成,以前体酶原(pro-MMP-8)的形式储存在PMN内的特定颗粒中[1~3]。当PMN被激活,pro-MMP-8通过脱颗粒迅速地释放出来,pro-MMP-8具有信号肽、前肽和催化区等三个结构域,信号肽引导翻译后的肽链至胞浆内质网,脱去前肽后发挥酶活性,催化区具有Zn2+和Ca2+结合区,其中Zn2+位于活性中心内,参与MMP-8催化作用[4, 5]。
(二) 作用MMP-8主要催化细胞外基质中Ⅰ型胶原降解,也能分解一些非基质蛋白,如MIP-1α、TGFβ、丝氨酸蛋白酶抑制蛋白、缓激肽、血管紧张素Ⅰ,在炎症反应中起作用[6, 7]。MMP-8可以加强机体对细菌的清除能力,还具有影响单核巨噬细胞分化的作用[8, 9]。MMP-8参与急性脑梗死、急性心肌梗死、急性肺损伤、急性肠系膜缺血、急性肾缺血、COPD、肺结核、肿瘤等多种急慢性疾病过程,是组织损伤、改建和重塑的重要影响因素之一[10~15]。MMP家族还参与肺的发育过程,如MMP-3、MMP-9,但MMP-8不参与肺组织的发育,而且基因敲除MMP-8的小鼠与野生型小鼠在体型、寿命、生殖能力和肺的生长发育与功能表现等各方面未见明显异常[16]。
二、MMP-8的调节与抑制 (一) MMP-8的转录水平调节人MMP-8基因位于人11q22.3染色体上,生长因子、癌基因、前炎症介质、MMP-8所产生的裂解产物等多种因素均可影响MMP-8的转录。前炎症介质介导MMP-8表达水平上调,而TGFβ则降低MMP-8表达水平。MMP-8的启动子与其他大部分MMP家族启动子不同,其具有TATA框,但缺少转录激活因子(transcription activator)AP-1结合位点,因此易于调节[17]。
(二) 酶原的释放与激活根据不同的刺激物质,PMN释放的可溶性pro-MMP-8(Mr85kDa)量也不同。前炎症介质可刺激PMN释放其总量约15%~20%的pro-MMP-8,而细胞松弛素B与PMA则可刺激PMN释放其总量约70%~80%的pro-MMP-8[18]。pro-MMP-8经半胱氨酸开关(cysteine switch)机制激活后成为活性酶(Mr 65 kDa),并迅速以膜结合蛋白的形式结合到PMN细胞膜上,或者以可溶性蛋白的形式分泌到细胞外发挥催化作用,膜结合形式的MMP-8更加稳定,在37℃条件下孵育18个小时后仍可保持其80%的活性。可溶性MMP-8由于自溶作用,半衰期较短[19, 20]。
(三) 抑制剂生理及病理条件下,组织及细胞中均天然表达金属蛋白酶抑制剂(tissue inhibitor of metalloproteinase, TIMP),TIMP与MMP相互作用,在正常细胞ECM的改建和各种病理过程中发挥作用。目前发现4种TIMP,其中TIMP-1、2、4为可溶性分泌蛋白,TIMP-3为结合ECM的非可溶性蛋白。但MMP-8由于主要以膜结合的形式发挥作用,其活性难以被TIMP所抑制[18]。一般性的MMP抑制剂如强力霉素、四环素及其衍生物也可以非特异性地抑制MMP-8[21]。但MMP-8特异性抑制剂M8Ⅰ效果不能令人满意。Lee等人通过对M8Ⅰ化合物进行改造,发现了抑制效果更好的comp-3等化合物[11]。Demeestere等人合成了MMP-8的纳米抗体并验证了其有效性[22]。此外使用MMP-8shRNA沉默MMP-8的表达是一种较为可靠的抑制方式。
三、急性肺损伤(acute lung injury, ALI) (一) ALI及其严重的形式成人呼吸窘迫综合征ARDS(adult respiratory distress syndrome)是一组以肺换气功能及肺组织受损,导致低氧血症和肺动脉楔压增高的临床综合征,死亡率高达40%[23]。ALI的特点如下:①肺内严重的炎症反应导致肺泡细胞及血管内皮细胞受损。②大量白细胞及炎症细胞浸润,释放炎症介质与细胞杀伤物质。③肺泡内聚集大量富含蛋白质的液体。肺泡表面活性物质合成受损,细胞代谢功能障碍。④局部高凝状态[24, 25]。
(二) 治疗ALI的新思路炎症反应是机体对侵害的有力反击,在几分钟内就召集白细胞等免疫细胞到达损伤部位,这一过程需要牺牲肺组织的完整性:在穿过血管内皮后,为了到达肺泡,白细胞只能释放大量的裂解酶来穿透细胞外基质构成的基底膜[26]。过去对干预ALI的研究往往集中在抑制炎症反应、减轻细胞受损方面,但发现抑制早期炎症反应反而导致预后不佳。近年来,肺的自我修复功能逐渐得到重视。这些修复过程包括:水肿与炎症的消散、细胞增生、组织重塑[27]。修复作用可能在损伤的初期就启动,并在后期的恢复阶段发挥重要作用。故一味地早期拮抗炎症反应来阻止损伤作用,可能极大地妨碍了后期修复过程。目前,对促进ALI时肺自我修复过程的研究不断增多。
(三) MMP家族与急性肺损伤MMP家族在多种器官组织及细胞的生理、病理过程中发挥作用,尤其是在肺组织中,从气管、支气管、肺泡发育到急性、慢性多种肺疾病,MMP家族与TIMP均参与其中[28]。MMP-1、2、3、7、8、9、12、13均被显示与急性肺损伤有关,其中对MMP-1、2、3、8、9的研究较多。
(四) MMP-8在急性肺损伤中的表达特点近年来研究表明MMP-8在急性肺损伤中有不同于其他MMP的独特作用。MMP-8主要降解的Ⅰ型胶原,是肺ECM的主要成分。MMP-8作用于ECM后使其通透性增高,物理屏障作用减弱,易于PMN迁移,而结合在ECM上的细胞因子与炎症介质也随胶原降解释放出来,发挥免疫调节作用,例如Ⅰ型胶原分解后产生的乙酰化三肽IL-8生物学功能相似[29]。在各种ALI中MMP-8表达均明显增高。在儿童ALI中,MMP-8与MMP-9均明显升高,但与MMP-9随着病程时间逐渐失活不同的是,MMP-8出现时间早,而且在整个疾病过程中均保持高活性,这一现象可能是在病程后期,肺泡上皮细胞、腺上皮细胞等产生的分子量较小的MMP-8异构体逐渐替代了PMN来源的MMP-8所致[11, 30, 31]。在成人ALI中,亦观察到MMP-8的表达增加[32]。脓毒症合并ARDS的患者中,LCN2, BPI, CD24, MMP-8的表达均显著增高,且MMP-8升高最为明显。同时,MMP-8的水平与患者死亡率及预后无明显相关性[30, 32, 33]。
(五) MMP-8在急性肺损伤中的作用多项研究指出MMP-8在急性肺损伤中起保护性作用[10, 34]。在通过LPS、博来霉素、高氧制造的小鼠急性肺损伤动物模型研究中发现MMP-8可以减少肺内PMN浸润,抑制炎症、减轻水肿、减轻肺损伤、降低死亡率,这一现象是通过灭活巨噬细胞炎症蛋白1α(macrophage inflammatory protein-1α,MIP-1α)而实现的,MMP-8本身并不影响PMN的趋化、迁移与外周PMN计数[7, 34, 35]。有争议的是,有研究发现MMP-8抑制剂可以减轻脓毒症损伤,敲除MMP-8基因的小鼠对LPS应答减弱,呼吸机所致的肺损伤小鼠模型中,MMP-8起促炎作用,敲除MMP-8基因或者使用MMP-8抑制剂可减轻小鼠肺水肿、改善气体交换[36~38]。
MMP-8是一种多功能的蛋白分子,具有降解细胞外基质、参与肿瘤转移、调节炎症反应等多种生物学作用,其在急性肺损伤发病及修复过程中的地位逐渐得到重视,具有成为临床治疗新靶点的潜力。但MMP8在急性肺损伤中作用的具体信号通路尚不明确,其多重生物学功能尚未达成共识,有待进一步研究明确。
[1] |
Prikk K, Maisi P, Pirila E, et al. In vivo collagenase-2(mmp-8) expression by human bronchial epithelial cells and monocytes/macrophages in bronchiectasis[J]. The Journal of pathology, 2001, 194(2): 232-238. DOI:10.1002/(ISSN)1096-9896 |
[2] |
Cowland JB, Borregaard N. The individual regulation of granule protein mrna levels during neutrophil maturation explains the heterogeneity of neutrophil granules[J]. Journal of leukocyte biology, 1999, 66(6): 989-995. DOI:10.1002/jlb.1999.66.issue-6 |
[3] |
Murphy G, Reynolds JJ, Bretz U, et al. Collagenase is a component of the specific granules of human neutrophil leucocytes[J]. The Biochemical journal, 1977, 162(1): 195-197. DOI:10.1042/bj1620195 |
[4] |
Hasty KA, Hibbs MS, Kang AH, et al. Secreted forms of human neutrophil collagenase[J]. The Journal of biological chemistry, 1986, 261(12): 5645-5650. |
[5] |
Balbin M, Fueyo A, Knauper V, et al. Collagenase 2(mmp-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus[J]. The Journal of biological chemistry, 1998, 273(37): 23959-23968. DOI:10.1074/jbc.273.37.23959 |
[6] |
Diekmann O, Tschesche H. Degradation of kinins, angiotensins and substance p by polymorphonuclear matrix metalloproteinases mmp 8 and mmp 9[J]. Brazilian journal of medical and biological research=Revista brasileira de pesquisas medicas e biologicas, 1994, 27(8): 1865-1876. |
[7] |
Quintero PA, Knolle MD, Cala LF, et al. Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice[J]. Journal of immunology (Baltimore, Md:1950), 2010, 184(3): 1575-1588. DOI:10.4049/jimmunol.0900290 |
[8] |
Atkinson SJ, Varisco BM, Sandquist M, et al. Matrix metalloproteinase-8 augments bacterial clearance in a juvenile sepsis model[J]. Molecular medicine (Cambridge, Mass), 2016, 22: 455-463. |
[9] |
Wen G, Zhang C, Chen Q, et al. A novel role of matrix metalloproteinase-8 in macrophage differentiation and polarization[J]. The Journal of biological chemistry, 2015, 290(31): 19158-19172. DOI:10.1074/jbc.M114.634022 |
[10] |
Parkkonen O, Nieminen MT, Vesterinen P, et al. Low mmp-8/timp-1 reflects left ventricle impairment in takotsubo cardiomyopathy and high timp-1 may help to differentiate it from acute coronary syndrome[J]. PloS one, 2017, 12(3): e0173371. DOI:10.1371/journal.pone.0173371 |
[11] |
Lee EJ, Choi MJ, Lee G, et al. Regulation of neuroinflammation by matrix metalloproteinase-8 inhibitor derivatives in activated microglia and astrocytes[J]. Oncotarget, 2017, 8(45): 78677-78690. |
[12] |
Geng L, Chen Z, Ren H, et al. Effects of an early intervention using human amniotic epithelial cells in a copd rat model[J]. Pathology, research and practice, 2016, 212(11): 1027-1033. DOI:10.1016/j.prp.2016.08.014 |
[13] |
Daly MC, Atkinson SJ, Varisco BM, et al. Role of matrix metalloproteinase-8 as a mediator of injury in intestinal ischemia and reperfusion[J]. FASEB journal:official publication of the Federation of American Societies for Experimental Biology, 2016, 30(10): 3453-3460. DOI:10.1096/fj.201600242R |
[14] |
Koo HK, Hong Y, Lim MN, et al. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity[J]. International journal of chronic obstructive pulmonary disease, 2016, 11: 1129-1137. |
[15] |
Decock J, Hendrickx W, Thirkettle S, et al. Pleiotropic functions of the tumor-and metastasis-suppressing matrix metalloproteinase-8 in mammary cancer in mmtv-pymt transgenic mice[J]. Breast cancer research:BCR, 2015, 17: 38. DOI:10.1186/s13058-015-0545-8 |
[16] |
Cox JH, Starr AE, Kappelhoff R, et al. Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression[J]. Arthritis and rheumatism, 2010, 62(12): 3645-3655. DOI:10.1002/art.27757 |
[17] |
Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression[J]. Journal of cellular physiology, 2007, 211(1): 19-26. DOI:10.1002/(ISSN)1097-4652 |
[18] |
Owen CA, Hu Z, Lopez-Otin C, et al. Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase[J]. Journal of immunology (Baltimore, Md:1950), 2004, 172(12): 7791-7803. DOI:10.4049/jimmunol.172.12.7791 |
[19] |
Springman EB, Angleton EL, Birkedal-Hansen H, et al. Multiple modes of activation of latent human fibroblast collagenase:Evidence for the role of a cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1): 364-368. DOI:10.1073/pnas.87.1.364 |
[20] |
Knauper V, Docherty AJ, Smith B, et al. Analysis of the contribution of the hinge region of human neutrophil collagenase (hnc, mmp-8) to stability and collagenolytic activity by alanine scanning mutagenesis[J]. FEBS letters, 1997, 405(1): 60-64. DOI:10.1016/S0014-5793(97)00158-0 |
[21] |
Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines:A pleitropic family of compounds with promising therapeutic properties. Review of the literature[J]. American Journal of Physiology-Cell Physiology, 2010, 299(3): C539-548. DOI:10.1152/ajpcell.00047.2010 |
[22] |
Demeestere D, Dejonckheere E, Steeland S, et al. Development and validation of a small single-domain antibody that effectively inhibits matrix metalloproteinase 8[J]. Molecular therapy:the journal of the American Society of Gene Therapy, 2016, 24(5): 890-902. DOI:10.1038/mt.2016.2 |
[23] |
Matthay MA, Zemans RL. The acute respiratory distress syndrome:Pathogenesis and treatment[J]. Annual review of pathology, 2011, 6: 147-163. DOI:10.1146/annurev-pathol-011110-130158 |
[24] |
Manicone AM. Role of the pulmonary epithelium and inflammatory signals in acute lung injury[J]. Expert review of clinical immunology, 2009, 5(1): 63-75. DOI:10.1586/1744666X.5.1.63 |
[25] |
Kushimoto S, Taira Y, Kitazawa Y, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema:A prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome[J]. Critical care (London, England), 2012, 16(6): R232. DOI:10.1186/cc11898 |
[26] |
Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation[J]. Current pharmaceutical design, 2009, 15(12): 1349-1357. DOI:10.2174/138161209787846685 |
[27] |
Beers MF, Morrisey EE. The three r's of lung health and disease:Repair, remodeling, and regeneration[J]. The Journal of clinical investigation, 2011, 121(6): 2065-2073. DOI:10.1172/JCI45961 |
[28] |
Hendrix AY, Kheradmand F. The role of matrix metalloproteinases in development, repair, and destruction of the lungs[J]. Progress in molecular biology and translational science, 2017, 148: 1-29. DOI:10.1016/bs.pmbts.2017.04.004 |
[29] |
Lin M, Jackson P, Tester AM, et al. Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide pro-gly-pro[J]. The American journal of pathology, 2008, 173(1): 144-153. DOI:10.2353/ajpath.2008.080081 |
[30] |
Kangelaris KN, Prakash A, Liu KD, et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ards[J]. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308(11): L1102-1113. DOI:10.1152/ajplung.00380.2014 |
[31] |
Kong MY, Gaggar A, Li Y, et al. Matrix metalloproteinase activity in pediatric acute lung injury[J]. International journal of medical sciences, 2009, 6(1): 9-17. |
[32] |
Fligiel SE, Standiford T, Fligiel HM, et al. Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury[J]. Human pathology, 2006, 37(4): 422-430. DOI:10.1016/j.humpath.2005.11.023 |
[33] |
Hastbacka J, Linko R, Tervahartiala T, et al. Serum mmp-8 and timp-1 in critically ill patients with acute respiratory failure:Timp-1 is associated with increased 90-day mortality[J]. Anesthesia and analgesia, 2014, 118(4): 790-798. DOI:10.1213/ANE.0000000000000120 |
[34] |
Gonzalez-Lopez A, Aguirre A, Lopez-Alonso I, et al. Mmp-8 deficiency increases tlr/rage ligands s100a8 and s100a9 and exacerbates lung inflammation during endotoxemia[J]. PloS one, 2012, 7(6): e39940. DOI:10.1371/journal.pone.0039940 |
[35] |
Craig VJ, Quintero PA, Fyfe SE, et al. Profibrotic activities for matrix metalloproteinase-8 during bleomycin-mediated lung injury[J]. Journal of immunology (Baltimore, Md:1950), 2013, 190(8): 4283-4296. DOI:10.4049/jimmunol.1201043 |
[36] |
Qiu Z, Chen J, Xu H, et al. Inhibition of neutrophil collagenase/mmp-8 and gelatinase b/mmp-9 and protection against endotoxin shock[J]. J Immunol Res, 2014, 2014: 747426. |
[37] |
Tester AM, Cox JH, Connor AR, et al. Lps responsiveness and neutrophil chemotaxis in vivo require pmn mmp-8 activity[J]. PloS one, 2007, 2(3): e312. DOI:10.1371/journal.pone.0000312 |
[38] |
Albaiceta GM, Gutierrez-Fernandez A, Garcia-Prieto E, et al. Absence or inhibition of matrix metalloproteinase-8 decreases ventilator-induced lung injury[J]. American journal of respiratory cell and molecular biology, 2010, 43(5): 555-563. DOI:10.1165/rcmb.2009-0034OC |