文章快速检索     高级检索
  生态与农村环境学报  2017, Vol. 33 Issue (3): 225-233   DOI: 10.11934/j.issn.1673-4831.2017.03.005
0
鄱阳湖湿地典型草洲主要植物种群在5个资源环境梯度上的生态位特征
段后浪 1,2, 赵安 1,2, 姚忠 3    
1. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022;
2. 江西师范大学地理与环境学院, 江西 南昌 330022;
3. 江西省科学院, 江西 南昌 330096
摘要:基于鄱阳湖典型湿地恒湖农场茶叶港草洲19个样地(5 m×5 m)95个样方(1 m×1 m)实地调查得到的10种主要植物和高程、土壤pH值、电导率、含水量、有机质含量5个资源环境数据,采用Levins生态位宽度指数和Pianka生态位重叠指数,研究植物种群生态位宽度与重叠度。结果表明:(1)在5个资源环境梯度上,优势种灰化薹草(Carex cinerascens)和 草(Phalaris arundinacea)生态位宽度较大,群落偶见种旋鳞莎草(Cyperus michelianus)、广州蔊菜(Rorippa cantoniensis)和芦苇(Phragmites australis)等生态位宽度相对较小;(2)10种主要植物生态位重叠值普遍较小,但也存在例外,主要表现在刚毛荸荠(Eleocharis valleculosa)、旋鳞莎草和广州蔊菜3者之间的生态位重叠值相比其他物种对要高;(3)10种主要植物种群生态位宽度均与物种重要值呈显著(P < 0.05)或极显著(P < 0.01)正相关关系,而与物种重要值变异系数呈极显著负相关关系(P < 0.01)。恒湖农场茶叶港草洲10种主要植物对资源环境的利用能力和适应性差异较大,其生态位重叠值普遍较小,物种重要值是影响生态位宽度的重要因素。
关键词鄱阳湖典型湿地    植物种群    生态位宽度    生态位重叠    
Niches of the Major Plant Populations in Grasslands Typical of the Poyang Lake Wetland in Five Resources-Environmental Gradients
DUAN Hou-lang 1,2, ZHAO An 1,2, YAO Zhong 3    
1. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;
2. School of Geography and Environmental Sciences, Jiangxi Normal University, Nanchang 330022, China;
3. Jiangxi Academy of Sciences, Nanchang 330096, China
Abstract: Data of 10 dominant plant species and 5 resources-environmental factors (elevation, soil pH, electrical conductivity, water content and organic matter content) were gathered through surveys of 95 quadrates (1 m×1 m) in 19 sample plots (5 m×5 m) in the Chayegang Grassland of the Henghu Farm, typical of the Poyang Lake wetland, and analyzed for breadths and overlaps of the ecological niches of the plant populations, using the indices of Levins niche breadth and Pianka niche overlap. Results show that: (1) Carex cinerascens and Phalaris arundinacea are the dominant species in the region and have broader niche along the five resources-environmental gradients, while Cyperus michelianus, Rorippa cantoniensis, Phragmites australis and some others are accidental species and have relatively narrow niches; (2) The 10 plant species rarely overlap in niche, but exception exists with Eleocharis valleculosa, Cyperus michelianus and Rorippa cantoniensis, which overlap each other much more than the other plant species pairs; (3) Of the 10 major plant populations, niche breadth is significantly (P < 0.05) or extra-significantly (P < 0.01) and positively related to other important values, but extra-significantly (P < 0.01) and negatively related to variation coefficient of their important values. The 10 dominant plant species vary sharply in resource-environment utilization capability and adaptability to the 5 environmental factors, and are generally low in niche overlap. Importance values of the plant species are the major factors dictating niche breadth.
Key words: Poyang Lake wetland    plant population    niche breadth    niche overlap    

“生态位理论”是解析植物群落物种组成变化主要机制的理论之一, 研究植物种群生态位对于理解植物群落结构和功能、群落内物种间关系、生物多样性、群落动态演替和种群进化等方面有着重要意义[1]。目前, 对于植物种群生态位的研究主要包括生态位宽度和生态位重叠, 大都采用Levins生态位宽度指数及Pianka生态位重叠指数, 模型相对简单, 揭示的生态学意义明显[2-4]

恒湖农场茶叶港草洲位于鄱阳湖畔, 属鄱阳湖冲积平原。洲滩植被具有重要的生态功能, 不仅在生物多样性保育、生态系统稳定性的维持等方面发挥重要作用, 而且还为成千上万只越冬候鸟提供栖息地和食物(植物茎、叶等), 研究鄱阳湖典型草洲植物种群的生态位特征对植被资源保护、可持续利用和植被恢复重建等具有重要意义。目前, 针对鄱阳湖区域草洲植物种群生态位的研究鲜有报道, 仅陈明华等[5]于2011年在鄱阳湖北部星子县蓼花洲、中部吴城和南部的南矶山国家级自然保护区做了该方面的分析探索, 该文基于植物特征(高度、盖度、生物量)进行了生态位研究, 但没有涉及环境梯度上的生态位特征研究, 很难在不同植物种群生态位差异机制上给出合理解释。笔者基于鄱阳湖湿地恒湖农场茶叶港草洲19个样地95个样方植物与5个资源环境梯度(高程、土壤pH值、电导率、含水量和有机质含量)数据, 分析不同资源环境因子梯度上研究区主要植物种群生态位宽度、生态位重叠情况以及物种生态位宽度与重要值及其变异系数间的相关程度, 探索主要物种对不同环境因子变化的适应性, 揭示各物种在群落中的功能和地位, 为鄱阳湖湿地草洲植物物种多样性保护及植被恢复提供科学依据。

1 研究区域与研究方法 1.1 研究区概况

恒湖农场茶叶港草洲位于南昌市新建县(28°50′~29°03′ N, 116°04′~116°10′ E), 为鄱阳湖冲积平原。气候温和, 雨量充沛, 年均降水量为1 609.8 mm, 夏季明显多于冬季且年际变化大。年平均气温为17.3 ℃, 年活动积温为5 760.5 ℃, 无霜期为279 d, 生态环境良好。受江西省赣江、抚河、信江、饶河、修水、博阳河、西河来水以及长江涨水倒灌、顶托影响, 加上湖区降雨的季节不均匀性, 导致湖体水位年内不同月份波动较大。一般每年4—9月为汛期, 水位较高, 大量湿地植物被水淹没; 10—次年3月为枯水期, 洲滩裸露, 湿地植物开始生长发育。典型的优势植物有灰化薹草(Carex cinerascens)、草(Phalaris arundinacea)和南荻(Triarrhena lutarioriparia)等, 主要伴生有水田碎米荠(Cardamine lyrata)、蒌蒿(Artemisia selengensis)和芦苇(Phragmites australis)等物种。土壤类型主要有水稻土、潮土和湿潮土, 质地以粉砂土壤和砂质土壤为主, 整个洲滩地势变化较小。

1.2 研究方法 1.2.1 数据采集

正式调查之前在恒湖农场茶叶港草洲进行相关预试验, 确定能代表植物群落多样性和分布特征的具体范围。于2015年10月底, 按大致垂直于湖岸线的地形梯度平行设置4条样带, 样带间距为80 m, 每条样带等间距60 m选取5个5 m×5 m的样地, 按X型在样地四角及中心取5个1 m×1 m的样方, 数据采集以样方为单位。(1) 植被数据及地形:记录每个样方的植物种类, 用米尺测定样方中物种株高, 取最高值为植物高度, 以植物地上部分的垂直投影面积与样方面积比值为植物盖度, 用GPS进行定位并记录立地微环境。(2) 部分土壤因子现场测定:每个样方中心用土壤三参数传感器GS3(美国DECAGON公司生产)测定0~15 cm土层[6]土壤含水量及电导率。(3) 土样采集及实验室处理:用取土环刀采集每个样方中心0~15 cm土层土样约100 g, 将同一样地5份土样充分混合为1份。将样品自然风干后, 捡去植物残根及碎石块等杂物, 磨碎后过149 μm孔径筛, 参考贾建丽等[7]实验室土壤指标测定方法:有机质含量采用重铬酸钾氧化外加热法, pH值采用电位法(水土体积比为5:1)。其中, 第1条样带中的3号样地所在位置因出现一片较大人工水塘, 没有采样。

1.2.2 数据处理

(1) 重要值及其变异系数计算

植物物种重要值是反映物种在植物群落中的作用和地位的综合数量指标。目前, 有关重要值的计算方法很多且不同植物层次(乔木、灌木、草本等)也大都不一, 以19个样地(5 m×5 m)为基础, 样地中每种草本植物的重要值计算公式[8]

$ {P = }\left( {{c_{\rm{r}}} + {h_{\rm{r}}} + {f_{\rm{r}}}} \right)/3。$ (1)

式(1) 中, P为样地中每种植物重要值; cr为相对盖度, 指每个样地中每种植物盖度占该样地中所有植物总盖度的比例, 样地中每种植物盖度由该样地5个样方该种植物盖度取平均值得到; hr为相对高度, 计算方法与相对盖度计算方法类似; fr为相对频度, 指样地中每种植物在5个样方中的出现频度占所有物种总频度的比例。

变异系数是衡量各观测值变异程度或离散程度的另一个统计量。当进行多个变量变异程度的比较时, 若各变量平均值相差较大, 直接使用标准差进行变异程度度量效果不好, 则需要采用变异系数来比较。19个样地植物物种重要值均值差异较大, 因此重要值变异程度需通过变异系数来反映。计算公式[9]如下:

$ {{V}_c} = {D_{\rm{s}}}/{N_{\rm{m}}} \times 100\% 。$ (2)

式(2) 中, Vc为植物重要值变异系数; Ds为10种主要植物在19个样地中重要值的标准差; Nm为平均值。

(2) 资源环境梯度的划分

样地土壤体积含水量(以下简称土壤含水量)、电导率以野外测定的每个样地的5个样方平均值为准; 实验室测定19份土样土壤有机质含量、pH值, 用GPS记录样地经纬度, 并用GIS软件提取样地高程数据; 共得到19个样地的土壤含水量、电导率、有机质含量、pH值以及高程数据。在上述5个环境因子上, 分别以等距离的梯度间隔将其从小到大划分为10个等级[10], 作为资源环境梯度标识(表 1)。

表 1 5种资源环境因子等级梯度划分 Table 1 Position of the 5 resource-environmental factors on rank gradient

(3) 生态位宽度测定

利用Levins生态位宽度公式计算研究区10种主要植物在5种资源环境因子梯度上的生态位宽度[11]:

$ {\mathit{B}_i} = 1/\sum\limits_{j = 1}^r {{{\left( {{n_{ij}}/{N_i}} \right)}^2}}。$ (3)

式(3) 中, Bi为植物物种i的生态位宽度; r为各资源环境因子等级数; nij为物种i在第j个资源环境等级中的重要值(以物种i在资源环境等级j上的重要值的平均值为准);Ni为物种i在所有资源环境等级中重要值的总和。

(4) 生态位重叠计算

利用Pianka生态位重叠公式计算研究区10种主要植物在5种资源环境因子梯度上的生态位重叠[12-13]:

$ {\mathit{O}_{ik}} = \sum\limits_{j = 1}^r {\left( {{n_{ij}} \times {n_{kj}}} \right)} /\sqrt {\sum\limits_{j = 1}^r {n_{ij}^2} \sum\limits_{j = 1}^r {n_{kj}^2} } 。$ (4)

式(4) 中, Oik为植物物种ik的生态位重叠值; r为各资源环境因子等级数; nijnkj为物种ik在资源环境等级j上的重要值(以物种ik在资源环境等级j上的重要值的平均值为准)。

2 结果 2.1 植物物种重要值及其变异系数

恒湖农场茶叶港草洲19个样地95个样方共调查到20种植物, 剔除分布频度低于10%的物种得到10种主要植物(表 2)。灰化薹草、草重要值均值较大, 刚毛荸荠(Eleocharis valleculosa)、旋鳞莎草(Cyperus michelianus)、广州蔊菜(Rorippa cantoniensis)和藨草(Scirpus triqueter)等重要值均值较小。相反, 重要值均值较小的物种,其重要值变异系数却较大, 其中, 刚毛荸荠、旋鳞莎草和广州蔊菜的重要值变异系数均高于300%, 而灰化薹草与草则均低于100%。

表 2 恒湖农场茶叶港草洲10种主要植物的重要值和频度 Table 2 Important values and frequencies of the 10 main plants in Chayegang Grassland of the Henghu Farm
2.2 研究区10种主要植物生态位宽度

10种主要植物在5个资源环境因子(简称“因子”)梯度上的生态位宽度见表 3。可以看出, 不同植物在同一因子梯度上的生态位宽度是不同的, 在各因子梯度上表现出较宽生态位的物种大多是群落中的优势种。如在高程和土壤pH值因子梯度上生态位宽度较大的物种为灰化薹草、草和水田碎米荠; 在土壤电导率和土壤有机质含量因子梯度上生态位宽度较大的物种为灰化薹草、草和南荻; 在土壤含水量因子梯度上生态位宽度较大的物种为灰化薹草、草和蒌蒿。同一物种在不同因子梯度上的生态位宽度也具有差异性, 如群落中出现频度较大的物种灰化薹草和草, 在高程因子梯度上的生态位宽度分别为8.54和7.61, 而在土壤pH值因子梯度上的生态位宽度分别为6.61和5.82, 为高程环境梯度上的77.4%和76.5%。再如, 南荻在高程因子梯度上的生态位宽度为土壤有机质含量因子梯度上的68.3%。除此之外, 不同物种在5个因子梯度上的生态位宽度平均值大小依次为灰化薹草、草、水田碎米荠、南荻、蒌蒿、藨草、旋鳞莎草、广州蔊菜、芦苇和刚毛荸荠; 10个物种在每个因子梯度上的生态位宽度平均值大小依次为土壤有机质含量、土壤含水量、高程、土壤电导率和土壤pH值。

表 3 5个因子梯度上10种主要植物生态位宽度 Table 3 Niche breadth of the 10 main plants along the 5-factor gradients
2.3 研究区10种主要植物45个种对生态位重叠

10种主要植物组成的45个种对在5个因子梯度上的生态位重叠值见表 4~6。总体上, 生态位宽度较宽的物种对之间生态位重叠值也较高, 如灰化薹草与草、灰化薹草与水田碎米荠在5个因子梯度上生态位重叠值均高于0.5;而生态位宽度较小的物种之间生态位重叠规律不明显。在土壤含水量和电导率梯度上, 刚毛荸荠、旋鳞莎草、广州蔊菜和芦苇生态位宽度均<2, 但物种间生态位重叠却有明显差别。刚毛荸荠与芦苇在土壤pH值、土壤含水量和土壤有机质含量梯度上的生态位重叠值为0, 而刚毛荸荠与旋鳞莎草、广州蔊菜之间生态位重叠值却在0.6以上。为了更好地分析研究区10种主要植物在5个因子梯度上的生态位重叠情况, 将生态位重叠划分为3种类型:高重叠, 生态位重叠>0.9;中重叠, 生态位重叠>0.5~0.9;低重叠, 生态位重叠≤0.5。在高程梯度上, 属于高重叠的有2对, 占总数的4.44%;属于中重叠的有12对, 占总数的26.67%;属于低重叠的有31对, 占总数的68.89%。在土壤pH值梯度上, 属于高重叠的有2对, 占总数的4.44%;属于中重叠的有12对, 占总数的26.67%;属于低重叠的有31对, 占总数的68.89%。在土壤电导率梯度上, 属于高重叠的有3对, 占总数的6.67%;属于中重叠的有10对, 占总数的22.22%;属于低重叠的有32对, 占总数的71.11%。在土壤含水量梯度上, 属于高重叠的有1对, 占总数的2.22%;属于中重叠的有14对, 占总数的31.11%;属于低重叠的有30对, 占总数的66.67%。在土壤有机质含量梯度上, 属于高重叠的有1对, 占总数的2.22%;属于中重叠的有11对, 占总数的24.44%;属于低重叠的有33对, 占总数的73.33%。

表 4 10种主要植物45个物种对在高程和土壤pH值因子梯度上的生态位重叠 Table 4 Niche overlaps of 45 species pairs of the 10 main plants along the elevation and soil pH gradients

表 5 10种主要植物45个物种对在土壤电导率和土壤含水量因子梯度上的生态位重叠 Table 5 Niche overlaps of 45 species pairs of the 10 main plants along the soil conductivity and water content gradients

表 6 10种主要植物45个物种对在土壤有机质含量因子梯度上的生态位重叠 Table 6 Niche overlaps of 45 species pairs of the 10 main plants along the soil organic matter gradient
2.4 5个因子梯度上植物种群生态位宽度与重要值及其变异系数的相关程度

通过Spearman秩相关分析检验不同因子梯度上植物种群生态位宽度分别与重要值、重要值变异系数之间的相关程度(图 1)。

图 1 5个因子梯度上植物种群生态位宽度分别与重要值及其变异系数的相关性 Figure 1 Relationships of niche breadth of the plant populations along the five-factor gradient with the important value and variance coefficient of the important value

图 1可知,土壤pH值、土壤电导率、含水量、有机质含量因子梯度上10种植物生态位宽度与重要值之间均呈极显著正相关(P<0.01), 高程因子梯度上两者呈显著正相关(P<0.05), 相关系数r分别为0.855、0.939、0.794、0.855和0.733。而在上述5个因子梯度上10种植物生态位宽度与重要值变异系数之间均呈极显著负相关(P<0.01), r分别为-0.927、-0.867、-0.903、-0.879和-0.782。

3 讨论

鄱阳湖典型湿地恒湖农场茶叶港草洲共调查得到植物20种, 多数物种重要值及分布频度较低, 植物群落物种组成较简单。灰化薹草、草具有较大的重要值和生态位宽度, 对其他物种具有资源竞争和群落物种扩张优势, 这是种群确立其在群落中的功能地位的原因[14-15]

生态位宽度是度量植物对资源利用和环境适应能力的尺度, 生态位宽度越宽, 表明物种对环境的适应能力越强, 对各种资源的利用越充分[16], 在植物群落中的分布范围也相对较广, 侧面体现了植物种群在群落中的优势地位。研究区灰化薹草、草在5个环境梯度上生态位宽度均位居所有植物种群的前2位, 且在群落中的分布频度较高(灰化薹草为94.74%, 草为78.95%), 表明这2种植物对5种环境变化的适应能力较强, 可以通过扩大其对生态资源的获取范围以及物种分布范围, 确立自身在植物群落中的地位并促进群落的更新和演替[17]; 而群落中的偶见种刚毛荸荠、旋鳞莎草和广州蔊菜等在群落中的分布频度较低, 调查过程中发现仅在少数几个较为潮湿的样地中出现, 对生境要求较苛刻, 生态适应能力较弱, 因此在5个环境因子梯度上生态位宽度较窄。研究发现, 植物群落不同物种生态位宽度的差异导致的生态适应性不同与物种自身生物学特性有关[18-19]。调查过程中发现灰化薹草和草在样方中的高度可达90~100 cm, 根系发达且物种分盖度占样方植物物种总盖度的70%以上, 而刚毛荸荠、旋鳞莎草和广州蔊菜分盖度较低, 株高较矮, 常夹生在灰化薹草、草和南荻等高大物种中。受群落优势物种的排斥能够得到的阳光和土壤营养元素有限, 导致偶见种对环境的适应能力较弱, 生态位宽度较窄;相反,群落优势种通过自身株高和盖度的优势挤占更多空间,获取环境资源,实现种群扩张与生存发展。

当2个物种共同利用或占有某一资源(空间、营养物质等)时就会发生生态位重叠。重叠值越高表明物种对资源的利用方式越相似, 种间竞争越激烈; 反之, 则有明显差异, 种间倾向于相互协作[16]。而生态位重叠不仅与物种对生态环境适应能力的相似程度、种间竞争与协作有关, 同样也会受到群落区域环境因子变化的影响。环境的改变打破了物种原有的最佳生存适合度, 物种为了适应环境变化, 对资源利用发生分化或者生态位发生移动, 导致物种间生态位重叠值降低[20]。当能够适应的环境条件变化范围缩小时, 群落中的优势种通过扩大生态位, 以重新占有群落中的生态资源, 从而仍与群落中其他物种有生态位重叠; 群落中的偶见种对环境变化的适应能力较弱, 更多的是通过生态位移动来应对环境变化[21]。笔者研究发现恒湖农场茶叶港草洲10种主要植物物种组成的45个种对在5个因子梯度上的生态位重叠值普遍较低, 此与陈明华等[5]2011年对鄱阳湖洲滩湿地优势植物生态位特征研究得出的结论(105个物种对发生生态位重叠, 仅7个物种对生态位重叠值>0.5) 基本一致。主要原因是群落中的偶见种较多(刚毛荸荠、旋鳞莎草和广州蔊菜重要值均<0.01, 表 2), 在区域环境因子变化的影响和胁迫下, 物种生态位发生位移, 与群落中的其他物种不再位于同一个样地, 降低了其与其他物种的生态位重叠程度。有关研究发现植物群落中生态位宽度越宽的种群与其他物种发生生态位重叠的几率越高, 生态位宽度较宽的种对间的重叠值一般较高[22-23]。笔者研究中在5个因子梯度上生态位宽度占前2位的灰化薹草、草与其他物种之间生态位均有重叠, 且2个物种之间生态位重叠值均>0.6, 当群落环境条件发生变化或资源不足时, 物种间可能会发生较为激烈的种间竞争[24]。生态位宽度较窄的物种间重叠值也未必就低[25], 笔者研究中旋鳞莎草、广州蔊菜在5个因子梯度上生态位宽度均<2, 但种间重叠值却>0.9, 究其原因主要与其生物学特征及生活习性有关, 2种植物株高较矮, 分布盖度较低, 属喜湿性植物, 调查过程中发现两者滋生样地较潮湿, 且均分布在同一样地中, 对环境的适应性和资源利用方式极为相似, 导致生态位重叠值较高。与此类似的还有刚毛荸荠与旋鳞莎草以及南荻与芦苇。

当2个物种共同利用或占有某一资源(空间、营养物质等)时就会发生生态位重叠。重叠值越高表明物种对资源的利用方式越相似, 种间竞争越激烈; 反之, 则有明显差异, 种间倾向于相互协作[16]。而生态位重叠不仅与物种对生态环境适应能力的相似程度、种间竞争与协作有关, 同样也会受到群落区域环境因子变化的影响。环境的改变打破了物种原有的最佳生存适合度, 物种为了适应环境变化, 对资源利用发生分化或者生态位发生移动, 导致物种间生态位重叠值降低[20]。当能够适应的环境条件变化范围缩小时, 群落中的优势种通过扩大生态位, 以重新占有群落中的生态资源, 从而仍与群落中其他物种有生态位重叠; 群落中的偶见种对环境变化的适应能力较弱, 更多的是通过生态位移动来应对环境变化[21]。笔者研究发现恒湖农场茶叶港草洲10种主要植物物种组成的45个种对在5个因子梯度上的生态位重叠值普遍较低, 此与陈明华等[5]2011年对鄱阳湖洲滩湿地优势植物生态位特征研究得出的结论(105个物种对发生生态位重叠, 仅7个物种对生态位重叠值>0.5) 基本一致。主要原因是群落中的偶见种较多(刚毛荸荠、旋鳞莎草和广州蔊菜重要值均<0.01, 表 2), 在区域环境因子变化的影响和胁迫下, 物种生态位发生位移, 与群落中的其他物种不再位于同一个样地, 降低了其与其他物种的生态位重叠程度。有关研究发现植物群落中生态位宽度越宽的种群与其他物种发生生态位重叠的几率越高, 生态位宽度较宽的种对间的重叠值一般较高[22-23]。笔者研究中在5个因子梯度上生态位宽度占前2位的灰化薹草、草与其他物种之间生态位均有重叠, 且2个物种之间生态位重叠值均>0.6, 当群落环境条件发生变化或资源不足时, 物种间可能会发生较为激烈的种间竞争[24]。生态位宽度较窄的物种间重叠值也未必就低[25], 笔者研究中旋鳞莎草、广州蔊菜在5个因子梯度上生态位宽度均<2, 但种间重叠值却>0.9, 究其原因主要与其生物学特征及生活习性有关, 2种植物株高较矮, 分布盖度较低, 属喜湿性植物, 调查过程中发现两者滋生样地较潮湿, 且均分布在同一样地中, 对环境的适应性和资源利用方式极为相似, 导致生态位重叠值较高。与此类似的还有刚毛荸荠与旋鳞莎草以及南荻与芦苇。

物种重要值和种群生态位是衡量植物在群落中地位与作用的2个指标, 但所代表的意义完全不同。重要值反映的是某个植物种群在群落中的相对重要性, 而生态位宽度揭示的是物种对环境的适应性及资源利用能力。笔者研究中, 5个因子梯度上植物种群生态位宽度与重要值之间均呈正相关, 且达显著(P<0.05) 或极显著水平(P<0.01), 这与潘高等[25]探究南方红壤丘陵区3种森林群落内主要草本植物种群生态位特征得出的结果较一致。不过两者之间未必存在必然联系, 笔者研究中芦苇的重要值大于藨草, 但在土壤pH值、含水量和有机质含量梯度上, 前者的生态位宽度却小于后者, 这是因为重要值并非是影响种群生态位宽度的唯一因素。钱逸凡等[26]研究认为分布频度也是决定物种生态位宽度的主要因素, 物种分布频度越高, 其生态位宽度越宽。笔者研究中, 物种重要值变异系数也是影响物种生态位宽度的重要因素, 它们之间呈负相关, 此与前人研究结论[27]一致。研究区植物群落中虽然蒌蒿重要值大于水田碎米荠, 但其重要值变异系数较后者大, 因此在高程、土壤pH值、电导率3个环境梯度上生态位宽度均小于后者。

种群生态位研究对于了解植物在群落中的功能地位、生态适应性以及生态相似性方面具有重要作用, 为进一步研究植被分布特征和生物多样性形成机制提供了科学依据[23]。需要注意的是, 笔者基于5个资源环境梯度, 对植物种群生态位宽度及生态位重叠的计算具有一定的时间和空间限制[28]。首先, 随着时间的推移, 植物群落中的环境因子以及优势种会发生改变, 生态位宽度与环境因子之间关系密切, 当环境条件发生变化时, 植物对生态环境适应性以及资源利用能力也会随之改变; 而当群落优势种发生变化时, 不同物种之间生态位重叠值也会有所不同。其次, 当研究尺度不同时, 群落样地环境以及不同样地环境之间的相关性或者空间自相关也会出现差异, 间接导致植物种群生态位宽度、物种间生态位重叠值发生变化。

参考文献
[1]
张金屯. 数量生态学[M]. 2版. 北京: 科学出版社, 2011, 113-114.
ZHANG Jin-tun. Quantitative Ecology[M]. 2nd ed. Beijing: Science Press, 2011, 113-114. (0)
[2]
汪建华, 周先容, 尚进, 等. 金佛山巴山榧树灌丛群落主要木本植物种群生态位特征[J]. 生态学杂志, 2014, 33(5): 1135-1141.
WANG Jian-hua, ZHOU Xian-rong, SHANG Jin, et al. Niche Characteristics of Dominant Woody Plant Populations in a Torreya fargesii Shrub Community in the Jinfo Mountains[J]. Chinese Journal of Ecology, 2014, 33(5): 1135-1141. (0)
[3]
刘建康, 张克斌, 王黎黎, 等. 半干旱区人工封育草场植被群落生态位研究:以宁夏盐池县长期定位监测点为例[J]. 生态环境学报, 2014, 23(5): 762-768.
LIU Jian-kang, ZHANG Ke-bin, WANG Li-li, et al. Vegetation Niche of Enclosed Grassland in Semi-Arid Area:Taking Yanchi of Ningxia as an Example[J]. Ecology and Environmental Sciences, 2014, 23(5): 762-768. (0)
[4]
柴宗政, 王得祥, 张丽楠, 等. 秦岭山地天然油松群落主要植物种群生态位特征[J]. 生态学杂志, 2012, 31(8): 1917-1923.
CHAI Zong-zheng, WANG De-xiang, ZHANG Li-nan, et al. Niche Characteristics of Main Plant Populations in Natural Pinus tabulaeformis Communities in Qinling Mountains, Northwest China[J]. Chinese Journal of Ecology, 2012, 31(8): 1917-1923. (0)
[5]
陈明华, 赵安娜, 刘以珍. 鄱阳湖洲滩湿地优势植物生态位特征研究[J]. 科教文汇, 2012, 12: 82-84.
CHEN Ming-hua, ZHAO An-na, LIU Yi-zhen. Niche of Dominant Populations of Wetland Plants in Islets of Poyang Lake[J]. The Science Education Article Collects, 2012, 12: 82-84. DOI:10.3969/j.issn.1672-7894.2012.30.052 (0)
[6]
张全军, 于秀波, 钱建鑫, 等. 鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12): 3656-3669.
ZHANG Quan-jun, YU Xiu-bo, QIAN Jian-xin, et al. Distribution Characteristics of Plant Communities and Soil Organic Matter and Main Nutrients in the Poyang Lake Nanji Wetland[J]. Acta Ecologica Sinica, 2012, 32(12): 3656-3669. (0)
[7]
贾建丽, 于妍, 王晨. 环境土壤学[M]. 北京: 化学工业出版社, 2012, 56-65.
JIA Jian-li, YU Yan, WANG Chen. Evironmental Soil Science[M]. Beijing: Chemical Industry Press, 2012, 56-65. (0)
[8]
吴华, 张建利, 范怡雯, 等. 草海流域植物群落结构数量分类与排序[J]. 南京林业大学学报(自然科学版), 2013, 37(3): 47-52.
WU Hua, ZHANG Jian-li, FAN Yi-wen, et al. Numerical Classification and Ordination of Forest Communities in Caohai Basin[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(3): 47-52. (0)
[9]
吴媚, 顾赛赛. 变异系数的统计推断及其应用[J]. 铜仁学院学报, 2010, 12(1): 139-144.
WU Mei, GU Sai-sai. The Statistical Inference of Variation Coefficient of Sample and Its Applications[J]. Journal of Tongren University, 2010, 12(1): 139-144. (0)
[10]
马宗文, 谢正磊, 段晓峰, 等. 黄河三角洲自然保护区植物与土壤因子关系及生态位分析[J]. 北京大学学报(自然科学版), 2012, 48(5): 801-811.
MA Zong-wen, XIE Zheng-lei, DUAN Xiao-feng, et al. Plant-Soil Relationship and Plant Niche in the Yellow River Delta National Natural Reserve, China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(5): 801-811. (0)
[11]
符饶, 郝建锋, 李艳, 等. 青衣江中游河滨草本植物生态位和物种多样性[J]. 湿地科学, 2016, 14(4): 546-552.
FU Rao, HAO Jian-feng, LI Yan, et al. Niche and Species Diversity of Riparian Herbaceous Plants in the Middle Reaches of the Qingyijiang River[J]. Wetland Science, 2016, 14(4): 546-552. (0)
[12]
苗福泓, 薛冉, 郭正刚, 等. 青藏高原东北边缘高寒草甸植物种群生态位特征对牦牛放牧的响应[J]. 草业学报, 2016, 25(1): 88-97.
MIAO Fu-hong, XUE Ran, GUO Zheng-gang, et al. Influence of Yak Grazing on Plant Niche Characteristics in Alpine Meadow Communities at the Northeastern Edge of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2016, 25(1): 88-97. DOI:10.11686/cyxb2015033 (0)
[13]
张伟, 何俊皓, 郝文芳. 黄土丘陵区不同管理方式下草地优势种群的生态位[J]. 草业科学, 2016, 33(7): 1391-1402.
ZHANG Wei, HE Jun-hao, HAO Wen-fang. Niche Characteristics of Dominant Plant Populations in Grassland of Loess Hilly Region of China With Different Management Styles[J]. Pratacultural Science, 2016, 33(7): 1391-1402. (0)
[14]
张晶晶, 许冬梅. 宁夏荒漠草原不同封育年限优势种群的生态位特征[J]. 草地学报, 2013, 21(1): 73-78.
ZHANG Jing-jing, XU Dong-mei. Niche Characteristics of Dominant Plant Populations in Desert Steppe of Ningxia With Different Enclosure Times[J]. Acta Agrestia Sinica, 2013, 21(1): 73-78. DOI:10.11733/j.issn.1007-0435.2013.01.011 (0)
[15]
郭坤, 杨德国, 彭婷, 等. 湖北省长湖浮游植物优势种生态位分析[J]. 湖泊科学, 2016, 28(4): 825-834.
GUO Kun, YANG De-guo, PENG Ting, et al. Ecological Niche Analysis of Dominant Species of Phytoplankton in Lake Changhu, Hubei Province[J]. Journal of Lake Sciences, 2016, 28(4): 825-834. DOI:10.18307/2016.0416 (0)
[16]
庞春花, 范晓, 张峰, 等. 不同资源维度上汾河流域下游优势种的生态位[J]. 生态学杂志, 2015, 34(2): 380-386.
PANG Chun-hua, FAN Xiao, ZHANG Feng, et al. The Niches of Dominant Species in Different Resource Dimensions in the Lower Reaches of Fenhe River, Shanxi Province of China[J]. Chinese Journal of Ecology, 2015, 34(2): 380-386. (0)
[17]
MICHALET R, MAALOUF J P, CHOLER P, et al. Competition, Facilitation and Environmental Severity Shape the Relationship Between Local and Regional Species Richness in Plant Communities[J]. Ecography, 2015, 38(4): 335-345. DOI:10.1111/ecog.2015.v38.i4 (0)
[18]
郑伟, 董全民, 李世雄, 等. 放牧对环青海湖高寒草原主要植物种群生态位的影响[J]. 草业科学, 2013, 30(12): 2040-2046.
ZHENG Wei, DONG Quan-min, LI Shi-xiong, et al. Effects of Grazing on Niche of Major Plant Populations in Alpine Steppe in Qinghai Lake Region[J]. Pratacultural Science, 2013, 30(12): 2040-2046. (0)
[19]
TUBAY J M, SUZUKI K, UEHARA T, et al. Microhabitat Locality Allows Multi-Species Coexistence in Terrestrial Plant Communities[J]. Scientific Reports, 2015, 5: 1-9. DOI:10.9734/JSRR (0)
[20]
王晓荣, 程瑞梅, 肖文发, 等. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(3): 404-411.
WANG Xiao-rong, CHEN Rui-mei, XIAO Wen-fa, et al. Niche Variation of Dominant Herbaceous Plants in Water-Level-Fluctuating Zone of Three Gorges Reservoir at the Beginning After Charging Water[J]. Resources and Environment in the Yangtze Basin, 2016, 25(3): 404-411. (0)
[21]
ESTRADA A, MEIRELES C, CASTILLA I M, et al. Species' Intrinsic Traits Inform Their Range Limitations and Vulnerability Under Environmental Change[J]. Global Ecology and Biogeography, 2015, 24(7): 849-858. DOI:10.1111/geb.2015.24.issue-7 (0)
[22]
吴友贵, 叶珍林, 周荣飞, 等. 百山祖常绿阔叶林优势种群的生态位[J]. 广西植物, 2016, 36(2): 186-192.
WU You-gui, YE Zhen-lin, ZHOU Rong-fei, et al. Niche of Dominant Species Populations in an Evergreen Broad-Leaved Forest in Baishanzu[J]. Guihaia, 2016, 36(2): 186-192. DOI:10.11931/guihaia.gxzw201408035 (0)
[23]
陈玉凯, 杨琦, 莫燕妮, 等. 海南岛霸王岭国家重点保护植物的生态位研究[J]. 植物生态学报, 2014, 38(6): 576-584.
CHEN Yu-kai, YANG Qi, MO Yan-ni, et al. A Study on the Niches of the State's Key Protected Plants in Bawangling, Hainan Island[J]. Chinese Journal of Plant Ecology, 2014, 38(6): 576-584. (0)
[24]
陈龙涛, 石晓东, 高润梅. 山西陵川南方红豆杉群落种间联结与生态位特征研究[J]. 植物科学学报, 2016, 34(4): 521-529.
CHEN Long-tao, SHI Xiao-dong, GAO Run-mei. Interspecific Association and Niche Characteristics of Taxus chinensis var. mairei Communities in Lingchuan, Shanxi[J]. Plant Science Journal, 2016, 34(4): 521-529. DOI:10.11913/PSJ.2095-0837.2016.40521 (0)
[25]
潘高, 张合平, 潘登. 南方红壤丘陵区3种森林群落内主要草本植物种群生态位特征[J]. 草业科学, 2015, 32(12): 2094-2106.
PAN Gao, ZHANG He-ping, PAN Deng. Niche Characteristics of Herb Populations Within Three Forest Types in Hilly Red Soil Region of Southern China[J]. Pratacultural Science, 2015, 32(12): 2094-2106. DOI:10.11829/j.issn.1001-0629.2015-0246 (0)
[26]
钱逸凡, 伊力塔, 胡军飞, 等. 普陀山主要植物种生态位特征[J]. 生态学杂志, 2012, 31(3): 561-568.
QIAN Yi-fan, YI Li-ta, HU Jun-fei, et al. Niche Characteristics of Main Plant Species in Putuo Mountain, Zhejiang Province of East China[J]. Chinese Journal of Ecology, 2012, 31(3): 561-568. (0)
[27]
马丰丰, 潘高, 张灿明, 等. 湖北建始县日本落叶松林下植被生态位特征[J]. 中南林业科技大学学报, 2016, 36(4): 73-79.
MA Feng-feng, PAN Gao, ZHANG Can-ming, et al. Niche Characteristics of Dominant Populations Within Larix kaempferi Communities in Jianshi County of Hubei[J]. Journal of Central South University of Forestry & Technology, 2016, 36(4): 73-79. (0)
[28]
贺强, 崔保山, 赵欣胜, 等. 水、盐梯度下黄河三角洲湿地植物种的生态位[J]. 应用生态学报, 2008, 19(5): 969-975.
HE Qiang, CUI Bao-shan, ZHAO Xin-sheng, et al. Niches of Plant Species in Wetlands of the Yellow River Delta Under Gradients of Water Table Depth and Soil Salinity[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 969-975. (0)