高级检索
  实用休克杂志  2018, Vol. 2Issue (1): 4-7  

引用本文 [复制中英文]

张劲松, 李伟, 陈旭峰, 梅勇, 吕金如. 静脉-动脉体外膜肺氧合治疗心源性休克[J]. 实用休克杂志, 2018, 2(1): 4-7.
Zhang Jinsong, Li Wei, Chen Xufeng, Mei Yong, Lv Jinru. Application of VA-ECOM in patients with cardiac shock Case Report[J]. Journal of Practical Shock, 2018, 2(1): 4-7.

通信作者

张劲松, Email:zhangjso@sina.com

文章历史

收稿日期:2017-09-07
静脉-动脉体外膜肺氧合治疗心源性休克
张劲松 , 李伟 , 陈旭峰 , 梅勇 , 吕金如     
江苏省人民医院急诊医学中心
摘要:心源性休克是诸多疾病发展过程中的严重的临床症候群,目前心源性休克院内死亡率仍高达30~50%,静脉-动脉体外膜肺氧合(Artery-venous extracorporeal membrane oxygenation,VA-ECMO)作为体外心肺机械支持的一种方式已逐步应用于心源性休克的治疗。本文从心源性休克病理生理机制、VA-ECMO适应证、禁忌证、并发症及VA-ECMO治疗心源性休克的循证医学证据等几个方面进行介绍。
关键词心源性休克    静脉-动脉体外膜肺氧合         
Application of VA-ECOM in patients with cardiac shock Case Report
Zhang Jinsong , Li Wei , Chen Xufeng , Mei Yong , Lv Jinru     
Emergency Department of Jiangsu Provincial People's Hospital. Nanjing, Jiangsu, China
Abstract: Cardiogenic shock is a serious clinical syndrome in the development of many diseases. At present, the in-hospital mortality in cardiogenic shock is still as high as 30~50%, and the artery-venous extracorporeal membrane oxygenation (VA-ECMO) As a method of cardiopulmonary mechanical support in vitro, it has been gradually applied to the treatment of cardiogenic shock. This article reviews several aspects including cardiogenic shock pathophysiology, VA-ECMO indications, contraindications, complications, and EV-ECMO evidence-based medical evidence for cardiogenic shock.
Key words: Cardiogenic shock    Vein-arterial extracorporeal membrane oxygenation    VA-ECMO    

心源性休克是一种危及生命的急危重症,尽管予以原发病、正性肌力药物、血管活性药物、机械通气等治疗,其院内死亡率仍高达30%~50%[1-2]。心源性休克突出表现为血流量、氧供及组织灌注下降,早在1937年即有动物实验验证了这一点[3]。同年Gibbon等首次报道在人为阻断肺动脉的动物模型中应用人工体外循环支持[4],这被视为体外机械支持的里程碑,也是体外膜肺氧合的雏形。1972年Hill及其团队首次报道了临床上利用体外膜肺氧合技术治疗创伤后呼吸衰竭的患者获得成功[5]。从此这一技术开始逐步在临床中用于呼吸及循环衰竭的患者,根据脏器保护需求不同,静脉-静脉体外膜肺氧合(VV-ECMO)主要用于呼吸衰竭的患者,而VA-ECMO主要用于循环衰竭或呼吸循环均严重受累的患者[6]。本文主要针对VA-ECMO在心源性休克患者中的应用综述分析如下。

一、心源性休克的病理生理机制

心源性休克作为一个临床综合征,是诸多疾病的最终临床表现状态,如急性心肌梗死、爆发性心肌炎、Takotsubo综合征、急性肺栓塞、顽固性心律失常、围产期心肌病、失代偿瓣膜病等[7]。值得注意的是,心源性休克不仅仅是心脏本身泵功能的衰竭,更重要的是继发于组织低灌注引起的脑、肝、肾、肠道等重要脏器的功能障碍[8],伴随出现代谢性酸中毒、凝血功能障碍等。上述机制互为因果形成恶性循环[9]。心源性休克的药物治疗主要包括正性肌力药物、血管活性药物等,均为提高心肌收缩力、增加心输出量、维持组织灌注。但正性肌力药物增加心肌氧耗和心室率,还有致心律失常的副作用[10]。β肾上腺素能受体激动剂增加ATP耗竭、氧化应激等,血管活性药物增加心肌后负荷,降低周围组织灌注等。鉴于此,目前指南仅建议心源性休克时短期应用上述药物[611],对于顽固性或病程较长心源性休克建议予以机械支持治疗[12]

二、VA-ECMO的适应证与禁忌证 (一) VA-ECMO的适应证

VA-ECMO多用于病因可逆的心源性休克患者,如爆发性心肌炎、急性心肌梗死的机械并发症、心脏外科术前一过性桥接治疗、心脏外科术后顽固性心源性休克等[13]。对于不可逆终末期心脏病,VA-ECMO还可作为等待心脏移植供体的一种过渡治疗措施[14]

(二) VA-ECMO的禁忌证

VA-ECMO唯一绝对禁忌证是不利于恢复的基础疾病,如严重神经系统损伤和终末期恶性肿瘤,若患者合并重度主动脉关闭不全也不宜行VA-ECMO[15]。对于中枢神经系统以外的其他部位的不可控制性出血,VA-ECMO仅是相对禁忌证,现已有多个中心报道在出血高危患者行无抗凝ECMO治疗[16-17]

三、VA-ECMO用于心源性休克的循证医学证据 (一) VA-ECMO用于心源性休克的动物实验

Brehm等在建立心源性休克猪模型后发现LAD血流速较基础流速明显下降(50±33 ml/min VS 28±25 ml/min, P=0.06),在给予预计心排量50%的血流量VA-ECMO支持后,LAD血流量可升至40±41ml/min(P=0.02),在给予预计心排量100%的血流量VA-ECMO支持后,LAD血流量可升至67±50 ml/min,较基础流速明显提高(P=0.003),同时CVP、LAP、LVEDP等前后无统计学差异[18]。值得注意的是,该实验为自身前后对照,没有设置洗脱时间,不能除外前次病理生理状态对后续循环支持结果有无影响,不排除可能一定程度抵消ECMO支持的获益。我国学者在心肌梗死心源性休克猪模型中发现4小时后ECMO组左室等容舒张期压力下降速率高于药物组(406.3±19.6VS288.1±25.8, P=0.021),随着时间延长,差异愈发显著,6小时后ECMO组LVEDP小于药物组(P<0.05),随着时间延长,差异愈发显著。但左室等容收缩期压力上升速率两组间未观察到统计学差异。同时ECMO组心肌标志物水平也显著低于药物治疗组[19]。这一结果是否提示ECMO更多改善心脏舒张功能,可能与ECMO提供更高的冠脉灌注有关。Ostadal等在心源性休克猪模型中发现随着VA-ECMO支持条件的提高(1 L/min→5 L/min),SBP由60±7 mmHg升高至97±8 mmHg(P<0.001),与之相反的是CO(2.8±0.3 L/min VS 1.86±0.53 L/min, P<0.001)、LVEDV(64±11 mlVS83±14 ml, P<0.001)、LVEF(43±3% VS 32±3%, P<0.01)均降低[20]。这一研究结果提示VA-ECMO保证脏器最低氧合和灌注时,尽量降低ECMO血流量。因为ECMO治疗力度越高,其血流量越大,势必增加左室后负荷,随之左室充盈压、室壁张力等上升,可能加重左室功能障碍、肺淤血等[202122]

(二) VA-ECMO用于心源性休克的临床研究

目前尚没有关于VA-ECMO用于心源性休克的多中心随机对照临床试验,仅有单中心临床试验和案例报道探索其临床应用价值。Smedira等报道200例VA-ECMO支持治疗的心源性休克患者30天存活率为38%,5年存活率24%[23]。Combes等分析81例VA-ECMO支持治疗的心源性休克患者,34例患者存活出院,57%患者发生下列并发症:出血、动脉缺血、卒中、切口感染、股静脉血栓[24]。随着介入技术的发展,VA-ECMO也越来越多的应用于急性冠脉综合征合并顽固性心源性休克的患者。Esper等连续入组18例急性冠脉综合征合并心源性休克患者,实施VA-ECMO支持治疗,67%患者存活出院,6%患者发生卒中,22%患者发生肢体缺血,超过90%患者接收血制品输注[25]。Bermudez等入组42例VA-ECMO支持治疗的患者,33例确诊急性心肌梗死,9例为急性失代偿期心力衰竭,两者30天存活率分别为64%、56%。Tang等报道了60例继发于急性心肌梗死的心源性休克患者,在VA-ECMO支持治疗后,30天死亡率24%,ECMO相关血源性感染发生率14%,出血发生率10%,卒中发生率5%,多脏器功能衰竭发生率5%[26]

VA-ECMO还广泛应用于外科领域,特别是心脏外科围手术期支持治疗。Rastan等报道了500例心脏外科术后VA-ECMO支持治疗的患者,其中63%成功脱离ECMO,25%存活出院,但17%患者发生卒中,65%需要肾脏替代治疗[27]。Maziar等报道了24例心脏外科术后顽固性心源性休克患者,接收VA-ECMO支持治疗后,出院存活率40.7%,10例患者发生ECMO相关大出血,7例患者需要肾脏替代治疗,5例患者发生致命性卒中,2例患者发生感染性休克,1例患者在股动脉穿刺处发生假性动脉瘤[28]

目前ECMO也用于院内外心脏骤停患者复苏,但囿于临床证据有限,2015年AHA发布的CPR指南对CPR患者行ECMO支持治疗推荐级别仅为Class Ⅱb,LOE C-LD[29]。一项前瞻性观察研究入组了172例IHCA患者,发现CPR超过10 min的患者中,VA-ECMO支持治疗能够提高出院存活率(P<0.0001),30天存活率(P=0.003)及1年存活率(P=0.006),但是ECMO没有改善神经系统预后[30]。回顾性观察研究入组120例CPR超过10 minIHCA患者,发现VA-ECMO支持治疗改善出院存活率(P=0.026)、神经功能预后(P=0.012)及6个月存活率(P=0.013)[31]

四、VA-ECMO的并发症 (一) 非特异性并发症 1. 出血

接收ECMO治疗的患者出血发生率为30%~50%,并可能危及生命[32],其原因包括血小板功能障碍、ECMO期间持续抗凝,一旦发生出血,通常降低ACT目标范围,如果出血不易控制,可考虑无抗凝维持ECMO运转[33]

2. 血栓栓塞

体外管路内血栓形成并脱落后进入体循环可能造成灾难性后果,对于大多数患者,通过有效抗凝能够预防管路内血栓形成。

3. 神经系统损伤

根据ELSO登记数据,接收ECMO治疗的呼吸功能衰竭成人患者神经系统损伤发生率为10%。在CPR过程中接收ECMO治疗的循环衰竭患者中,神经系统发生率为50%[34-35]

4. 置管并发症

在ECMO置管期间可出现血管穿孔、动脉夹层、远端肢体缺血或置管位置不当等[36]

5. 肝素诱导血小板减少症

ECMO治疗期间需给予持续肝素抗凝,可出现肝素诱导血小板减少症,一旦证实为HIT,应使用非肝素类抗凝药物代替肝素输注[37]

(二) 特异性并发症 1. 肺水肿

VA-ECMO治疗期间由于左室后负荷增加,冠脉灌注压力下降,左室充盈压增加,排空受限,可发生肺水肿和肺出血,当左房压力超过25 mmHg时,即会发生肺水肿[21]

2. 心脏内血栓形成

VA-ECMO治疗期间,由于升主动脉存在逆向血流,如果不能维持左室输出量,可能出现心腔内血流缓慢、停滞,从而导致心腔内血栓形成。

3. 心脑缺氧

VA-ECMO治疗期间,ECMO回路富氧的血液优先灌注下肢和腹腔脏器,从心脏射出的血液选择性灌注心脏、脑和上肢,两股相向血流相交的“分水岭”,一般位于主动脉根部和横膈之间,其具体位置平面取决于两股血流压力阶差,因此,若患者基础心功能较差,可能存在心脏、脑及上肢,尤其是右上肢灌注不足[38]。为了避免这一并发症发生,可通过向右心房输注部分氧合后的血流,称为VAV-ECMO。

五、VA-ECMO治疗心源性休克的应用前景

随着越来越多的医学中心引入ECMO技术,越来越多的ECMO团队应运而生,作为目前最有力的心肺支持装置,有理由,也有信心相信ECMO会给临床和患者争取更多的时间。当然关于ECMO启动时机、ECMO适应症、ECMO预后预测指标等目前还未取得共识,仍需要更多的临床试验进一步探索。

参考文献
[1]
Reyentovich A, Barghash MH, Hochman JS. Management of refractory cardiogenic shock[J]. Nat Rev Cardiol, 2016, 13(8): 481-492. DOI:10.1038/nrcardio.2016.96
[2]
Wayangankar SA, Bangalore S, McCoy LA, et al. Temporal trends and outcomes of patients undergoing percutaneous coronary interventions for cardiogenic shock in the setting of acute myocardial infarction: a report from the CathPCI registry[J]. JACC Cardiovasc Interv, 2016, 9(4): 341-351. DOI:10.1016/j.jcin.2015.10.039
[3]
Gibbon JH Jr. Artificial maintenance of circulation during experimental occlusion of pulmonary artery[J]. Arch Surg, 1937, 34: 1105-1131. DOI:10.1001/archsurg.1937.01190120131008
[4]
Gibbo JH. Artifical maintenance of circulation during experimental occlusion of pulmonary artery[J]. Arch Surg, 1937, 34: 1105-1131. DOI:10.1001/archsurg.1937.01190120131008
[5]
Hill JD, O'Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure(shock-lung syndrome)[J]. Use of the Bramson membrane lung. N Engl J Med, 1972, 286: 629-634.
[6]
Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement ong the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention[J]. J Am Coll Cardiol, 2015, 65: e7-26. DOI:10.1016/j.jacc.2015.03.036
[7]
Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes[J]. Circulation, 2008, 117: 686-697. DOI:10.1161/CIRCULATIONAHA.106.613596
[8]
Prondzinsky R, Werdan K, Buerke M. Cardiogenic shokc: pathophysiology, clinics, therapeutical options and perspectices[J]. Internist(Berl), 2004, 45: 284-295. DOI:10.1007/s00108-003-1139-6
[9]
Cooper HA, Panza JA. Cardiogenic shock[J]. Cardiol Clin, 2013, 31: 567-580. DOI:10.1016/j.ccl.2013.07.009
[10]
Liaudet L, Calderrari B, Pacher P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity[J]. Heart Fail Rev, 2014, 19: 815-824. DOI:10.1007/s10741-014-9418-y
[11]
Ponikowski P, Voors AA, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology(ESC) Developed with the special contribution of the Heart Failure Association(HFA) of the ESC[J]. Eur Heart J, 2016, 37: 2129-2200. DOI:10.1093/eurheartj/ehw128
[12]
Werdan K, Gileln S, Ebelt H, et al. Mechanical circulatory support in cardiogenic shock[J]. Eur Heart J, 2014, 35: 156-167. DOI:10.1093/eurheartj/eht248
[13]
Kim H, Lim SH, Hong J, et al. Efficacy of veno-arterial extracorporeal membrane oxygenation in acute myocardial infarction with cardiogenic shock[J]. Resuscitation, 2012, 83(8): 971-975. DOI:10.1016/j.resuscitation.2012.01.037
[14]
Delnoij TS, Wetzels AE, Weerwind PW, et al. Peripheral venarterial extracorporeal life support despite impending left ventricular thrombosis: a bridge to resolution[J]. J Cardiothorac Vasc Anesth, 2013, 27(4): e48-49. DOI:10.1053/j.jvca.2013.03.018
[15]
Marasco SF, Lukas G, McDonald M, et al. Review of ECMO support in critically ill adult patients[J]. Heart Lung Circ, 2008, 17(Suppl 4): S41-47.
[16]
Arlt M, Philipp A, Voelkel S, et al. Extracorporeal membrane oxygenation in severe trauma patients with bleeding shock[J]. Resuscitaiton, 2010, 81: 804-809. DOI:10.1016/j.resuscitation.2010.02.020
[17]
Abrams D, Agerstrand CL, Biscotti M, et al. Extracorporeal membrane oxygenation in the management of diffuse alveolar hemorrhage[J]. ASAIO J, 2015, 61: 216-218. DOI:10.1097/MAT.0000000000000183
[18]
Christoph Brehm, Sarah Schubert, Elizabeth Carney, et al. Left anterior descending coronary artery blood flow and left ventricular unloading during extracorporeal membrane oxygenation support in a swine model of acute cardiogenic shock[J]. Artificial Organs, 2015, 39(2): 171-176. DOI:10.1111/aor.2015.39.issue-2
[19]
Gang-jie Zhu, Li-na Sun, Xing-hai Li, et al. Myocardial protection of early extracorporeal membrane oxygenation(ECMO) support for acute myocardial infarction with cardiogenic shock in pigs[J]. Heart Vessels. DOI:10.1007/s00380-014-0564
[20]
Petr Ostadal, Mikulas Mlcek, Andreas Kruger, et al. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock[J]. Journal of Translational Medicine, 2015, 13: 266-272. DOI:10.1186/s12967-015-0634-6
[21]
Burkhoff D, Naidu SS. The science behind percutaneous hemodynamic support: a review and comparison of support strategies[J]. Catheter Cardiovasc Interv, 2012, 80: 816-829. DOI:10.1002/ccd.24421
[22]
Soleimani B, Pae WE. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock[J]. Perfusion, 2012, 27: 326-331. DOI:10.1177/0267659112443722
[23]
Smedira NG, Blackstone EH. Postcardiotomy mechanical support: risk factors and outcomes[J]. Ann Thorac Surg, 2001, 71: 60. DOI:10.1016/S0003-4975(00)02626-6
[24]
Combes A, Leprince P, Luyt CE, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock[J]. Crit Care Med, 2008, 36: 1404-1411. DOI:10.1097/CCM.0b013e31816f7cf7
[25]
Esper sa, Bermudez C, Dueweke EJ, et al. Extracorporeal membrane oxygenation support in acute coronary syndromes complicated by cardiogenic shock[J]. Catheter Cardiovasc Interv, 2015, 86: 45-50. DOI:10.1002/ccd.v86.S1
[26]
Tang GH, Malekan R, Kai M, et al. Peripheral venoarterial extracorporeal membrane oxygenation improves survival in myocardial infarction with cardiogenic shock[J]. J Thorac Cardiovasc Surg, 2013, 145: 32-33. DOI:10.1016/j.jtcvs.2012.07.113
[27]
Rastan AJ, Dege A, Mohr M, et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock[J]. J Thorac Cardiovasc Surg, 2010, 139: 302-311. DOI:10.1016/j.jtcvs.2009.10.043
[28]
Maziar Khorsandi, Scott Dougherty, Andrew Sinclair, et al. A 20-year multicenter outcome analysis of salvage mechanical circulatory support for refractory cardiogenic shock after cardiac surgery[J]. Journal of Cardiothoracic Surgery, 2016, 11: 151-161. DOI:10.1186/s13019-016-0545-5
[29]
Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2015, 132(18): 444-464.
[30]
Chen YS, Lin JW, Yu HY, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis[J]. Lancet, 2008, 372: 554-561. DOI:10.1016/S0140-6736(08)60958-7
[31]
Shin TG, Choi JH, Sim MS, et al. Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: A comparison with conventional cardiopulmonary resuscitation[J]. Crit Care Med, 2011, 39: 1-7.
[32]
Mazzeffi M, Greenwood J, Tanaka K, et al. Bleeding, transfusion and mortality on extracorporeal life support: ECLS Working Group on Thrombosis and Hemostasis[J]. Ann Thorac Surg, 2016, 101(2): 682-689. DOI:10.1016/j.athoracsur.2015.07.046
[33]
Anselmi A, Guinet P, Ruggieri VG, et al. Safety of recombinant factor VIIa in patients under extracorporeal membrane oxygenation[J]. Eur J Cardiothorac Surg, 2016, 49(1): 78-84. DOI:10.1093/ejcts/ezv140
[34]
Brogan TV, Thiagarajan RR, Rycus PT. Extracorporeal membrane oxygenation in adults with severe respiratory failure: a mulit-center database[J]. Intensive Care Med, 2009, 35(12): 2105. DOI:10.1007/s00134-009-1661-7
[35]
Mateen FJ, Muralidharan R, Shinohara RT, et al. Neurological injury in adults treated with extracorporeal membrane oxygenation[J]. Arch Neurol, 2011, 68(12): 1543-1549. DOI:10.1001/archneurol.2011.209
[36]
Rupprecht L, Lunz D, Philipp A, et al. Pitfalls in percutaneous ECMO cannulation[J]. Heart Lung Vessel, 2015, 7: 320-326.
[37]
Cornell T, Wyrick P, Fleming G, et al. A case series describing the use of argatroban in patients on extracorporeal circulation[J]. Asaio J, 2007, 53(4): 460. DOI:10.1097/MAT.0b013e31805c0d6c
[38]
Napp LC, Kuhn C, Hoeper MM, et al. Cannulation strategies for percutaneous extracorporeal membrane oxygenation in adults[J]. Clin Res Cardiol, 2016, 105: 283-296. DOI:10.1007/s00392-015-0941-1