脓毒症(sepsis)是感染导致机体反应失调引发危及生命的器官功能障碍[1],全球每年有超过31, 000, 000的脓毒症患者,病死率高达17%[2]。脓毒症的早期识别与处理至关重要。“拯救脓毒症运动”的指南建议,发生脓毒性休克时应在1h内应用针对性的抗菌药物[3],抗菌药物应用每延迟1 h,病死率增加7.6%[4]。因此,如何早期诊断和治疗脓毒症是当前研究的重点之一。新型的脓毒症生物标志物具有较高的敏感性和特异性,有助于快速准确地区分脓毒症与非感染性全身炎症反应综合征(SIRS),同时对判断疾病的严重程度及预测患者预后方面也有重要价值。
一、可溶性CD14亚型可溶性CD14亚型(sCD14-ST,Presepsin)是巨噬细胞和单核细胞表达,作为脂多糖和脂多糖结合蛋白受体的糖蛋白。Presepsin在感染早期就显著升高,尤其在脓毒症和严重脓毒症升高更加明显[5],具有较高的诊断敏感性和特异性,同时与脓毒症患者病死率密切相关。血浆Presepsin浓度在发生感染2 h开始升高,3 h达高峰。研究显示,脓毒症患者Presepsin浓度为(1508.3±866.6)ng/L,SIRS患者为(430.00±141.33)ng/L,健康成年人仅为(258.70±92.53)ng/L,Presepsin诊断脓毒症的受试者工作特征曲线下面积(AUC)为0.996[6]。一项纳入1757例患者的荟萃分析结果显示,Presepsin诊断敏感性和特异性分别为0.85和0.65,AUC为0.82[7]。
Presepsin对脓毒症脓毒症病情分级和预后评估也有一定的价值,国内Liu等学者发现Presepsin可用于脓毒症的病情分级,其研究结果显示脓毒性休克组Presepsin浓度中位数为1084 ng/L,脓毒症组为325 ng/L,SIRS组为212 ng/L,对照组为130 ng/L[8]。Behnes等[9]学者发现,当脓毒症患者Presepsin初始浓度大于700 ng/L时,发展为脓毒性休克的概率比其他患者高9倍。Presepsin入院初始浓度与院内28 d、60 d、90 d病死率密切相关[10]。Caironi等[11]报道,脓毒症患者死亡组和存活组Presepsin浓度分别为2268(1145~4305) ng/L、1184(855~2158)ng/L。此外,存活组Presepsin浓度逐渐降低,而死亡组则持续升高。且多数研究显示,Presepsin对脓毒症的诊断和预后评估价值优于PCT。
二、降钙素原降钙素原(PCT)是由116个氨基酸组成的降钙素前体。正常成年人血清PCT浓度约为0.05 ng/mL,当机体发生细菌感染时,实质细胞产生PCT应对细菌毒素,因此可作为判断细菌感染的生物标志物。研究显示,PCT于发生脓毒症2~4h开始升高,24~48h达到平台期。PCT可用于鉴别脓毒症和SIRS,一项纳入30项研究总计3244例患者的荟萃分析显示,PCT可有效区分脓毒症和无感染源的SIRS,诊断的敏感性和特异性分别是77%、79%,AUC达0.85(95%CI 0.81-0.88)[12]。多项随机对照研究结果显示,应用PCT指导脓毒症患者抗菌药物使用可减少抗生素使用周期(2~3天),使患者获益明显[13]。但一项大型回顾性队列研究发现基于降钙素原的治疗策略并不能提高抗生素的使用合理性以及降低患者病死率[14]。此外,Anand等报道,PCT可准确地将血培养阳性(AUC=0.96)、血培养阴性(AUC=0.89)与非感染性SIRS区分开来[15]。
三、C反应蛋白C反应蛋白(CRP)是一种由肝脏产生的应对感染或炎症反应的急性时相蛋白。在感染的急性期,CRP可升高1000倍,因此被广泛用于诊断感染性疾病,但在诊断脓毒症时的特异性较低[16]。Ugarte等报道,感染患者CRP浓度显著高于非感染患者,分别为12.1 mg/dL、5.6 mg/dL。区分感染和非感染的cut-off值为7.9 mg/dL,然而,该研究中约三分之一的非感染患者入院时CRP大于7.9 mg/dL[17]。CRP不仅在急性感染性疾病中显著升高,在慢性感染性疾病、慢性炎症性疾病以及创伤等状态下均会升高。同时,CRP达到平台期时间较长。因此,CRP在诊断脓毒症和脓毒性休克时存在一定的局限性[18]。
四、乳酸乳酸是一个组织灌注障碍或氧化代谢受损的标志物,低血压及微循环灌注障碍可导致乳酸大量产生。乳酸是常用于脓毒症诊断和预后评估的标志物[19],2016年Sepsis 3.0脓毒症指南将其用于定义脓毒性休克[20]。研究发现高乳酸与脓毒症患者不良预后和高病死率密切相关。Shapiro等对1278例入住急诊室的感染患者的预后研究发现,乳酸为0~2.4 mmol/L时,28天病死率为4.9%(3.5%~6.3%);乳酸为2.5~3.9mmol/L时,病死率为9.0%(5.6%~12.4%);乳酸大于4.0 mmol/L时,病死率为28.4%(21%~36%)[21]。Mikkelsen等报道入住急诊室的严重脓毒症患者血初始乳酸水平与28天病死率相关[22],Shin等也发现了相同的结果[23]。
五、细胞因子细胞因子是宿主免疫系统产生的应对感染和损伤的“检查者”,与脓毒症相关的细胞因子常见的有白细胞介素6(IL-6)、白细胞介素8(IL-8)、白细胞介素(IL-10)。研究发现,细胞因子在脓毒症和脓毒性休克复杂的病理生理学过程中起到了一定作用。其在脓毒症的诊断,病情分级和预后评估中具有重要的作用。有研究报道,IL-6可用于诊断脓毒症并判断患者预后[24],IL-8可用于判断小儿脓毒症的严重程度,IL-10与脓毒症患者病死率相关[25]。然而,目前尚没有研究证实基于细胞因子的脓毒症治疗方案可以改善患者预后,且细胞因子诊断脓毒症的敏感性和特异性均不及PCT和CRP。
六、中性粒细胞CD64中性粒细胞CD64(nCD64)是免疫球蛋白G(IgG)Fc段的高亲和力受体,主要分布于单核细胞、淋巴细胞、巨噬细胞等表面,是一个细菌感染早期表达的免疫标志物。当受到微生物等因素刺激时,nCD64表达上调,4~6 h即开始升高,22 h达到峰值,持续超过24 h[26]。Icardi等报道nCD64在鉴别细菌感染方面有较高的优势,诊断的敏感性和特异性分别高达94.6%、88.7%[27]。nCD64在诊断脓毒症方面也优势明显[28],一项纳入7个研究共2213例脓毒症新生儿的荟萃分析结果显示,nCD64诊断新生儿脓毒症的敏感性和特异性分别为80%、83%,诊断的AUC为0.88[29]。
七、人肾上腺髓质素前体人肾上腺髓质素前体(Proadrenomedullin,ProADM)与PCT同属于降钙素肽总科,ProADM具有强力的血管舒张作用,当机体发生炎症和感染时表达增加。研究发现ProADM在脓毒症、呼吸道感染、肺炎、心力衰竭和心肌梗死时大量增加[30]。此外,ProADM也被证实可用于评估脓毒症患者的病情严重程度及预后[31]。
除上述生物标志物以外,尚有其他生物标志物如可溶性尿激酶型纤溶酶原激活物受体(suPAR)、单核细胞趋化蛋白1(MCP-1)、肝素结合蛋白(heparin-binding protein,HBP)、穿透素3(Pentraxin-3,PTX-3)、免疫球蛋白等新型标志物。它们可以协助脓毒症的早期识别、病情严重度评估、预后判断及评价干预措施的效果,但各自也有相应的局限性,需要联合使用才能提高应用的价值,还有待更多的研究。
| [1] |
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
| [2] |
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations[J]. Am J Respir Crit Care Med, 2016, 193(3): 259-272. DOI:10.1164/rccm.201504-0781OC |
| [3] |
Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013, 39(2): 165-228. DOI:10.1007/s00134-012-2769-8 |
| [4] |
Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock[J]. Crit Care Med, 2006, 34(6): 1589-1596. DOI:10.1097/01.CCM.0000217961.75225.E9 |
| [5] |
Shozushima T, Takahashi G, Matsumoto N, et al. Usefulness of Presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome[J]. J Infect Chemother, 2011, 17(6): 764-769. DOI:10.1007/s10156-011-0254-x |
| [6] |
Vodnik T, Kaljevic G, Tadic T, et al. Presepsin (sCD14-ST) in preoperative diagnosis of abdominal sepsis[J]. Clin Chem Lab Med, 2013, 51(10): 2053-2062. |
| [7] |
Zheng Z, Jiang L, Ye L, et al. The accuracy of Presepsin for the diagnosis of sepsis from SIRS: a systematic review and meta-analysis[J]. Ann Intensive Care, 2015, 5(1): 48. DOI:10.1186/s13613-015-0089-1 |
| [8] |
Liu B, Chen YX, Yin Q, et al. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department[J]. Crit Care, 2013, 17(5): 244. DOI:10.1186/cc13070 |
| [9] |
Behnes M, Bertsch T, Lepiorz D, et al. Diagnostic and prognostic utility of soluble CD 14 subtype (Presepsin) for severe sepsis and septic shock during the first week of intensive care treatment[J]. Crit Care, 2014, 18(5): 507. DOI:10.1186/s13054-014-0507-z |
| [10] |
Masson S, Caironi P, Spanuth E, et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial[J]. Crit Care, 2014, 18(1): 6. DOI:10.1186/cc13183 |
| [11] |
Caironi P, Masson S, Spanuth E, et al. Compared values of Presepsin (sCD14-ST) and procalcitonin as early markers of outcome in severe sepsis and septic shock: A preliminary report from the Albumin Italian Outcome Sepsis (ALBIOS) study[J]. Critical Care, 2013, 17: 13. |
| [12] |
Wacker C, Prkno A, Brunkhorst FM, et al. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis[J]. Lancet Infect Dis, 2013, 13(5): 426-435. DOI:10.1016/S1473-3099(12)70323-7 |
| [13] |
de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial[J]. Lancet Infect Dis, 2016, 16(7): 819-827. DOI:10.1016/S1473-3099(16)00053-0 |
| [14] |
Chu DC, Mehta AB, Walkey AJ. Practice Patterns and Outcomes Associated With Procalcitonin Use in Critically Ill Patients With Sepsis[J]. Clin Infect Dis, 2017, 64(11): 1509-1515. DOI:10.1093/cid/cix179 |
| [15] |
Anand D, Das S, Bhargava S, et al. Procalcitonin as a rapid diagnostic biomarker to differentiate between culture-negative bacterial sepsis and systemic inflammatory response syndrome: a prospective, observational, cohort study[J]. J Crit Care, 2015, 30(1): 218.e7-218.e12. DOI:10.1016/j.jcrc.2014.08.017 |
| [16] |
Povoa P, Coelho L, Almeida E, et al. C-reactive protein as a marker of infection in critically ill patients[J]. Clin Microbiol Infect, 2005, 11(2): 101-108. DOI:10.1111/j.1469-0691.2004.01044.x |
| [17] |
Ugarte H, Silva E, Mercan D, et al. Procalcitonin used as a marker of infection in the intensive care unit[J]. Crit Care Med, 1999, 27(3): 498-504. DOI:10.1097/00003246-199903000-00024 |
| [18] |
Henriquez-Camacho C, Losa J. Biomarkers for sepsis[J]. Biomed Res Int, 2014, 547818. |
| [19] |
Moran JL, Santamaria J. Reconsidering lactate as a sepsis risk biomarker[J]. PLoS One, 2017, 12(10): e0185320. DOI:10.1371/journal.pone.0185320 |
| [20] |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016[J]. Intensive Care Med, 2017, 43(3): 304-377. DOI:10.1007/s00134-017-4683-6 |
| [21] |
Shapiro NI, Howell MD, Talmor D, et al. Serum lactate as a predictor of mortality in emergency department patients with infection[J]. Ann Emerg Med, 2005, 45(5): 524-528. DOI:10.1016/j.annemergmed.2004.12.006 |
| [22] |
Mikkelsen ME, Miltiades AN, Gaieski DF, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock[J]. Crit Care Med, 2009, 37(5): 1670-1677. DOI:10.1097/CCM.0b013e31819fcf68 |
| [23] |
Shin TG, Jo IJ, Hwang SY, et al. Comprehensive Interpretation of Central Venous Oxygen Saturation and Blood Lactate Levels During Resuscitation of Patients With Severe Sepsis and Septic Shock in the Emergency Department[J]. Shock, 2016, 45(1): 4-9. DOI:10.1097/SHK.0000000000000466 |
| [24] |
Kellum JA, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study[J]. Arch Intern Med, 2007, 167(15): 1655-1663. DOI:10.1001/archinte.167.15.1655 |
| [25] |
Wong HR, Cvijanovich N, Wheeler DS, et al. Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock[J]. Am J Respir Crit Care Med, 2008, 178(3): 276-282. DOI:10.1164/rccm.200801-131OC |
| [26] |
Mancardi DA, Albanesi M, Jonsson F, et al. The high-affinity human IgG receptor FcgammaRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy[J]. Blood, 2013, 121(9): 1563-1573. DOI:10.1182/blood-2012-07-442541 |
| [27] |
Icardi M, Erickson Y, Kilborn S, et al. CD64 index provides simple and predictive testing for detection and monitoring of sepsis and bacterial infection in hospital patients[J]. J Clin Microbiol, 2009, 47(12): 3914-3919. DOI:10.1128/JCM.00628-09 |
| [28] |
Taneja I, Reddy B, Damhorst G. Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis[J]. Su Rep, 2017, 7(1): 10800. |
| [29] |
Dai J, Jiang W, Min Z, et al. Neutrophil CD64 as a diagnostic marker for neonatal sepsis: Meta-analysis[J]. Adv Clin Exp Med, 2017, 26(2): 327-332. |
| [30] |
Grolimund E, Kutz A, Marlowe RJ, et al. Long-term Prognosis in COPD Exacerbation: Role of Biomarkers, Clinical Variables and Exacerbation Type[J]. Copd, 2015, 12(3): 295-305. |
| [31] |
Schuetz P, Aujesky D, Muller C, et al. Biomarker-guided personalised emergency medicine for all - hope for another hype?[J]. Swiss Med Wkly, 2015, 145: w14079. |
2018, Vol. 2

