在重症监护室中,脓毒症(sepsis)是高发病率及高死亡率的疾病之一。在脓毒症的治疗环节中,尽早应用抗生素,应用血管活性药物维持患者的平均动脉压和血流动力学稳定已经成为ICU医生的共识。儿茶酚胺类药物如去甲肾上腺素、多巴胺等已经被广泛的应用于脓毒症导致的脓毒性休克中,但儿茶酚胺依赖的脓毒性休克(cetecholamine dependent septic shock)或者称为难治性脓毒性休克的出现[1]给脓毒性休克的治疗提出了新的问题。
一、脓毒症/脓毒性休克与儿茶酚胺依赖脓毒症是宿主对感染的反应失控导致危及生命的器官功能障碍,脓毒性休克(septic shock)是指脓毒症患者经充分的液体复苏仍存在持续的低血压,需要使用升压药物维持平均动脉压在65mmHg以上,血乳酸在2mmol/L以上[2]。脓毒性休克是一种以动脉和静脉血管舒张为特征的分布性休克,其治疗目标是达到平均动脉压以维持器官灌注。除了尽早开始抗感染治疗外,目标导向治疗(goal-directed therapy,GDT)尤其是早期开始的目标导向治疗,使脓毒症患者总体死亡率降低17%[3]。而持续的脓毒性休克中,应用血管活性药物维持患者的平均动脉压及血流动力学稳定也是纠正休克的重要一环[4]。这与脓毒症的病理生理学机制有关。在脓毒症中,炎性细胞因子从血管内皮,嗜酸性粒细胞,中枢神经系统和神经内分泌系统分泌,这些炎性介质刺激一氧化氮(NO)的活性,ATP敏感性钾通道被NO激活,钙通道减慢,外周血管对儿茶酚胺的反应降低。临床上尽管有充分的支持治疗,仍有接近40%的患者因难治性脓毒性休克死亡[5, 6],这可能与持续的高动力状态和难治性血管舒张有关[7]。故进一步寻找方法增加血管对儿茶酚胺的反应成为了治疗难治性脓毒性休克的新途径。
二、药物新选择 (一) 多巴酚丁胺多巴酚丁胺是临床上常见的治疗心力衰竭患者的正性肌力药物,脓毒性休克导致心脏功能抑制或急性心肌病的患者使用小剂量多巴酚丁胺有良好的获益[1]。几项实验与临床研究显示,脓毒性休克使用多巴酚丁胺对血流动力学有益[8-10],此外,还发现内脏血流灌注和组织氧合增加[11-13],但其中一项研究也显示多巴酚丁胺在增加氧输送伴随黏膜内酸中毒改善的同时,血乳酸升高[12]。多巴酚丁胺的使用增加了收缩力和心输出量,但并未改善微循环和外周灌注[14]。在另一项对绵羊内毒素血症进行的研究显示,多巴酚丁胺增加心输出量,但减少肠道血流,并诱导血管舒张和心动过速[15]。还有一项脓毒症患者的随机对照双盲试验显示,小剂量多巴酚丁胺(5 μg/kg/min)通过增加心输出量维持平均动脉压,但对局部循环、肌肉和肝脏的灌注有不利影响[16]。不同人对于多巴酚丁胺反应不同,敏感患者表现为心率增快,心输出量升高,但对于不敏感患者仅表现为血管舒张作用,这使52%的患者休克指数增加[17]。故尽管2016脓毒症和脓毒性休克管理指南中将多巴酚丁胺作为充分液体复苏后仍持续低灌注患者的选择[2],但在临床应用前,仍需评定患者对于多巴酚丁胺的敏感性及耐受性,密切监测其正面及负面的影响。
(二) 米力农米力农是磷酸二酯酶抑制剂,其药理作用为激活心肌细胞肌浆网ATP相关性钙通道,从而增强心肌收缩力。在脓毒性休克中,关于应用米力农的参考数据较少。一项动物实验证实,米力农改善了铜绿假单胞菌致脓毒性休克兔模型中心输出量和组织灌注,降低了血乳酸水平[18]。而另一项猪脓毒症模型中没有观察到有意义的结果[19]。临床中米力农对脓毒性休克改善作用的证据主要出现在儿科和新生儿ICU中,改善脓毒性休克患儿出现的低心排和脓毒症性心肌损害[20, 21]。最新几项研究表明在脓毒症心肌抑制中,米力农联合β受体阻滞剂艾司洛尔对比单纯米力农或多巴酚丁胺在增强患者左心功能上有良好的实验及临床获益[22-24]。由于关于米力农研究数据较少,尚不能得出米力农有益于脓毒性休克的结论。
(三) 左西孟旦左西孟旦是一种新型钙离子增敏剂,通过增加细胞收缩蛋白对钙离子的敏感性来增强心肌细胞的收缩力,它不增加心肌内钙离子浓度,不增加心肌氧耗量,不易导致心律失常和细胞损伤,同时既不损害心脏舒张功能,也不延长舒张时间,可明显改善血流动力学参数[25]。左西孟旦可开放血管平滑肌细胞膜及线粒体膜上三磷酸腺苷敏感型K+通道,使血管充分扩张,可以降低肺动脉压,肺毛细血管楔压和总外周血管阻力。左西孟旦还可以作用于一氧化氮合酶,生成一氧化氮,以此控制冠状动脉的血流量。几项研究表明左西孟旦通过抗缺血、抗炎及抗凋亡机制影响脓毒性休克的病理生理学过程[26-29]。与多巴酚丁胺相比,它还显示了血流动力学、微循环血流量以及肝肾功能的改善[30-32]。一项荟萃分析表明,与传统的正性肌力药物相比,左西孟旦与死亡风险显著降低有关[33]。此外,左西孟旦的代谢产物具有活性,其半衰期长达80小时左右,单次24小时输注作用可持续1周[34],足以支持大多数脓毒性休克患者直至血流动力学恢复[35]。但另一项新的荟萃分析显示了相反的结果,明确观察到左西孟旦降低了ICU患者的血乳酸水平,但对平均动脉压、心指数、去甲肾上腺素剂量、ICU停留时间及28天死亡率较标准组无统计学差异[36]。还有一项大规模的随机对照试验表明,左西孟旦的严重副作用为快速的室上性心律失常。可能引起难以控制的血管意外[37]。故左西孟旦在脓毒性休克中的有一定的获益,但仍需进一步评估患者心脏功能或密切监测血流动力学参数来避免副作用或损害。
(四) 血管加压素血管加压素是下丘脑合成的抗利尿激素,是一种9肽激素,作用于血管V1a受体和肾小管V2受体,使动脉血管收缩,促进肾小管对水的重吸收。其类似物精氨酸加压素(Vasopressin,AVP)用于临床实验观察到,对于晚期舒张性休克,特别是在血液滤过情况下,增加了平均动脉压,全身血管阻力及每搏输出量[35]。特利加压素(terlipressinin,TP)是AVP的长效合成类似物,是AVP的前体,半衰期明显长于AVP(6vs50min)[38],对血管V1受体的亲和力高于AVP[39]。本单位一项27例脓毒性休克患者使用特利加压素联合去甲肾上腺素的小规模研究中发现,给予小剂量特利加压素联合去甲肾上腺素,能够有效稳定脓毒性休克患者的血流动力学,特别是顽固性休克患者,可以有效维持血压,增加肾脏血流灌注[40]。另一项研究15例儿童儿茶酚胺依赖的脓毒性休克,在去甲肾上腺素≥0.6μg/ kg / min的情况下进行的,静脉推注1mg特利加压素后,MAP增加,心脏指数显着下降,氧输送和消耗显着减少[41]。其他研究中,TP被证明可有效恢复脓毒症相关的动脉低血压和降低儿茶酚胺药物的需求量[42-44]。然而,在特利加压素高剂量使用时,药物副作用主要与全身和/或局部血管收缩过度有关,导致心输出量和全身氧输送减少,肠微循环障碍,肺血管阻力增加等[43-45]。故对于大量儿茶酚胺治疗不能产生足够的灌注压力时,特利加压素作为补救措施用于脓毒性休克,其安全性仍需探讨。
三、总结综上所述,在儿茶酚胺依赖的脓毒性休克药物治疗方法中,可以观察到一些有益于病人的方式,比如使用小剂量多巴酚丁胺联合传统的儿茶酚胺药物,可以选择使用左西孟旦增强左心功能,小剂量的特利加压素联合使用可以降低儿茶酚胺类药物的用量,但临床使用中都需要密切监测血流动力学参数,注意其安全性。
| [1] |
Friedrich JO, Lapinsky SE. New evidence for old therapies in catecholamine-dependent septic shock. Intensive Care Med. 2001[J], 27(4): 787-790.
|
| [2] |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign:international guidelines for managment of sepsis and septic shock:2016[J]. Intensive Care Med, 2017, 43(3): 304-377. DOI:10.1007/s00134-017-4683-6 |
| [3] |
Gu WJ, Wang F, Bakker J, et al. The effect of goal-directed therapy on mortality in patients with sepsis - earlier is better: a meta-analysis of randomized controlled trials[J]. Crit Care, 2014, 18(5): 570. DOI:10.1186/s13054-014-0570-5 |
| [4] |
王斯佳, 王国兴, 谢苗荣, 等. 休克研究进展[J]. 实用休克杂志, 2017, 1(2): 68-72. |
| [5] |
Watson RS, Carcillo JA, Linde-Zwirble WT, et al. The epidemiology of severe sepsis in children in the United States[J]. Am J Respir Crit Care Med, 2003, 167(5): 695-701. DOI:10.1164/rccm.200207-682OC |
| [6] |
Landry DW, Oliver JA. The pathogenesis of vasodilatory shock[J]. N Engl J Med, 2001, 345(8): 588-595. DOI:10.1056/NEJMra002709 |
| [7] |
Parker MM, Shelhamer JH, Natanson C, et al. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. [J]Crit Care Med. 1987 Oct; 15(10): 923-929.
|
| [8] |
McCaig D, Parratt JR, et al. A comparison of the cardiovascular effects of dobutamine and a new dopamine derivative (D4975) during shock induced by E[J]. coli endotoxin, 1980, 69(4): 651-656. |
| [9] |
Vincent JL, Van der Linden P, et al. Dopamine compared with dobutamine in experimental septic shock: relevance to fluid administration[J]. Anesthesia and analgesia, 1987, 66(6): 565-571. |
| [10] |
Jardin F, Sportiche M, et al. Dobutamine: a hemodynamic evaluation in human septic shock[J]. Crit Care Med, 1981, 9(4): 329-332. DOI:10.1097/00003246-198104000-00010 |
| [11] |
Nevière R, Chagnon JL, Dupuis B, et al. Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock[J]. Crit Care Med, 1997, 25(8): 1371-1377. DOI:10.1097/00003246-199708000-00026 |
| [12] |
Gutierrez G, Clark C, Brown SD, et al. Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients[J]. Am J Respir Crit Care Med, 1994, 50(2): 324-329. |
| [13] |
Joly LM, Monchi M, et al. Effects of dobutamine on gastric mucosal perfusion and hepatic metabolism in patients with septic shock[J]. Am J Respir Crit Care Med, 1999, 160(6): 1983-1986. DOI:10.1164/ajrccm.160.6.9708113 |
| [14] |
Wilkman E, Kaukonen KM, et al. Association between inotrope treatment and 90-day mortality in patients with septic shock[J]. Acta Anaesthesiol Scand, 2013, 57(4): 431-442. DOI:10.1111/aas.12056 |
| [15] |
Dubin A, Murias G, Sottile JP, et al. Effects of levosimendan and dobutamine in experimental acute endotoxemia: a preliminary controlled study. [J]Intensive Care Med. 2007, 33(3): 485-494. Epub 2007 Jan 30.
|
| [16] |
Hernandez G, Bruhn A, Luengo C, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study[J]. Intensive Care Med, 2013, 39(8): 1435-1443. DOI:10.1007/s00134-013-2982-0 |
| [17] |
Enrico C, Kanoore Edul VS, et al. Systemic and microcirculatory effects of dobutamine in patients with septic shock[J]. J Crit Care, 2012, 27(6): 630-638. DOI:10.1016/j.jcrc.2012.08.002 |
| [18] |
Liet JM, Jacqueline C, Orsonneau JL, et al. The effects of milrinone on hemodynamics in an experimental septic shock model[J]. Pediatr Crit Care Med, 2005, 6(2): 195-199. DOI:10.1097/01.PCC.0000155636.53455.96 |
| [19] |
Lindgren S, Almqvist P, Arvidsson D, et al. Lack of beneficial effects of milrinone in severe septic shock[J]. Circ Shock, 1990, 31(4): 365-375. |
| [20] |
Deep A, Goonasekera CD, Wang Y, Brierley J. Evolution of haemodynamics and outcome of fluid-refractory septic shock in children[J]. Intensive Care Med, 2013, 39(9): 1602-1609. DOI:10.1007/s00134-013-3003-z |
| [21] |
Caresta E, Papoff P, Benedetti Valentini S, et al. What's new in the treatment of neonatal shock[J]. J Matern Fetal Neonatal Med, 2011, 24(Sup 1): 17-19. |
| [22] |
Wang Z, Wu Q, Nie X, Guo J, Yang C. Combination therapy with milrinone and esmolol for heart protection in patients with severe sepsis: a prospective, randomized trial[J]. Clin Drug Investig, 2015, 35(11): 707-716. DOI:10.1007/s40261-015-0325-3 |
| [23] |
Holmes CL, Walley KR. Vasoactive drugs for vasodilatory shock in ICU[J]. Curr Opin Crit Care, 2009, 15(5): 398-402. DOI:10.1097/MCC.0b013e32832e96ef |
| [24] |
Schmittinger CA, Dünser MW, Haller M, et al. Combined milrinone and enteral metoprolol therapy in patients with septic myocardial depression[J]. Crit Care, 2008, 12(4): R99. DOI:10.1186/cc6976 |
| [25] |
祝益民, 陈芳. 搭建休克研究与交流新平台[J]. 实用休克杂志, 2017, 1(2): 65-67. |
| [26] |
Wang Q, Yokoo H, Takashina M, et al. Anti-Inflammatory Profile of Levosimendan in Cecal Ligation-Induced Septic Mice and in Lipopolysaccharide-Stimulated Macrophages[J]. Crit Care Med, 2015, 43(11): 508-520. DOI:10.1097/CCM.0000000000001269 |
| [27] |
Hasslacher J, Bijuklic K, Bertocchi C, et al. Levosimendan inhibits release of reactive oxygen species in polymorphonuclear leukocytes in vitro and in patients with acute heart failure and septic shock: a prospective observational study[J]. Crit Care, 2011, 15(4): 166. DOI:10.1186/cc10307 |
| [28] |
Parissis JT, Adamopoulos S, Antoniades C, et al. Effects of levosimendan on circulating pro-inflammatory cytokines and soluble apoptosis mediators in patients with decompensated advanced heart failure. American Journal of Cardiology[J]. Am J Cardiol, 2004, 93(10): 1309-1312. DOI:10.1016/j.amjcard.2004.01.073 |
| [29] |
du Toit EF, Genis A, Opie LH, et al. A role for the RISK pathway and KATP channels in pre- and post- conditioning induced by levosimendan in the isolated guinea pig heart[J]. Br J Pharmacol, 2008, 154(1): 41-50. DOI:10.1038/bjp.2008.52 |
| [30] |
Morelli A, Donati A, Ertmer C, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study[J]. Crit Care, 2010, 14(6): 1-11. |
| [31] |
Morelli A, De CS, Teboul JL, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression.Creteur J[J]. Intensive Care Med, 2005, 31(5): 638. DOI:10.1007/s00134-005-2619-z |
| [32] |
Inal MT, Sut N. The effects of levosimendan vs dobutamine added to dopamine on liver functions assessed with noninvasive liver function monitoring in patients with septic shock.Memi D[J]. J Crit Care, 2012, 27(3): 318.e1-318.eb. DOI:10.1016/j.jcrc.2011.06.008 |
| [33] |
Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: A meta-analysis of randomized trials[J]. J Crit Care, 2015, 30(5): 908-913. DOI:10.1016/j.jcrc.2015.05.017 |
| [34] |
Kivikko M, Antila S, Eha J, et al. Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure[J]. Int J Clin Pharmacol Ther, 2002, 40(10): 465-471. DOI:10.5414/CPP40465 |
| [35] |
Gordon AC, Mason AJ, et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial[J]. JAMA, 2016, 316(5): 509-518. DOI:10.1001/jama.2016.10485 |
| [36] |
Wang B, Chen R, Guo X, et al. Effects of levosimendan on mortality in patients with septic shock: systematic review with meta-analysis and trial sequential analysis[J]. Oncotarget, 2017, 8(59): 100524-100532. |
| [37] |
Zhang Z, Chen K. Vasoactive agents for the treatment of sepsis[J]. Ann Transl Med, 2016, 4(17): 333. DOI:10.21037/atm |
| [38] |
Bernadich C1, Bandi JC, Melin P, et al. Compared with Terlipressin and Vasopressin on Systemic and Splanchnic Hemodynamics in a Rat Model of Portal Hypertension[J]. Hepatology, 1998, 27(2): 351-356. DOI:10.1002/(ISSN)1527-3350 |
| [39] |
Lange M, Ertmer C, Westphal M. Vasopressin vs. terlipressinin the treatmentof cardiovascular failure in sepsis[J]. Intensive Care Med, 2008, 34(5): 821-832. DOI:10.1007/s00134-007-0946-y |
| [40] |
骆琳, 范鸿博, 于健. 脓毒性休克患者应用特利加压素联合去甲肾上腺素的临床疗效观察[J]. 实用休克杂志, 2017, 1(2): 92-94. |
| [41] |
Leone M, Albanèse J, et al. Terlipressin in Catecholamine Resistant Septic Shock Patients[J]. Shock, 2004, 22(4): 314-319. DOI:10.1097/01.shk.0000136097.42048.bd |
| [42] |
Martikainen TJ, Tenhunen JJ, Uusaro A, et al. The Effects of Vasopressin on Systemic and Splanchnic Hemodynamics and Metabolism in Endotoxin Shock. [J]. 2003, 97(6): 1756-1763.
|
| [43] |
Leone M, Albanèse J, et al. Terlipressin in Catecholamine Resistant Septic Shock Patients[J]. Shock, 2004, 22(4): 314-319. DOI:10.1097/01.shk.0000136097.42048.bd |
| [44] |
Morelli A, Rocco M, Conti G, et al. Effects of Terlipressin on Systemic and Regional Haemodynamics in Catecholamine Treated Hyperkinetic Septic Shock[J]. Intensive Care Med, 2004, 30(4): 597-604. DOI:10.1007/s00134-003-2094-3 |
| [45] |
Klinzing S, Simon M, Reinhart K, et al. High-Dose Vasopressin Is Not Superior to Norepinephrine in Septic Shock[J]. Crit Care Med, 2003, 31(11): 2646-2650. DOI:10.1097/01.CCM.0000094260.05266.F4 |
2018, Vol. 2

