文章快速检索     高级检索
  气体物理  2019, Vol. 4 Issue (3): 17-22   DOI: 10.19527/j.cnki.2096-1642.0749
0

引用本文  

傅建明, 唐海敏. 旋转飞行器动稳定导数获取原理[J]. 气体物理, 2019, 4(3): 17-22.
Fu J M, Tang H M. Principle of acquiring dynamic stability derivatives for rolling airframe flying vehicles[J]. Physics of Gases, 2019, 4(3): 17-22.

第一作者简介

傅建明(1963-)男, 硕士, 研究员, 研究方向为空气动力学.E-mail:fujianming_fluid@163.com

文章历史

收稿日期:2019-02-21
修回日期:2019-03-01
旋转飞行器动稳定导数获取原理
傅建明 , 唐海敏     
上海机电工程研究所,上海 201109
摘要:旋转飞行器具有独特的周期性非定常气动现象,其动态特性更加复杂,气流与旋转高度非定常关联,俯仰阻尼导数和Magnus力矩导数同等重要.文章从飞行器气动力建模的理论基础出发,考虑飞行器自转角速度非零的事实,将其作为基态影响参数,重新构建了旋转飞行器气动力数学表达式,并借鉴成熟的常规动导数强迫振动法,采用Fourier级数表征旋转影响,沿用旋转飞行器周期气动等效概念,建立了基于基态旋转流场的周期气动等效平均俯仰动稳定导数、纵向洗流时差导数和滚转动稳定导数获取的原理表达式,并设计了相应的运动模式,可供数值计算和风洞实验使用.
关键词旋转飞行器    动稳定导数    基态    运动模式    强迫振动法    
Principle of Acquiring Dynamic Stability Derivatives for Rolling Airframe Flying Vehicles
FU Jian-ming , TANG Hai-min     
Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
Abstract: The rolling airframe flying vehicle has a particular periodic unsteady aerodynamic feature. Its dynamic characteristics are more complicated, and unsteady correlativeness between the flow and rotation is more serious. The pitch damping derivative is as importent as the Magnus moment derivative. Based on the theoretical basis of aerodynamic modeling for flying vehicle, the present paper took into account the fact that the angular velocity of rolling airframe flying vehicles is non-zero, and reconstructed the aerodynamic mathematical expression of rolling airframe flying vehicles depending on the angular velocity of rolling as a basie flow state influence parameter. Based on the mature conventional dynamic derivative forced vibration methods, the periodic aerodynamic equivalent average pitching dynamic stability derivative, longitudinal wash-lagging derivative and rolling dynamic stability derivative were established using Fourier series to characterize the effect of rolling and the concept on periodic aerodynamic equivalent average of rolling airframe flying vehicles. Corresponding motion modes were designed for numerical calculations and wind tunnel tests.
Key words: rolling airframe flying vehicle    dynamic stability derivative    basic flow state    motion mode    forced vibration method    
引言

旋转飞行器在飞行过程中边前进边绕自身体轴不停旋转, 具有控制系统简单、动稳定性好、抗干扰能力强、制造成本低, 以及消除推力偏心、质量偏心和气动偏心影响效果明显等优点, 备受制导兵器、末端防御武器、再入飞行器和反导导弹等飞行器平台青睐[1-6].但由于飞行器自旋的原因, 有攻角飞行时在与攻角平面垂直的面上将产生附加的面外气动力和气动力矩, 这种独特的气动现象因1852年德国物理学家Gustav Magnus发现而被称为Magnus效应.它使飞行器的动态特性变得更为复杂, 流动与旋转高度非定常关联, 俯仰阻尼导数和Magnus力矩导数同等重要.这些导数的精确与否直接影响着飞行器射程的评估和动态失稳的研判[7-12], 已经引起工程设计部门的高度关注.对于非旋转飞行器动稳定导数, 国内外对其计算和实验研究很广泛, 且成果斐然[13-22], 但旋转飞行器动稳定导数研究报道甚少, 且都未细究俯仰-滚转等运动非定常耦合频率关联度[23-25], 事实上它会影响动稳定导数的精度.

当旋转飞行器的旋转频率足够高时, 飞行器只响应旋转一周的控制合力和力矩, 即起作用的是旋转一周的气动合力和力矩, 这就像等效作用在假想的不旋转飞行器上的气动力和力矩.本文继续沿用该周期气动等效概念[5], 借鉴成熟的常规动导数强迫振动法[26-29], 利用旋转运动的周期性特点, 采用Fourier级数描述旋转飞行器非定常气动力矩, 耦合俯仰振动构建滚转-俯仰双自由度运动的基态气动力矩方程, 并进行周期气动等效平均, 建立了周期气动等效的平均俯仰动稳定导数、纵向洗流时差导数和滚转动稳定导数获取的原理表达式, 并设计了相应的运动模式, 可供数值计算和风洞实验使用.

1 基于基态展开的气动数学模型

飞行器的气动力一般受Ma, αΦ, Φ, δ, $\bar p, \bar q, \bar r, {{\bar {\dot \alpha} }_\mathit{\Phi }}, \mathit{\bar {\dot \Phi} }$$\bar{\dot{\delta }}$等参数影响, 因此现有的1阶数学模型有如下的通用格式, 以俯仰力矩系数为例

$ \begin{array}{l} {C_m} = {C_{{m_{\rm{s}}}}} + {C_{{m_{\bar p}}}}\bar p + {C_{{m_{\bar q}}}}\bar q + {C_{{m_{\bar r}}}}\bar r + {C_{{m_{{{\bar {\dot \alpha}}_\mathit{\Phi }}}}}}{{\bar {\dot \alpha} }_\mathit{\Phi }} + \\ \;\;\;\;\;\;\;\;{C_{{m_{\mathit{\bar {\dot \Phi} }}}}}\mathit{\bar {\dot \Phi} } + {C_{{m_{\bar {\dot \delta} }}}}\bar {\dot \delta} \end{array} $ (1)

其中, Cm为质心处的俯仰力矩系数; Cms为质心处定常状态的俯仰力矩系数, 即$\bar p, \bar q, \bar r, {{\bar {\dot \alpha} }_\mathit{\Phi }}, \mathit{\bar {\dot \Phi} }$$\bar {\dot \delta }$等均为0的俯仰力矩系数静态值; $\bar p, \bar q$r分别为量纲为1的滚转、俯仰和偏航角速度; ${{\bar {\dot \alpha }}_\mathit{\Phi }}, \mathit{\bar {\dot \Phi }}$${\bar {\dot \delta }}$分别为量纲为1的合成攻角、滚转角和鸭舵舵偏角的变化率; ${C_{{m_{\bar p}}}}, {C_{{m_{\bar q}}}}, {C_{{m_{\bar r}}}}, {C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}}, {C_{{m_{\mathit{\bar {\dot \Phi} }}}}}$${C_{{m_{\bar {\dot \delta }}}}}$为质心处的动导数, 在计算或实验获取时, 通过解耦仅对当前参数的变化进行运动设计, 从结果中辨识出需要的动导数值.在实际应用中, 受运动模式实现可能的限制, 有时并不能单独获得需要的旋转导数(如${C_{{m_{\bar q}}}}$)或洗流时差导数(如${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}}$), 而是获得两者的组合值(如${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}}$), 即组合导数, 也统称为动导数.

针对旋转飞行器, 考虑在${{\bar p}_0}$处对数学模型进行Taylor展开并只保留1阶项, 有如下的形式

$ \begin{array}{l} {C_m} = {C_{{m_{\rm{s}}}}} + {C_{{m_{\bar p}}}}\left( {\bar p - {{\bar p}_0}} \right) + {C_{{m_{\bar q}}}}\bar q + {C_{{m_{\bar r}}}}\bar r + {C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}}{{\bar {\dot \alpha} }_\mathit{\Phi }} + \\ \;\;\;\;\;\;\;\;{C_{{m_{\mathit{\bar {\dot \Phi} }}}}}\mathit{\bar {\dot \Phi} } + {C_{{m_{\bar {\dot \delta} }}}}\bar {\dot \delta} \end{array} $ (2)

式(2)中右边各项虽然形式上与式(1)中一致, 但物理意义已不一样.Cm仍为质心处的俯仰力矩系数, 而Cms变为质心处旋转基本状态的俯仰力矩系数, 即$\bar p = {{\bar p}_0}$, 而$\bar q, \bar r, {{\bar {\dot \alpha } }_\mathit{\Phi }}, \mathit{\bar {\dot \Phi} }$${\bar {\dot \delta }}$等为0时的俯仰力矩系数值; ${C_{{m_{\bar p}}}}, {C_{{m_{\bar q}}}}, {C_{{m_{\bar r}}}}, {C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}}, {C_{{m_{\mathit{\bar {\dot \Phi} }}}}}$${C_{{m_{\bar {\dot \delta }}}}}$变成质心处旋转基本状态的动导数, 即在求解这些动导数时设计的运动应耦合基本旋转运动, 称这类基于基本旋转运动的动导数为基态动导数.它与静态导数一样, 具有周期性非定常特点, 依然可以采取传统的周期气动等效平均方法, 设计相应的运动模式获取平均意义的动稳定导数.

2 基态俯仰动导数原理方法及运动设计 2.1 常规俯仰动导数原理方法和运动模式

数值计算和风洞实验中, 为获得常规俯仰动导数一般采用小振幅强迫振动的运动模式, 运动方程如下

$ \left\{ \begin{array}{l} \alpha \left( t \right) = {\alpha _0} + \theta \left( t \right)\\ \theta \left( t \right) = {\theta _0}\sin \left( {{\omega _1}t + {\varphi _1}} \right) \end{array} \right. $ (3)

其中, α(t)为时刻t的瞬时攻角值, α0为平衡攻角, θ0为振动振幅, ω1为振动的圆频率, φ1为振动的初始相位.由于飞行器此时仅做俯仰方向的运动, 所以此时α=αΦ.

对于做小振幅强迫振动的飞行器, 其俯仰力矩系数可基于Taylor展开到1阶, 写成如下形式

$ {C_m} = {C_{{m_0}}} + {C_{{m_\alpha }}}\Delta \alpha + {C_{{m_{\bar {\dot \alpha} }}}}\bar {\dot \alpha} + {C_{{m_{\bar q}}}}\bar q + {C_{{m_{\bar {\dot q}}}}}\bar {\dot q} $ (4)

其中, Cm0α, ${\bar {\dot \alpha } }$, ${\bar q}$${\bar {\dot q}}$均为0时的俯仰力矩系数.由式(3)可得

$ \left\{ \begin{array}{l} \Delta \alpha = \theta \left( t \right) = {\theta _0}\sin \left( {{\omega _1}t + {\varphi _1}} \right)\\ \bar {\dot \theta} = \bar {\dot \alpha} = {{\bar \omega }_1}{\theta _0}\cos \left( {{\omega _1}t + {\varphi _1}} \right) = \bar q\\ \bar {\ddot \theta} = - \bar \omega _1^2{\theta _0}\sin \left( {{\omega _1}t + {\varphi _1}} \right) = \bar {\dot q} \end{array} \right. $ (5)

其中, ${{\bar \omega }_1} = {\omega _1}{L_{r1}}/\left({2V} \right)$, 将式(5)代入, 可得

$ \begin{array}{l} {C_m} - {C_{{m_0}}} = \left( {{C_{{m_\alpha }}} - \bar \omega _1^2{C_{{m_{\bar {\dot q}}}}}} \right){\theta _0}\sin \left( {{\omega _1}t + {\varphi _1}} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{C_{{m_{\bar {\dot \alpha} }}}} + {C_{{m_q}}}} \right){\omega _1}{\theta _0}\cos \left( {{\omega _1}t + {\varphi _1}} \right) \end{array} $ (6)

式(6)两边乘以cos(ω1t+φ1)并在一个周期T=2π/ω1内积分, 可得

$ \begin{array}{l} \int_{{t_0}}^{{t_0} + T} {\left( {{C_m} - {C_{{m_0}}}} \right)\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} = \\ \;\;\;\;\;\left( {{C_{{m_{\bar {\dot \alpha} }}}} + {C_{{m_{\bar q}}}}} \right){{\bar \omega }_1}{\theta _0}\int_{{t_0}}^{{t_0} + T} {{{\cos }^2}\left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} \end{array} $ (7)

从而可得

$ {C_{{m_{\bar {\dot \alpha} }}}} + {C_{{m_{\bar q}}}} = \frac{{2V}}{{{L_{r1}}{\rm{ \mathit{ π} }}{\theta _0}}}\int_{{t_0}}^{{t_0} + T} {\left( {{C_m} - {C_{{m_0}}}} \right)\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} $ (8)
2.2 周期气动等效平均的基态俯仰动导数原理方法和运动模式

根据式(2)数学模型的物理意义, 基态动导数应基于${{\bar p}_0}$的基本旋转流场获得.不失一般性, 可将弹体的旋转描述为

$ \gamma \left( t \right) = {\omega _2}t + {\varphi _2} $ (9)

其中,γ(t)为当前时刻t所在的滚转角, ω2为旋转的圆频率, 即p0, φ2为旋转的初始相位.同理有

$ \begin{array}{l} {C_m}\left( \gamma \right) = {C_{{m_0}}}\left( \gamma \right) + \left[ {{C_{{m_{{\alpha _\mathit{\Phi }}}}}}\left( \gamma \right) - \bar \omega _1^2{C_{{m_{\bar {\dot q}}}}}\left( \gamma \right)} \right]{\theta _0} \cdot \\ \;\;\;\;\;\;\;\;\;\;\;\;\sin \left( {{\omega _1}t + {\varphi _1}} \right) + \left[ {{C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}}\left( \gamma \right) + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {{C_{{m_{\bar q}}}}\left( \gamma \right)} \right]{{\bar \omega }_1}{\theta _0}\cos \left( {{\omega _1}t + {\varphi _1}} \right) \end{array} $ (10)

不同于式(6)的是, 该式各项增加了转速的影响.将${C_m}_{_{{\alpha _\mathit{\Phi }}}} - {{\bar \omega }_1}^2{C_m}_{\overline {\dot q} }$${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}} + {C_m}_{_{\bar q}}$展开为Fourier级数

$ \left\{ \begin{array}{l} {C_{{m_{{\alpha _\mathit{\Phi }}}}}} - \bar \omega _1^2{C_{{m_{\bar {\dot q}}}}} = \sum\limits_{k = 0}^\infty {{a_k}\cos \left( {k{\omega _2}t + {\varphi _2}} \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k = 1}^\infty {{b_k}\sin \left( {k{\omega _2}t + {\varphi _2}} \right)} \\ {C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}} + {C_{{m_{\bar q}}}} = \sum\limits_{k = 0}^\infty {{c_k}\cos \left( {k{\omega _2}t + {\varphi _2}} \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k = 1}^\infty {{d_k}\sin \left( {k{\omega _2}t + {\varphi _2}} \right)} \end{array} \right. $ (11)

于是式(10)可写成

$ \begin{array}{l} {C_m}\left( \gamma \right) - {C_{{m_0}}}\left( \gamma \right) = \\ \;\;\;\;\sum\limits_{k = 0}^\infty {{a_k}{\theta _0}\cos \left( {k{\omega _2}t + {\varphi _2}} \right)\sin \left( {{\omega _1}t + {\varphi _1}} \right)} + \\ \;\;\;\;\sum\limits_{k = 1}^\infty {{b_k}{\theta _0}\sin \left( {k{\omega _2}t + {\varphi _2}} \right)\sin \left( {{\omega _1}t + {\varphi _1}} \right)} + \\ \;\;\;\;\sum\limits_{k = 0}^\infty {{c_k}{{\bar \omega }_1}{\theta _0}\cos \left( {k{\omega _2}t + {\varphi _2}} \right)\cos \left( {{\omega _1}t + {\varphi _1}} \right)} + \\ \;\;\;\;\sum\limits_{k = 1}^\infty {{d_k}{{\bar \omega }_1}{\theta _0}\sin \left( {k{\omega _2}t + {\varphi _2}} \right)\cos \left( {{\omega _1}t + {\varphi _1}} \right)} \end{array} $ (12)

式(12)两边乘以cos(ω1t+φ1)并在一个周期T内积分可得

$ \begin{array}{l} \int_{{t_0}}^{{t_0} + T} {\left[ {{C_m}\left( \gamma \right) - {C_{{m_0}}}\left( \gamma \right)} \right]\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} = \\ \;\;\;\;\;\frac{1}{2}\sum\limits_{k = 0}^\infty {{a_k}{\theta _0}\int_{{t_0}}^{{t_0} + T} {\cos \left( {k{\omega _2}t + {\varphi _2}} \right){\rm{sin2}}\left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} } + \\ \;\;\;\;\;\frac{1}{2}\sum\limits_{k = 1}^\infty {{b_k}{\theta _0}\int_{{t_0}}^{{t_0} + T} {\sin \left( {k{\omega _2}t + {\varphi _2}} \right){\rm{sin2}}\left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} } + \\ \;\;\;\;\;\sum\limits_{k = 0}^\infty {{c_k}{{\bar \omega }_1}{\theta _0}\int_{{t_0}}^{{t_0} + T} {\cos \left( {k{\omega _2}t + {\varphi _2}} \right){\rm{co}}{{\rm{s}}^2}\left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} } + \\ \;\;\;\;\;\sum\limits_{k = 1}^\infty {{d_k}{{\bar \omega }_1}{\theta _0}\int_{{t_0}}^{{t_0} + T} {\sin \left( {k{\omega _2}t + {\varphi _2}} \right){\rm{co}}{{\rm{s}}^2}\left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} } \end{array} $ (13)

其中,右边第1项中的积分可变为

$ \begin{array}{l} \int_{{t_0}}^{{t_0} + T} {\cos \left( {k{\omega _2}t + {\varphi _2}} \right)\sin 2\left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} = \\ \frac{1}{2}\int_{{t_0}}^{{t_0} + T} {\left\{ {\cos {\varphi _2}\cos 2{\varphi _1}\left[ {\sin \left( {k{\omega _2} + 2{\omega _1}} \right)t - \sin \left( {k{\omega _2} - } \right.} \right.} \right.} \\ \left. {\left. {2{\omega _1}} \right)t} \right] + \sin {\varphi _2}\cos 2{\varphi _1}\left[ {\cos \left( {k{\omega _2} + 2{\omega _1}} \right)t - \cos \left( {k{\omega _2} - } \right.} \right.\\ \left. {\left. {2{\omega _1}} \right)t} \right] + \cos {\varphi _2}\sin 2{\varphi _1}\left[ {\cos \left( {k{\omega _2} + 2{\omega _1}} \right)t + \cos \left( {k{\omega _2} - } \right.} \right.\\ \left. {\left. {2{\omega _1}} \right)t} \right] - \sin {\varphi _2}\sin 2{\varphi _1}\left[ {\sin \left( {k{\omega _2} + 2{\omega _1}} \right)t + \sin \left( {k{\omega _2} - } \right.} \right.\\ \left. {\left. {\left. {2{\omega _1}} \right)t} \right]} \right\}{\rm{d}}t \end{array} $ (14)

其余3项中的积分可类似展开.分析式(14)三角函数特征可知, 只有ω2>2ω1, 且ω2ω1的整数倍时, 式(13)可化为

$ \begin{array}{l} \int_{{t_0}}^{{t_0} + T} {\left[ {{C_m}\left( \gamma \right) - {C_{{m_0}}}\left( \gamma \right)} \right]\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} = \\ \;\;\;\;\frac{{{L_{r1}}}}{{2V}}{\rm{ \mathit{ π} }}{\theta _0}{c_0}\cos {\varphi _2} \end{array} $ (15)

${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}} + {C_m}_{_{\bar q}}$在周期T内取平均可得周期平均值

$ \begin{array}{l} \overline {{C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}} + {C_{{m_{\bar q}}}}} = {c_0}\cos {\varphi _2} = \frac{{2V}}{{{L_{r1}}{\rm{ \mathit{ π} }}{\theta _0}}}\int_{{t_0}}^{{t_0} + T} {\left[ {{C_m}\left( \gamma \right) - } \right.} \\ \;\;\left. {{C_{{m_0}}}\left( \gamma \right)} \right]\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t \end{array} $ (16)

由式(16)可获得组合导数, 如要获得单独的阻尼导数, 必须先获得单独的洗流时差导数, 方法见下节.

3 洗流时差导数原理方法及运动设计 3.1 常规洗流时差导数原理方法和运动模式

为获得常规洗流时差导数, 一般采用小振幅升沉强迫振动的运动模式, 运动方程为

$ z\left( t \right) = {z_0}\sin \left( {{\omega _1}t + {\varphi _1}} \right) $ (17)

其中,z为气流坐标系的z坐标(见图 1), z0为升沉强迫振动的振幅.

图 1 气流坐标系 Fig.1 Air-path axis system

在小攻角和小振幅假设下有

$ \left\{ \begin{array}{l} \Delta \alpha \left( t \right) = \frac{{\dot z\cos \alpha }}{V} = \frac{{{z_0}{\omega _1}\cos \alpha }}{V}\cos \left( {{\omega _1}t + {\varphi _1}} \right)\\ \bar {\dot \alpha} \left( t \right) = \frac{{\bar {\ddot z}\cos \alpha }}{V} = \frac{{ - {z_0}{\omega _1}\cos \alpha }}{V}{{\bar \omega }_1}\cos \left( {{\omega _1}t + {\varphi _1}} \right) \end{array} \right. $ (18)

此时α=αΦ.俯仰力矩系数可写成1阶格式

$ {C_m} = {C_{{m_0}}} + {C_{{m_\alpha }}}\Delta \alpha + {C_{{m_{\bar {\dot \alpha} }}}}\bar {\dot \alpha} $ (19)

将式(18)代入, 可得

$ \begin{array}{*{20}{c}} {{C_m} = {C_{{m_0}}} + {C_{{m_\alpha }}}\frac{{{z_0}{\omega _1}\cos \alpha }}{V}\cos \left( {{\omega _1}t + {\varphi _1}} \right) - }\\ {{C_{{m_{\bar {\dot \alpha} }}}}\frac{{{z_0}{\omega _1}\cos \alpha }}{V}{{\bar \omega }_1}\sin \left( {{\omega _1}t + {\varphi _1}} \right)} \end{array} $ (20)

同理可得

$ {C_{{m_{\bar {\dot \alpha} }}}} = - \frac{V}{{{\rm{ \mathit{ π} }}{z_0}{{\bar \omega }_1}\cos \alpha }}\int_{{t_0}}^{{t_0} + \frac{{2{\rm{ \mathit{ π} }}}}{{{\omega _1}}}} {\left( {{C_m} - {C_{{m_0}}}} \right)\sin \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} $ (21)

即为${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}}$.

3.2 周期气动等效平均的基态洗流时差导数原理方法和运动模式

弹体旋转时, 仍采用式(17)的运动方程, 类似于式(20)有

$ \begin{array}{*{20}{c}} {{C_m}\left( \gamma \right) = {C_{{m_0}}}\left( \gamma \right) + {C_{{m_{{\alpha _\mathit{\Phi }}}}}}\left( \gamma \right)\frac{{{z_0}{\omega _1}\cos {\alpha _\mathit{\Phi }}}}{V}\cos \left( {{\omega _1}t + {\varphi _1}} \right) - }\\ {{C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}}\left( \gamma \right)\frac{{{z_0}{\omega _1}\cos \alpha }}{V}{{\bar \omega }_1}\sin \left( {{\omega _1}t + {\varphi _1}} \right)} \end{array} $ (22)

CmαΦ${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}}$展开为Fourier级数

$ \left\{ \begin{array}{l} {C_{{m_{{\alpha _\mathit{\Phi }}}}}} = \sum\limits_{k = 0}^\infty {{a_k}\cos \left( {k{\omega _2}t + {\varphi _2}} \right)} + \sum\limits_{k = 1}^\infty {{b_k}\sin \left( {k{\omega _2}t + {\varphi _2}} \right)} \\ {C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}} = \sum\limits_{k = 0}^\infty {{c_k}\cos \left( {k{\omega _2}t + {\varphi _2}} \right)} + \sum\limits_{k = 1}^\infty {{d_k}\sin \left( {k{\omega _2}t + {\varphi _2}} \right)} \end{array} \right. $ (23)

选择ω2>2ω1ω2ω1的整数倍, ${C_{{m_{{{\bar {\dot \alpha } }_\mathit{\Phi }}}}}}$在周期T内取平均, 可得周期平均值

$ \begin{array}{l} \overline {{C_{{m_{{{\bar {\dot \alpha} }_\mathit{\Phi }}}}}}} = {c_0}\cos {\varphi _2} = - \frac{V}{{{z_0}{{\bar \omega }_1}{\rm{ \mathit{ π} }}\cos {\alpha _\mathit{\Phi }}}}\int_{{t_0}}^{{t_0} + T} {\left[ {{C_m}\left( \gamma \right) - } \right.} \\ \;\;\;\;\;\;\;\;\;\left. {{C_{{m_0}}}\left( \gamma \right)} \right]\sin \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t \end{array} $ (24)
4 滚转动导数原理方法及运动设计 4.1 常规滚转动导数原理方法和运动模式

一般设计小振幅滚转强迫振动运动来获得滚转动导数, 其运动方程为

$ \left\{ \begin{array}{l} \mathit{\Phi } = {\mathit{\Phi }_0}\sin \left( {{\omega _1}t + {\varphi _1}} \right)\\ \mathit{\bar {\dot \Phi} } = {{\bar \omega }_1}{\mathit{\Phi }_0}\cos \left( {{\omega _1}t + {\varphi _1}} \right) = \bar p \end{array} \right. $ (25)

该运动情况下滚转力矩系数可以写成如下1阶格式

$ {C_l} = {C_{{l_0}}} + {C_{{l_{\bar p}}}}\bar p + {C_{{l_{\mathit{\bar {\dot \Phi} }}}}}\mathit{\bar {\dot \Phi} } $ (26)

将式(25)代入, 可得

$ {C_l} = {C_{{l_0}}} + \left( {{C_{{l_{\bar p}}}} + {C_{{l_{\mathit{\bar {\dot \Phi} }}}}}} \right){\bar \omega _1}{\Phi _0}\cos \left( {{\omega _1}t + {\varphi _1}} \right) $ (27)

式(27)两边乘以cos(ω1t+φ1)并在一个周期T=2π/ω1内积分, 由三角函数的正交性可得

$ {C_{{l_{\bar p}}}} + {C_{{l_{\mathit{\bar {\dot \Phi} }}}}} = \frac{{2V}}{{{L_{r1}}{\rm{ \mathit{ π} }}{\mathit{\Phi }_0}}}\int_{{t_0}}^{{t_0} + T} {\left( {{C_l} - {C_{{l_0}}}} \right)\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t} $ (28)
4.2 周期气动等效平均的基态滚转动导数原理方法和运动模式

弹体旋转时, 小振幅滚转强迫振动基于${{\bar p}_0}$的基本旋转流场, 所以其运动方程为

$ \left\{ \begin{array}{l} \Delta \mathit{\Phi } = {\mathit{\Phi }_0}\sin \left( {{\omega _1}t + {\varphi _1}} \right)\\ \Delta \mathit{\bar {\dot \Phi} } = {{\bar \omega }_1}{\mathit{\Phi }_0}\cos \left( {{\omega _1}t + {\varphi _1}} \right) = \Delta \bar p \end{array} \right. $ (29)

仍采用式(26)的旋转运动方程, 类似地有

$ {C_l}\left( \gamma \right) = {C_{{l_0}}}\left( \gamma \right) + {C_{{l_{\bar p}}}}\left( \gamma \right)\Delta \bar p + {C_{{l_{\mathit{\bar {\dot \Phi} }}}}}\left( \gamma \right)\Delta \mathit{\bar {\dot \Phi} } $ (30)

将式(29)代入, 可得

$ {C_l}\left( \gamma \right) = {C_{{l_0}}}\left( \gamma \right) + \left[ {{C_{{l_{\bar p}}}}\left( \gamma \right) + {C_{{l_{\mathit{\bar {\dot \Phi} }}}}}\left( \gamma \right)} \right]{\bar \omega _1}{\mathit{\Phi }_0} $ (31)

选择ω2>2ω1ω2ω1的整数倍, 两边乘以cos(ω1t+φ1)并在一个周期T内积分取平均, 由三角函数的正交性可得周期平均值.

$ \begin{array}{l} \overline {{C_{{l_{\bar p}}}} + {C_{{l_{\mathit{\bar {\dot \Phi} }}}}}} = \frac{{2V}}{{{L_{r1}}{\rm{ \mathtt{ π} }}{\mathit{\Phi }_0}}}\int_{{t_0}}^{{t_0} + T} {\left[ {{C_l}\left( \gamma \right) - } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {{C_{{l_0}}}\left( \gamma \right)} \right]\cos \left( {{\omega _1}t + {\varphi _1}} \right){\rm{d}}t \end{array} $ (32)
5 结束语

本文从实际应用中旋转飞行器流场的物理本质出发, 重新考虑传统数学模型Maclaurin展开的小扰动假设, 提出了一种基于基态转速进行Taylor展开的新数学模型.针对新数学模型建模中较为困难的基态动导数计算方法和运动模式设计问题, 借鉴常规动导数的运动设计和原理方法, 并考虑旋转飞行器气动力周期平均的使用习惯, 采用Fourier级数表征旋转的影响, 建立了俯仰动导数、洗流时差导数和滚转动导数等的原理表达式, 并设计了相应的运动模式.上述原理方法可直接应用于数值计算和风洞实验.

参考文献
[1]
高庆丰. 旋转导弹飞行动力学与控制[M]. 北京: 中国宇航出版社, 2016: 1-15.
[2]
王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真[J]. 航空学报, 2017, 38(1): 120169.
Wang G, Xing Y, Zhu Y N. Aerodynamic modeling and flight trajectory simulation of spinning projectile[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120169. (in Chinese)
[3]
杨树兴, 赵良玉, 闫晓勇. 旋转弹动态稳定性理论[M]. 北京: 国防工业出版社, 2014: 1-27.
Yang S X, Zhao L Y, Yan X Y. Dynamic stability of spinning missiles[M]. Beijing: National Defense Industry Press, 2014: 1-27. (in Chinese)
[4]
吴甲生, 雷娟棉. 制导兵器气动布局与气动特性[M]. 北京: 国防工业出版社, 2008: 1-7.
[5]
叶尧卿. 便携式红外寻的防空导弹设计[M]. 北京: 中国宇航出版社, 1996: 13-16, 471-477.
[6]
钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2008: 64-74.
[7]
石忠佼, 谢浩怡, 林蔚, 等. 单通道控制的旋转弹锥形运动稳定性研究[J]. 固体火箭技术, 2015, 38(2): 156-159, 165.
Shi Z J, Xie H Y, Lin W, et al. Research on coning motion stability of a spinning missile with one pair of canards[J]. Journal of Solid Rocket Technology, 2015, 38(2): 156-159, 165. (in Chinese)
[8]
刘志明, 韩珺礼, 章曙, 等. 卷弧翼火箭弹高原使用稳定性分析[J]. 弹箭与制导学报, 2015, 35(2): 79-80, 87.
Liu Z M, Han J L, Zhang S, et al. Stability analysis of wraparound rocket used in high altitude areas[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(2): 79-80, 87. (in Chinese)
[9]
王华毕, 吴甲生. 火箭弹锥形运动稳定性分析[J]. 兵工学报, 2008, 29(5): 562-566.
Wang H B, Wu J S. The coning motion stability analysis of rocket[J]. Acta Armamentaril, 2008, 29(5): 562-566. DOI:10.3321/j.issn:1000-1093.2008.05.012 (in Chinese)
[10]
于剑桥, 别炎华. 滚转导弹动态失稳的机理分析[J]. 弹道学报, 2008, 20(2): 24-27, 40.
Yu J Q, Bie Y H. Mechanism analysis on dynamic instability of rolling missile[J]. Journal of Ballistics, 2008, 20(2): 24-27, 40. (in Chinese)
[11]
Cooper G, Fresconi F. Flight stability of an asymmetric projectile with activating canards[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 130-135. DOI:10.2514/1.A32022
[12]
Jumper G Y, Frushon C J, Longstreth R K, et al. Effects of Magnus moments on missile aerodynamic perform-ance[J]. ADA268975, 1991.
[13]
唐海敏, 傅建明, 伍彬, 等. 基于Euler方程解摄动的超声速旋转导数计算方法[J]. 南京航空航天大学学报, 2018, 50(3): 362-366.
Tang H M, Fu J M, Wu B, et al. Computational method of supersonic rotary derivatives based upon perturbation on Euler equation solution[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(3): 362-366. (in Chinese)
[14]
Jenkins J E. Dynamic stability derivatives[J]. AFRL-RQ-WP-TR-2015-0141, 2015.
[15]
赵文文, 陈伟芳, 邵纯, 等. 考虑多种物理效应的钝锥俯仰稳定性参数影响分析[J]. 空气动力学学报, 2013, 31(4): 442-448.
Zhao W W, Chen W F, Shao C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives considering different physical effects[J]. Acta Aerodynamica Sinica, 2013, 31(4): 442-448. (in Chinese)
[16]
刘绪. 高超声速内外流一体化飞行器动态特性研究[J]. 长沙:国防科学技术大学, 2011.
Liu X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[J]. Changsha:National University of Defense Technology, 2011. (in Chinese)
[17]
袁先旭, 张涵信, 谢昱飞. 基于CFD方法的俯仰静、动导数数值计算[J]. 空气动力学学报, 2005, 23(4): 458-463.
Yuan X X, Zhang H X, Xie Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamica Sinica, 2005, 23(4): 458-463. DOI:10.3969/j.issn.0258-1825.2005.04.012 (in Chinese)
[18]
Green L L, Spence A M, Murphy P C. Computational methods for dynamic stability and control derivatives[R]. AIAA 2004-15, 2004.
[19]
Moore F G, Hymer T C. Improvements in pitch damping for the aeroprediction code with particular emphasis on flare configurations[R]. NSWCDD/TR-00/009, 2000.
[20]
赵忠良, 任斌, 黄叙辉, 等. 跨超、高超声速风洞模型动导数实验技术研究[J]. 航空学报, 2000, 21(2): 52-55.
Zhao Z L, Ren B, Huang X H, et al. Investigation on model dynamic stability derivatives test techniques in trans-, supers-, hypersonic wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(2): 52-55. (in Chinese)
[21]
Uselton B L, Jenke L M. Experimental missile pitch-and roll-damping characteristics at large angles of attack[J]. Journal of Spacecraft, 1977, 14(4): 241-247. DOI:10.2514/3.57188
[22]
Shantz I, Groves R T. Dynamic and static stability measurements of the basic finner at supersonic speeds[R]. NAVORD Report 4516, 1960.
[23]
吴金华, 孙海生, 沈志洪, 等. 旋转流场下的振荡动导数实实验技术研究[J]. 实验流体力学, 2014, 28(4): 54-58.
Wu J H, Sun H S, Shen Z H, et al. Investigation of test technique of oscillatory dynamic derivative in rotational flow field[J]. Journal of Experiments in Fluid Mechani-cs, 2014, 28(4): 54-58. (in Chinese)
[24]
徐文熙, 吴甲生, 居贤铭. 大长径比旋转弹俯仰动导数风洞实验技术[J]. 北京理工大学学报, 1989, 9(2): 63-67.
Xu W X, Wu J S, Ju X M. Wind tunnel experimental technique for the pitching dynamic derivatives of a spinning projectile having high fineness ratio[J]. Transactions of Beijing Institute of Technology, 1989, 9(2): 63-67. (in Chinese)
[25]
上官垠黎, 苗瑞生. 亚音速旋转翼-身组合体的气动导数[J]. 兵工学报弹箭分册, 1988(2): 32-44.
[26]
恽起麟. 实验空气动力学[M]. 北京: 国防工业出版社, 1991: 308-310.
[27]
李周复. 风洞实实验手册[M]. 北京: 航空工业出版社, 2015: 623-628.
Li Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 623-628. (in Chinese)
[28]
李周复. 风洞特种实实验技术[M]. 北京: 航空工业出版社, 2010: 213-218.
[29]
任思根. 实验空气动力学[M]. 北京: 中国宇航出版社, 1996: 266-268.