全身性感染和感染性休克是机体在感染时宿主防御反应下降所导致威胁生命的器官功能不全,给予足够的前负荷是此类疾病血流动力学优化的基础[1]。虽然国际拯救脓毒症运动对全身性感染和感染性休克指南不断更新[2-5],但是目前在临床实践中的液体复苏仍没有一个完善的标准[6, 7]。很显然临床中液体复苏的趋势越来越激进,甚至远远超出了早期指南中的推荐意见。这种激进的液体复苏,针对血流动力学不稳定患者,有助于纠正低血容量,在全身性感染早期改善组织低灌注[8-10]。但与此同时部分病人不可避免可能存在液体输入过多的风险[11],从而影响预后。本文结合全身性感染患者早期的病理生理学特点,对于液体复苏的合理性和安全性进行了讨论。
一、积极液体复苏的理论依据首先,液体复苏是补充血液中丢失的液体。由于多种因素包括发热、胃肠丢失和炎症导致间质水肿等,血容量减少是全身性感染患者最常见的病理生理学改变[12-13]。此外,炎症介质所导致的血管舒张会进一步引起有效血容量不足,从而需要补充更多的液体。很显然容量不足持续存在会引起低灌注、血流动力学不稳定以及后续的多器官功能障碍综合征[14-15]。因此,全身性感染和感染性休克早期积极的液体复苏对于纠正循环容量不足是合理的。
其次,Frank-Starling定律提供了液体复苏的理论依据。基于这个理论,左心室每搏量(SV)或心输出量(CO)在前负荷绝对降低时对液体复苏呈正反应(SV在Frank-Starling曲线的上升支)。然而,这种量效关系的变化或拐点在全身性感染状态下并不明确[16-17]。现阶段对液体复苏的指导目标仍停留在20世纪末共识,感染性休克早期液体复苏的目标是恢复组织灌注,其临床终点标志包括如心率、尿量、血压和心输出量等[18]。因此,液体复苏反应阳性,一般指在15~30分钟内快速输入200~500 mL液体而CO有明显增加,临床解释为需要继续输入液体以能够进一步提高心输出量来改善组织灌注。对液体复苏反应的这种解读,也可作为液体复苏的第三个理论依据。
二、液体复苏过多及其安全性关注EGDT研究[19]是感染性休克液体复苏治疗的一个里程碑。在这项随机对照研究中,休克发生6小时内与对照组相比,EGDT组平均多输入1.5 L液体(4981±2984 vs 3499±2438, p<0.001),显著降低乳酸浓度,减轻了器官功能障碍严重程度,提高了生存率。在随后的一项单中心以及国内的多中心前瞻性随机对照研究中均得到了良好验证[20-21]。因而EGDT成为2004年国际拯救脓毒症运动指南的核心内容[4]。此后陆续有研究采用更快、更大量的液体复苏以纠正感染性休克患者组织灌注不足或器官功能障碍[12, 22-27]。在一项观察性研究中,Smith和Perner发现在感染性休克患者中前3天更多的液体复苏(>7.5 L)与相对较低的液体复苏组(<7.5 L)相比,降低了患者的90天死亡率[12]。随着更多相关研究的发表,在后续的全身性感染和感染性休克管理指南修订版本中,早期液体复苏的总量不断增加[5-7]。在最近的两次更新中,对疑似全身性感染特别是低血容量或初始血乳酸浓度≥4 mmol/ L的患者,初始液体复苏的总量达到30 mL/kg的晶体液,并要求在3小时内输入[6, 7]。在指南的推荐下,早期液体复苏治疗全身性感染患者成为了常规。在一项对全身性感染和感染性休克患者液体治疗的回顾性研究中,前24小时液体正平衡超过6 000 mL的患者比例达43.1%[8]。然而,最近三项关于EGDT的随机对照研究中(ProCESS, ARISE and ProMISE)并未能证明其对全身性感染患者预后产生影响[28-30]。另一方面在不同类型全身性感染患者中,研究发现累计的液体正平衡是器官功能障碍甚至影响预后的独立危险因素[11, 28-31]。Sakr Y等[32]发现全身性感染患者累积液体正平衡越多其急性肺损伤或急性呼吸窘迫综合征发病越高。Boyd JH等[8]报道,液体正平衡越多,无论在复苏早期或累计4天,都与感染性休克死亡风险增加相关。已有大量研究表明液体负平衡与感染性休克死亡率降低密切相关[33-35]。然而在临床实践中,从一项全球性的观察性研究(FENICE study)表明,无论对液体复苏有无反应性,约有半数病人都被给予了额外的液体[10]。因此,早期积极的液体复苏对于改善血流动力学与降低其输入过多所带来的危害,是目前在全身性感染患者管理中的一个巨大挑战。
三、多少液体是足够的?全身性感染的病理生理学机制是复杂的,全身性感染患者的血流动力学特点超出了Frank-Starling定律。许多研究证实液体反应性呈阳性的全身性感染患者不足50%[10, 36]。此外,炎症介质对细胞的损伤引起通透性以及糖萼的变化往往导致全身性感染患者液体负荷过高损伤器官功能[1, 37, 38]。积极的液体复苏在改善血液动力学同时并不一定总是有利于器官功能和预后[39]。例如,在ProCESS研究中,标准治疗组的患者其新发急性肾损伤需要肾脏替代治疗比例明显高于其它两组,而这组患者中平均输入液体量超过其余两组400~900 mL[28]。毫无疑问,这样的激进液体复苏会使得危重患者面临液体过负荷所带来的诸多风险[40]。因此,全身性感染患者中液体复苏优化前负荷需要一条安全线。
然而,恰当的液体复苏目标或者最大容量复苏仍旧是全身性感染患者早期液体复苏最大的挑战。首先,现有用于评估容量的方法都只能间接反应容量状态。无论是CVP、Pawp或左心室舒张末期的直径,这些指标只是定量液体输入后对心脏的影响而不是细胞[41、42]。第二,并不是液体复苏阳性就能改善容量不足所致组织灌注障碍或者炎症介质对细胞的损伤[43]。液体治疗的更好指标需要通过动态变化来评估,例如PPV、SVV、ScvO2、Pv-aCO2[44-46]。但在临床实践中的有效性仍存争议。第三,在炎症介质作用下不同器官对液体的实际需求表现出明显的异质性。很难在不同器官之间对输液所致影响保持平衡。例如,对于肾脏灌注的液体优化很可能对肺产生容量过负荷而造成损害[32, 47]。因此,临床需要更好的方法来评估细胞或不同器官对容量的需求以优化全身性感染患者的液体治疗。
器官功能的变化可能会作为全身性感染液体治疗优化的标志物。Caltabeloti等报道,感染性休克患者肺通气受损意味着液体过负荷[48]。有研究发现早期液体复苏虽然暂时性改善了血流动力学和氧合,但通过肺超声检查发现其与肺通气减少呈正相关。但是,肺并不是对液体过负荷耐受最差的器官。通过液体复苏并不能增加感染性休克胃肠粘膜灌注也没有改善临床预后[49]。如果通过肺的变化来调节液体平衡,对液体治疗的反应,神经系统和胃肠功能是否与肾脏一样目前尚不清楚。因此,一个用于评估重要器官之间对液体耐受的参数也许是指导全身性感染和感染性休克液体复苏的新方法。
四、结论液体复苏是全身性感染和感染性休克患者纠正低血容量的基础。对于早期液体复苏现阶段临床上更关注的是血流动力学稳定而不是器官功能的变化。很显然,远超指南推荐意见的液体复苏是全身性感染患者液体过多的危险因素,已有大量研究表明这液体过负荷会影响患者预后。但是,作者对全身性感染早期液体复苏往往是优先考虑血流动力学稳定,而不是器官功能变化。因此,在临床实践中需要一条液体复苏的安全线,这将是对全身性感染患者液体复苏治疗的巨大进步。
| [1] |
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
| [2] |
Levy MM, Rhodes A, Phillips GS, et al. Surviving Sepsis Campaign:association between performance metrics and outcomes in a 7.5-year study[J]. Intensive Care Med, 2014, 40(11): 1623-1633. DOI:10.1007/s00134-014-3496-0 |
| [3] |
Levy MM, Artigas A, Phillips GS, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe:a prospective cohort study[J]. Lancet Infect Dis, 2012, 12(12): 919-924. DOI:10.1016/S1473-3099(12)70239-6 |
| [4] |
Dellinger RP, Carlet JM, et al. Surviving Sepsis Campaign guideline for management of severe sepsis and septic shock[J]. Crit Care Med, 2004, 32(3): 858-873. DOI:10.1097/01.CCM.0000117317.18092.E4 |
| [5] |
Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock:2008[J]. Crit Care Med, 2008, 36(1): 296-327. DOI:10.1097/01.CCM.0000298158.12101.41 |
| [6] |
Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock 2012[J]. Intensive Care Med, 2013, 39(2): 165-228. DOI:10.1007/s00134-012-2769-8 |
| [7] |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign:International Guidelines for Management of Sepsis and Septic Shock:2016[J]. Intensive Care Med, 2017, 43(3): 304-377. DOI:10.1007/s00134-017-4683-6 |
| [8] |
Boyd JH, Forbes J, Nakada T-A, et al. Fluid resuscitation in septic shock:A positive fluid balance and elevated central venous pressure are associated with increased mortality[J]. Crit Care Med, 2011, 39(2): 259-265. DOI:10.1097/CCM.0b013e3181feeb15 |
| [9] |
Chang DW, Huynh R, Sandoval E, et al. Volume of fluids administered during resuscitation for severe sepsis and septic shock and the development of the acute respiratory distress syndrome[J]. J Crit Care, 2014, 29(6): 1011-1015. DOI:10.1016/j.jcrc.2014.06.005 |
| [10] |
Cecconi M, Hofer C, Teboul JL, et al. Fluid challenges in intensive care:the FENICE study:A global inception cohort study[J]. Intensive Care Med, 2015, 41(9): 1529-1537. DOI:10.1007/s00134-015-3850-x |
| [11] |
Kelm DJ, Perrin JT, Cartin-Ceba R, et al. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death[J]. Shock, 2015, 43(1): 68-73. DOI:10.1097/SHK.0000000000000268 |
| [12] |
Søren H Smith, Anders Perner. Higher vs. lower fluid volume for septic shock:clinical characteristics and outcome in unselected patients in a prospective, multicenter cohort[J]. Crit Care, 2012, 16(3): R76. DOI:10.1186/cc11333 |
| [13] |
Finfer S, Liu B, Taylor C, et al. Resuscitation fluid use in critically ill adults:an international cross-sectional study in 391 intensive care units[J]. Crit Care, 2010, 14(5): R185. |
| [14] |
Singer M. Management of fluid balance:a European perspective[J]. Curr Opin Anaesthesiol, 2012, 25(1): 96-101. DOI:10.1097/ACO.0b013e32834e8150 |
| [15] |
Bartels K, Thiele RH, Gan TJ. Rational fluid management in today's ICU practice[J]. Crit Care, 2013, 17(Suppl 1): S6. |
| [16] |
Byrne L, Van Haren F. Fluid resuscitation in human sepsis:Time to rewrite history[J]. Ann Intensive Care, 2017, 7: 4. DOI:10.1186/s13613-016-0231-8 |
| [17] |
Loflin R, Winters ME. Fluid Resuscitation in Severe Sepsis[J]. Emerg Med Clin North Am, 2017, 35(1): 59-74. DOI:10.1016/j.emc.2016.08.001 |
| [18] |
Hollenberg S, Ahrens T, Astiz M, et al. Practice parameters for hemodynamic support of sepsis in adult patients in sepsis[J]. Crit Care Med, 1999, 27(3): 639-660. DOI:10.1097/00003246-199903000-00049 |
| [19] |
Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock[J]. N Engl J Med, 2001, 345(19): 1368-1377. DOI:10.1056/NEJMoa010307 |
| [20] |
Early Goal-Directed Therapy Collaborative Group of Zhejiang Province. The effect of early goal-directed therapy on treatment of criticalpatients with severe sepsis/septic shock:a multi-center, prospec tive, randomized, controlled study[J]. Chin Crit Care Med, 2010, 22(6): 331-334. |
| [21] |
Lin S-M, Huang C-D, Lin H-C, et al. A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock:a randomized controlled trial[J]. Shock, 2006, 26(6): 551-557. DOI:10.1097/01.shk.0000232271.09440.8f |
| [22] |
Sebat F, Johnson D, Musthafa AA, et al. A multidisciplinary community hospital program for early and rapid resuscitation of shock in nontrauma patients[J]. Chest, 2005, 127(5): 1729-1743. DOI:10.1378/chest.127.5.1729 |
| [23] |
Trzeciak S, Dellinger RP, Abate NL, et al. Translating research to clinical practice:a 1-year experience with implementing early goal-directed therapy for septic shock in the emergency department[J]. Chest, 2006, 129(2): 225-232. DOI:10.1378/chest.129.2.225 |
| [24] |
Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality[J]. Crit Care Med, 2007, 35(4): 1105-1112. DOI:10.1097/01.CCM.0000259463.33848.3D |
| [25] |
Rivers EP, Coba V, Whitmill M. Early goal-directed therapy in severe sepsis and septic shock:a contemporary review of the literature[J]. Curr Opin Anaesthesiol, 2008, 21(2): 128-140. DOI:10.1097/ACO.0b013e3282f4db7a |
| [26] |
Early Goal-Directed Therapy Collaborative Group of Zhejiang Province. The effect of early goal-directed therapy on treatment of critical patients with severe sepsis/septic shock:a multi-center, prospective, randomized, controlled study[J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2010, 22(6): 331-334. |
| [27] |
Sivayoham N, Rhodes A, Jaiganesh T, et al. Outcomes from implementing early goal-directed therapy for severe sepsis and septic shock:a 4-year observational cohort study[J]. Eur J Emerg Med, 2012, 19(4): 235-240. DOI:10.1097/MEJ.0b013e32834bbea6 |
| [28] |
ProCESS Investigators, Yealy DM, Kellum JA, et al. A Randomized Trial of Protocol-Based Care for Early Septic Shock[J]. N Engl J Med, 2014, 370(18): 1683-1693. DOI:10.1056/NEJMoa1401602 |
| [29] |
ARISE Investigators, ANZICS Clinical Trials Group, et al. Goal-directed resuscitation for patients with early septic shock[J]. N Engl J Med, 2014, 371(16): 1496-1506. DOI:10.1056/NEJMoa1404380 |
| [30] |
Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock[J]. N Engl J Med, 2015, 372(14): 1301-1311. DOI:10.1056/NEJMoa1500896 |
| [31] |
Sirvent JM, Ferri C, Baró A, et al. Fluid balance in sepsis and septic shock as a determining factor of mortality[J]. Am J Emerg Med, 2015, 33(2): 186-189. DOI:10.1016/j.ajem.2014.11.016 |
| [32] |
Sakr Y, Vincent JL, Reinhart K, et al. Sepsis Occurence in Acutely Ill Patients Investigators. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury[J]. Chest, 2005, 128(5): 3098-3108. DOI:10.1378/chest.128.5.3098 |
| [33] |
Alsous F, Khamiees M, DeGirolamo A, et al. Negative fluid balance predicts survival in patients with septic shock:a retrospective pilot study[J]. Chest, 2000, 117(6): 1749-1754. DOI:10.1378/chest.117.6.1749 |
| [34] |
Yao B, Liu D, Wang X, et al. Negative fluid balance predicts survival in patients with septic shock[J]. Zhonghua Yi Xue Za Zhi, 2014, 94(41): 3206-3210. |
| [35] |
Sun Z, Sun F, Niu C, et al. Continuous renal replacement therapy and negative fluid balance improves renal function and prognosis of patients with acute kidney injury in sepsis[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2015, 27(5): 321-326. |
| [36] |
Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients:a critical analysis of the evidence[J]. Chest, 2002, 121(6): 2000-2008. DOI:10.1378/chest.121.6.2000 |
| [37] |
Malbrain ML, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients:a systematic review with suggestions for clinical practice[J]. Anaesthesiol Intensive Ther, 2014, 46(5): 361-380. DOI:10.5603/AIT.2014.0060 |
| [38] |
Marik P, Bellomo R. A rational approach to fluid therapy in sepsis[J]. Br J Anaesth, 2016, 116(3): 339-349. DOI:10.1093/bja/aev349 |
| [39] |
Marik PE. The demise of early goal-directed therapy for severe sepsis and septic shock[J]. Acta Anaesthesiol Scand, 2015, 59(5): 561-567. DOI:10.1111/aas.2015.59.issue-5 |
| [40] |
Vandervelden S, Malbrain ML. Initial resuscitation from severe sepsis:one size does not fit all[J]. Anaesthesiol Intensive Ther,, 2015, 47: s44-55. DOI:10.5603/AIT.a2015.0075 |
| [41] |
Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness A systematic review of the literature and the tale of seven mares[J]. Chest, 2008, 134(1): 172-178. DOI:10.1378/chest.07-2331 |
| [42] |
Malbrain ML, De Potter TJ, Dits H, et al. Global and right ventricular end-diastolic volumes correlate better with preload after correction for ejection fraction[J]. Acta Anaesthesiol Scand, 2010, 54(5): 622-631. DOI:10.1111/aas.2010.54.issue-5 |
| [43] |
Ueyama H, Kiyonaka S. Predicting the Need for Fluid Therapy-Does Fluid Responsiveness Work[J]. J Intensive Care, 2017, 5: 34. DOI:10.1186/s40560-017-0210-7 |
| [44] |
Drvar Z, Pavlek M, Drvar V, et al. Stroke volume and pulse pressure variation are good predictors of fluid responsiveness in sepsis patients[J]. Acta Med Croatica, 2013, 67(5): 407-414. |
| [45] |
Du W, Liu DW, Wang XT, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock[J]. J Crit Care, 2013, 28(6): 1110. |
| [46] |
Mallat J, Pepy F, Lemyze M, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock:a prospective observational study[J]. Eur J Anaesthesiol, 2014, 31(7): 371-380. DOI:10.1097/EJA.0000000000000064 |
| [47] |
Upadya A, Tilluckdharry L, Muralidharan V, et al. Fluid balance and weaning outcomes[J]. Intensive Care Med, 2005, 31(12): 1643-1647. DOI:10.1007/s00134-005-2801-3 |
| [48] |
Caltabeloti F, Monsel A, Arbelot C, et al. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation:a lung ultrasound observational study[J]. Crit Care, 2014, 18(3): R91. DOI:10.1186/cc13859 |
| [49] |
van Haren FM, Sleigh JW, Pickkers P, et al. Gastrointestinal perfusion in septic shock[J]. Anaesth Intensive Care, 2007, 35(5): 679-694. |
2017, Vol. 1

