齐鲁工业大学学报   2022, Vol. 36 Issue (3): 66-72
0
一类竞争模型解的长时间渐近行为[PDF全文]
张顺芹, 朱雪格, 刘晓薇     
齐鲁工业大学(山东省科学院)数学与统计学院, 山东 济南 250301
摘要:本文考虑带Stefan自由边界条件和Robin边界条件的Lotka-Volterra竞争模型, 主要对劣势竞争者的情形进行了研究, 讨论其解和自由边界的长时间渐近行为, 以及在不同初值情形下, 当u为劣势竞争者时, 随着时间趋于无穷而灭绝。
关键词反应扩散方程    竞争模型    Robin边界条件    自由边界条件    
Long time asymptotic behavior of solutions for a class of competition models
ZHANG Shun-qin, ZHU Xue-ge, LIU Xiao-wei     
School of Mathematics and Statistics, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
Abstract: In this paper, the Lotka-Volterra competition model with Stefan free boundary conditions and Robin boundary conditions is considered.The case of inferior competitors is studied.The long time asymptotic behavior of the solution and the free boundary is discussed, and the extinction of inferior competitors with time tends to infinity under different initial values is also studied.
Key words: reaction-diffusion equation    competition model    robin boundary condition    free boundary condition    

近年来, 外来物种入侵逐渐成为人们热议的话题, 同样也引起了许多数学家的关注, 为此他们建立了竞争模型[1]从生物数学的角度进行了研究。随着研究的深入, 发现在有界的特定区域上建立的竞争模型具有一定的理论缺陷, 因此数学家们引入了自由边界来避开这些缺陷, 自由边界的生态背景可参考[2]

目前带自由边界条件的竞争模型已经有了广泛的研究。例如, 王明新和赵景服[3-4]考虑了带Dirichlet和Neumann边界条件的一维空间反应扩散竞争模型, 证明了在强-弱、弱-强两种情形下入侵物种扩张和消失二择一性质成立, 并且给出了物种扩张时自由边界渐近扩张速度的一个估计。郭忠勝等[5]研究了带Neumann边界条件的强-弱情形, 证明了两个物种扩张时, 存在一个临界值, 使得当其领地范围大小高于该值时, 优势竞争物种总是能够成功扩张。杜一宏等[6]提出了具有Neumann边界条件的高维空间反应扩散竞争模型来描述入侵物种的传播, 讨论了强-弱、弱-强两种情形, 并给出了u发生扩张时扩张速度的一个粗略估计。

上述研究都是针对于Dirichlet和Neumann边界条件, 而关于Robin边界条件的研究却极少, 因为带Robin边界的竞争模型更符合某些实际情况中的物种传播过程, 具有理论意义和实际意义[7-9], 所以本文我们主要考虑以下带Robin自由边界的Lotka-Volterra模型:

$ \begin{cases}u_{t}-d_{1} u_{x x}=u\left(a_{1}-b_{1} u-c_{1} v\right) & t>0, 0<x<h(t), \\ v_{t}-d_{2} v_{x x}=v\left(a_{2}-b_{2} u-c_{2} v\right) & t>0, 0<x<h(t), \\ u(t, 0)=b u_{x}(t, 0), v_{x}(t, 0)=0 & t \geqslant 0, x=0, \\ u=v=0, h^{\prime}(t)=-\mu u_{x} & t \geqslant 0, x=h(t), \\ h=h_{0}, u=u_{0}(x), v=v_{0}(x) & t=0, x \in\left[0, h_{0}\right]。\end{cases} $ ($H_{1}$)

其中x=h(t)是待确定的移动边界, h0, μ, di, ai, bi, ci(i=1, 2)是给定的正常数, 初始函数u0, v0满足

$ \begin{cases}u_{0} \in C^{2}\left(\left[0, h_{0}\right]\right), u_{0}^{\prime}=u_{0}\left(h_{0}\right)=0, u_{0}>0, & x \in\left[0, h_{0}\right), \\ v_{0} \in C^{2}\left(\left[0, h_{0}\right]\right), v_{0}^{\prime}(0)=0, v_{0}>0, & x \in\left[0, h_{0}\right) 。\end{cases} $ ($H_{2}$)

本文主要讨论了u是劣势竞争者的情形, 即

$ \frac{a_{1}}{a_{2}}<\min \left\{\frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}\right\}。$ ($H_{3}$)
1 初步结果

类似参考文献[6]的方法, 我们得到(H1)解的全局存在性, 即:

引理1.1对于满足(H2)的(u0, v0)和任意的α∈(0, 1), 存在一个T>0, L>0使得当u(a1-b1u-c1v)≤L(u+v), v(a2-b2u-c2v)≤L(u+v)时, 对任意t>0, 问题(H1)有唯一有界解:

(u, v, h)∈C(1+α)/2, 1+α(DTC(1+α)/2, 1+α(DTC1+α/2([0, T]);

且‖uC(1+α)/2, 1+α(DT)+‖vC(1+α)/2, 1+α(DT)+‖hC1+α/2([0, T])C,

其中DT: ={(t, x)∈R2: t∈[0, T], x∈[0, h(t)]}, CT只取决于h0, α, ‖u0C2([0, h0])和‖v0C2([0, h0])

引理1.2对于T∈(0, ∞), $\underline{h}, \bar{h} \in C^{1}([0, T]), \bar{u}, \bar{v} \in C \overline{\left(D_{T}^{* *}\right)} \cap C^{1, 2}\left(D_{T}^{* *}\right)$,

DT*: ={(t, x)∈R2: t∈(0, T], x∈(0, h(t))}, DT**: ={(t, x)∈R2: t∈(0, T], x∈(0, h(t))}

$ \left\{ \begin{array}{l} \bar{u}_{t}-d_{1} \bar{u}_{x x} \geqslant \bar{u}\left(a_{1}-b_{1} \bar{u}-c_{1} \underline{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\bar{h}(t), \\ \underline{u}_{t}-d_{1} \underline{u}_{x x} \leqslant \underline{u}\left(a_{1}-b_{1} \underline{u}-c_{1} \bar{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\underline{h}(t), \\ \bar{v}_{t}-d_{1} \bar{v}_{x x} \geqslant \bar{v}\left(a_{2}-b_{2} \underline{u}-c_{2} \bar{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\underline{h}(t) \\ \underline{v}_{t}-d_{1} \underline{v}_{x x} \leqslant \underline{v}\left(a_{2}-b_{2} \bar{u}-c_{2} \underline{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\bar{h}(t), \\ \bar{u}(t, 0) \geqslant b \bar{u}_{x}(t, 0), \underline{v}_{x}(t, 0)=0, \bar{u}(t, x)=\underline{v}(t, x)=0, \quad 0<t \leqslant T, \bar{h}(t) \leqslant x<\infty, \\ \underline{u}(t, 0) \leqslant b \underline{u}_{x}(t, 0), \bar{v}_{x}(t, 0)=0, \underline{u}(t, x)=\bar{v}(t, x)=0, \quad 0<t \leqslant T, \underline{h}(t) \leqslant x<\infty \\ \underline{h}^{\prime}(t) \leqslant-\mu \underline{u}_{x}(t, h(t)), \bar{h}^{\prime}(t) \geqslant-\mu \bar{u}_{x}(t, h(t)), \quad 0<t \leqslant T, \\ \underline{h}(0) \leqslant h_{0} \leqslant \bar{h}(0), \\ \underline{u}(0, x) \leqslant u_{0}(x) \leqslant \bar{u}(0, x), \quad 0 \leqslant x \leqslant h_{0}, \\ \underline{v}(0, x) \leqslant v_{0}(x) \leqslant \bar{v}(0, x), \quad 0 \leqslant x<\infty。\end{array} \right. $

令(u, v, h)是(H1)的唯一有界解, 则

$ h(t) \leqslant \bar{h}(t) t \in(0, T], u(t, x) \leqslant \bar{u}(t, x), v(t, x) \geqslant \underline{v}(t, x)(t, x) \in(0, T] \times[0, \infty), \\ h(t) \geqslant \underline{h}(t) t \in(0, T], u(t, x) \geqslant \underline{u}(t, x), {v}(t, x) \leqslant \bar{v}(t, x)(t, x) \in(0, T] \times[0, \infty) 。$

利用引理1.2, 易知下列定理成立。

引理1.3  问题(H1)有唯一的一致有界解(u, v, h), 即在t>0上都有解, 存在常数M1M2使得

$ \begin{array}{ll} 0<u(t, x) \leqslant M_{1} & t \in(0, +\infty), 0 \leqslant x<h(t), \\ 0<v(t, x) \leqslant M_{2} & t \in(0, +\infty), 0 \leqslant x<h(t) 。\end{array} $

并且存在一个常数M3使得

$ 0<h^{\prime}(t) \leqslant M_{3} \quad t \in(0, +\infty) 。$

而且(H1)没有任何无界解。

2 解的长时间渐近行为

定理2.1 若(H3)成立, v0≡0, 则$\lim\limits_{t \rightarrow+\infty}(u(t, x), v(t, x))=\left(0, \frac{a_{2}}{c_{2}}\right)$在[0, ∞)的任何紧子集中一致成立。

证明: 当t>0, x∈[0, h(t)]时, 由比较原理得u(t, x)≤u*(t), 其中

$ u^{*}=\frac{a_{1}}{b_{1}} e^{a_{1} t}\left(e^{a_{1} t}+\frac{a_{1}}{b_{1}\left\|u_{0}\right\| \infty_{\infty}}-1\right)^{-1} 。$

是问题

$ \left\{\begin{array}{l} \left(u^{*}\right)^{\prime}=u^{*}\left(a_{1}-b_{1} u^{*}\right), \quad t>0, \\ u^{*}(0)=\left\|u_{0}\right\|_{\infty}。\end{array}\right. $ (1)

的解

又因为$\lim\limits_{t \rightarrow \infty} u^{*}(t)=\frac{a_{1}}{b_{1}}$, 故对于x∈[0, ∞)一致地有$\lim\limits_{t \rightarrow+\infty} {supu}(t, x) \leqslant \frac{a_{1}}{b_{1}}$。类似地, 我们有对于x∈[0, ∞)一致地有

$ \lim\limits_{t \rightarrow+\infty} {supv}(t, x) \leqslant \frac{a_{2}}{c_{2}} 。$ (2)

因此对于$\varepsilon_{1}=\left(\frac{a_{2}}{b_{2}}-\frac{a_{1}}{b_{1}}\right) / 2$, 存在t1>0使得当tt1, x∈[0, ∞)时有$u(t, x) \leqslant \frac{a_{1}}{b_{1}}+\varepsilon_{1}$, 则v满足

$ \begin{cases}v_{t}-d_{2} v_{x x} \geqslant v\left(b_{2} \varepsilon_{1}-c_{2} v\right), & t>t_{1}, 0 \leqslant x<h(t), \\ v_{x}(t, 0)=0, v(t, h(t))=0, & t>t_{1}, \\ v\left(t_{1}, x\right)>0, & 0 \leqslant x<h(t)。\end{cases} $ (3)

v*是下列问题

$ \begin{cases}\left(v_{*}\right)_{t}-d_{2}\left(v_{*}\right)_{x x}=\left(v_{*}\right)\left(b_{2} \varepsilon_{1}-c_{2} v_{*}\right), & t>t_{1}, 0 \leqslant x<h(t), \\ \left(v_{*}\right)_{x}(t, 0)=0, v_{*}(t, h(t))=0, & t>t_{1}, \\ v_{*}\left(t_{1}, x\right)=v\left(t_{1}, x\right), & 0 \leqslant x<h(t)。\end{cases} $

的唯一解, 且可知$\lim\limits_{t \rightarrow \infty} v_{*}(t, x)=b_{2} \varepsilon_{1} / c_{2}$在[0, ∞)的任何有界子集中一致[10], 因此$\forall L>0, \exists t_{L}>t_{1}$使得对于t>tL, 0≤xL

$ v(t, x) \geqslant v_{*}(t, x) \geqslant \frac{b_{2} \varepsilon_{1}}{2 c_{2}}。$ (4)

现在(u, v)满足

$ \begin{cases}u_{t}-d_{1} u_{x x}=u\left(a_{1}-b_{1} u-c_{1} v\right), & t>t_{L}, 0<x<h(t), \\ v_{t}-d_{1} v_{x x}=v\left(a_{2}-b_{2} u-c_{2} v\right), & t>t_{L}, 0<x<h(t), \\ u(t, 0)=b u_{x}(t, 0), v_{x}(t, 0)=0, & t>t_{L}, \\ u(t, x) \leqslant \frac{a_{1}}{b_{1}}+\varepsilon_{1}, v(t, x) \geqslant \frac{b_{2} \varepsilon_{1}}{2 c_{2}}, & t>t_{L}, 0 \leqslant x \leqslant L。\end{cases} $ (5)

因为当t>tL, xh(t), 无论是否满足h(t)≤L, 我们总是有uu, vv,

(t, x)∈[tL, ∞)×[0, L], 并且(u, v)满足

$ \left\{ \begin{array}{l} \begin{array}{ll} \bar{u}_{t}-d_{1} \bar{u}_{x x}=\bar{u}\left(a_{1}-b_{1} \bar{u}-c_{1} \underline{v}\right), & t>t_{L}, 0<x<L, \\ \underline{v}_{t}-d_{1} \underline{v}_{x x}=\underline{v}\left(a_{2}-b_{2} \bar{u}-c_{2} \underline{v}\right), & t>t_{L}, 0<x<L, \end{array} \\ \begin{aligned} &\bar{u}(t, 0) \geqslant b\bar{u}_{x}(t, 0), \underline{v}_{x}(t, 0)=0, \quad t>t_{L}, \\ &\bar{u}(t, x)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, \underline{v}(t, x)=\frac{b_{2} \varepsilon_{1}}{2 c_{2}}, \quad t>t_{L}, x={Lort}=t_{L}, 0 \leqslant x<L。\end{aligned} \end{array} \right. $ (6)

单调动力系统(6)是拟减的, 当且仅当u1u2, v1v2时(u1, v1)≤p(u2, v2), 其中初始值$\left(\frac{a_{1}}{b_{1}}+\varepsilon_{1}, \frac{b_{2} \varepsilon_{1}}{2 c_{2}}\right)$为上解, 根据单调动力系统理论[11]$\lim\limits_{t \rightarrow+\infty} \bar{u}(t, x)=\bar{u}_{L}(x), \lim\limits_{t \rightarrow+\infty} \underline{v}(t, x)=\underline{v}_{L}(x)$在[0, L]中一致, 其中$\left(\bar{u}_{L}, \underline{v}_{L}\right)$满足

$ \left\{ \begin{array}{l} -d_{1}\left(\bar{u}_{L}\right)_{x x}=\bar{u}_{L}\left(a_{1}-b_{1} \bar{u}_{L}-c_{1} \underline{v}_{L}\right), \quad 0 \leqslant x<L\\-d_{1}\left(\underline{v}_{L}\right)_{x x}=\underline{v}_{L}\left(a_{2}-b_{2} \bar{u}_{L}-c_{2} \underline{v}_{L}\right), \quad 0 \leqslant x<L, \\ \bar{u}_{L}(0) \geqslant b \frac{\partial \bar{u}_{L}}{\partial x}(0), \frac{\partial \underline{v}_{L}}{\partial x}(0)=0, \\ \bar{u}_{L}(L)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, \underline{v}_{L}(L)=\frac{b_{2} \varepsilon_{1}}{2 c_{2}} 。\end{array} \right. $ (7)

并且$\left(\frac{a_{1}}{b_{1}}+\varepsilon_{1}, \frac{b_{2} \varepsilon_{1}}{2 c_{2}}\right)$是它的最大解。

接下来我们通过比较式(6)中L=L1L=L2的边界条件和初始条件得到若0 < L1 < L2, 则在[0, L1]中有uL1(x)≥uL2(x)和vL1(x)≤vL2(x)。

L→∞, 通过经典椭圆正则性理论和对角线过程, 在任何[0, ∞)的紧子集中(uL(x), vL(x))一致收敛到($\bar{u}_{\infty}, \underline{v}_{\infty}$)并且满足

$ \begin{cases}-d_{1}\left(\bar{u}_{\infty}\right)_{x x}=\bar{u}_{\infty}\left(a_{1}-b_{1} \bar{u}_{\infty}-c_{1} \underline{v}_{\infty}\right), & 0 \leqslant x<\infty, \\ -d_{1}\left(\underline{v}_{\infty}\right)_{x x}=\underline{v}_{\infty}\left(a_{2}-b_{2} \bar{u}_{\infty}-c_{2} \underline{v}_{\infty}\right), & 0 \leqslant x<\infty, \\ \bar{u}_{\infty}(0) \geqslant b \frac{\partial \bar{u}_{\infty}}{\partial x}(0), \frac{\partial \underline{v}_{\infty}}{\partial x}(0)=0, & \\ \bar{u}_{\infty}(x) \leqslant \frac{a_{1}}{b_{1}}+\varepsilon_{1}, \underline{v}_{\infty}(x) \geqslant \frac{b_{2} \varepsilon_{1}}{2 c_{2}}, & 0 \leqslant x<\infty 。\end{cases} $

下面证明$\bar{u}_{\infty}(x) \equiv 0 \text { 和 } \underline{v}_{\infty} \equiv \frac{a_{2}}{c_{2}}$, 为此, 考虑下列ODE系统:

$ \left\{\begin{array}{l} z_{t}=z\left(a_{1}-b_{1} z-c_{1} w\right), t>0 \\ w_{t}=w\left(a_{2}-b_{2} z-c_{2} w\right), t>0 \\ z(0)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, w(0)=\frac{b_{2} \varepsilon_{2}}{2 c_{2}} 。\end{array}\right. $ (8)

因为a1/a2 < min{c1/c2, b1/b2}, 则当t→∞时, $(z, w) \longrightarrow\left(0, \frac{a_{2}}{c_{2}}\right)$ [12]。因此下列问题的解(Z(t, x), W(t, x))

$ \begin{cases}Z_{t}-d_{1} Z_{x x}=Z\left(a_{1}-b_{1} Z-c_{1} W\right), & t>0, x \geqslant 0, \\ W_{t}-d_{1} W_{x x}=Z\left(a_{2}-b_{2} Z-c_{2} W\right), & t>0, x \geqslant 0, \\ Z(t, 0)=b Z_{x}(t, 0), W_{x}(t, 0)=0, & t>0, \\ Z(0, x)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, W(0, x)=\frac{b_{2} \varepsilon_{1}}{c_{2}}, & x \geqslant 0 。\end{cases} $ (9)

满足当t→∞时, $(Z, W) \rightarrow\left(0, \frac{a_{2}}{c_{2}}\right)$在[0, ∞)内一致, 又根据比较原理t>0时, $\bar{u}_{\infty}(x) \leqslant Z(t, x), \underline{v}_{\infty}(x) \geqslant W(t, x)$, 故可得$\bar{u}_{\infty}=0, \underline{v}_{\infty}=\frac{a_{2}}{c_{2}}$

因此我们有$\lim\limits_{t \rightarrow+\infty} {supu}(t, x) \leqslant 0, \lim\limits_{t \rightarrow+\infty} {infv}(t, x) \geqslant \frac{a_{2}}{c_{2}}$在[0, L]中一致, 结合式(2)可得$\lim\limits_{t \rightarrow+\infty} u(t, x)=0$, $\lim\limits_{t \rightarrow+\infty} v(t, x)=\frac{a_{2}}{c_{2}}$在[0, ∞)的任何有界子集中一致。

定理2.2 假设(H3)成立, v0(x)≥δ>0, 0≤x < h0, 则h < ∞, 且在[0, ∞)中一致地有$\lim\limits_{t \rightarrow+\infty} u(t, x)=0$, $\lim\limits_{t \rightarrow+\infty} v(t, x)=\frac{a_{2}}{c_{2}}$

证明: 首先根据比较原则

$\lim\limits_{t \rightarrow+\infty} {supu}(t, x) \leqslant \frac{a_{1}}{b_{1}}$x∈[0, ∞)中一致地成立。

$\lim\limits_{t \rightarrow+\infty} {supv}(t, x) \leqslant \frac{a_{2}}{c_{2}}$x∈[0, ∞)中一致地成立。

因此对于$\varepsilon_{1}=\left(\frac{a_{2}}{b_{2}}-\frac{a_{1}}{b_{1}}\right) / 2$, 存在t1>0使得$u(t, x) \leqslant \frac{a_{1}}{b_{1}}+\varepsilon_{1}, t \geqslant t_{1}, x \in[0, \infty)$

因为当t>0, 0≤x < ∞时, $0 \leqslant u(t, x) \leqslant M_{1}:=\max \left\{\frac{a_{1}}{b_{1}}, \left\|u_{0}\right\|_{C\left(\left[0, h_{0}\right]\right)}\right\}$,

$0 \leqslant v(t, x) \leqslant M_{2}:=\max \left\{\frac{a_{2}}{c_{2}}, \left\|v_{0}\right\|_{C\left(\left[0, h_{0}\right]\right)}\right\}$, 因此v满足

$ \begin{cases}v_{t}-d_{2} v_{x x} \geqslant v\left(a_{2}-b_{2} M_{1}-c_{2} M_{2}\right), & t>0, 0 \leqslant x<h(t), \\ v_{x}(t, 0)=0, v(t, h(t))=0, & t>0, \\ v(0, x) \geqslant \delta, & 0 \leqslant x<h(t)。\end{cases} $

t>0, 0≤x < ∞时, 有v(t, x)≥δe(-b2M1-c2M2)t

然后考虑下列问题:

$ \left\{\begin{array}{l} z_{t}=z\left(a_{1}-b_{1} z-c_{1} w\right), t>t_{1}, \\ w_{t}=w\left(a_{2}-b_{2} z-c_{2} w\right), t>t_{1}, \\ z\left(t_{1}\right)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, w\left(t_{1}\right)=\delta \mathrm{e}^{\left(-b_{2} M_{1}-c_{2} M_{2}\right) t_{1}}。\end{array}\right. $ (10)

根据比较原理u(t, x)≤z(t), v(t, x)≥w(t), tt1, 0≤x≤∞。在假设条件

a1/a2 < min{c1/c2, b1/b2}下, 当t→∞时, 有$(z, w) \rightarrow\left(0, \frac{a_{2}}{c_{2}}\right)$, 则有$\lim\limits_{t \rightarrow+\infty} u(t, x)=0$x∈[0, ∞)中一致地成立。接下来我们证明$\lim\limits_{t \rightarrow+\infty} v(t, x)=\frac{a_{2}}{c_{2}}$x∈[0, ∞)中一致地成立, 因为$\lim\limits_{t \rightarrow+\infty} u(t, x)=0$x∈[0, ∞)中一致地成立, 则$\forall \varepsilon>0, \exists T>0$使得0≤u(t, x)≤ε, tT, x∈[0, ∞), 又v(T, x)≥δe(-b2M1-c2M2)T, 因此有

$ \begin{cases}v_{t}-d_{2} v_{x x} \geqslant v\left(a_{2}-b_{2} \varepsilon-c_{2} v\right), & t \geqslant T, 0 \leqslant x<h(t), \\ v_{x}(t, 0)=0, v(t, h(t))=0, & t>T, \\ v(T, x) \geqslant \delta \mathrm{e}^{\left(-b_{2} M_{1}-c_{2} M_{2}\right) T}, & 0 \leqslant x<h(t)。\end{cases} $

$\tilde{v}_{t}=\tilde{v}\left(a_{2}-b_{2} \varepsilon-c_{2} \tilde{v}\right)$, tT, v(T)=δe(-b2M1-c2M2)T

根据比较原理$\tilde{v}(t) \leqslant v(t, x), t \geqslant T, x \in[0, \infty)$, 又由于t→∞时$\tilde{v}(t) \longrightarrow \frac{a_{2}-\varepsilon b_{2}}{c_{2}}$, 我们有$\frac{a_{2}-\varepsilon b_{2}}{c_{2}} \leqslant \lim\limits_{t \rightarrow+\infty}infv(t, x)$x∈[0, ∞)中一致地成立, 因为ε>0是任意的, 故可得$\lim\limits_{t \rightarrow+\infty} v(t, x)=\frac{a_{2}}{c_{2}}$x∈[0, ∞)中一致地成立。

接下来证明h < ∞, 因为在[0, ∞)中一致地有$\lim\limits_{t \rightarrow+\infty} u(t, x)=0, \lim\limits_{t \rightarrow+\infty} v(t, x)=\frac{a_{2}}{c_{2}}$, 所以$\lim\limits_{t \rightarrow+\infty}\left(a_{1}-b_{1} u(t, x)-c_{1} v(t, x)\right)$=a1-a2c1/c2在[0, ∞)中一致地成立, 并且存在T*使得(a1-b1u(t, x)-c1v(t, x))≤0, tT*, 0≤x < ∞。

直接计算可得

$ \begin{aligned} &\frac{\mathrm{d}}{\mathrm{d} t} \int_{0}^{h(t)} x u(t, x) \mathrm{d} x=\int_{0}^{h(t)} x u_{t}(t, x) \mathrm{d} x \\ &=\int_{0}^{h(t)} d_{1} x u_{x x} \mathrm{~d} x+\int_{0}^{h(t)} d_{1} x u\left(a_{1}-b_{1} u-c_{1} v\right) \mathrm{d} x \\ &=-\frac{1}{\mu} h(t) h^{\prime}(t)+u(t, 0)+\int_{0}^{h(t)} d_{1} x u\left(a_{1}-b_{1} u-c_{1} v\right) \mathrm{d} x \end{aligned} $

在[T*, t]上积分得

$ \begin{aligned} &0 \leqslant \int_{0}^{h(t)} x u(t, x) \mathrm{d} x=\int_{0}^{h\left(T^{*}\right)} x u\left(T^{*}, x\right) \mathrm{d} x+\frac{d_{1}}{2 \mu} h^{2}\left(T^{*}\right)-\frac{d_{1}}{2 \mu} h^{2}(t)+\int_{T^{*}}^{t} u(s, 0) \mathrm{d} s+\int_{T^{*}}^{t} \int_{0}^{h(s)} d_{1} x u\left(a_{1}-b_{1} u-c_{1} v\right) \mathrm{d} x \mathrm{~d} s, \\ &t \geqslant T^{*} \end{aligned} $

因为(a1-b1u(t, x)-c1v(t, x))≤0, tT*, 0≤x < ∞, 我们有

$ h^{2}(t) \leqslant \frac{2 \mu}{d_{1}} \int_{0}^{h\left(T^{*}\right)} x u\left(T^{*}, x\right) \mathrm{d} x+h^{2}\left(T^{*}\right)+\frac{2 \mu}{d_{1}} \int_{T^{*}}^{t} u(s, 0) \mathrm{d} s, t \geqslant T^{*} 。$

h < ∞。

定理2.2表明劣势竞争者不可能深入到一个建立良好的本地物种栖息地, 它在入侵的锋线到达一定的有限限制位置之前就灭绝了。

定理2.3 如果(H3)成立, 则对于所有的μ>0有h < ∞。

证明: 无论h < ∞或者h=∞都有$\lim\limits_{t \rightarrow+\infty} inf \min\limits_{0 \leqslant x \leqslant h(t)} v(t, x) \geqslant \frac{a_{2}}{c_{2}}$[13], 又因为$\frac{a_{1}}{a_{2}}<\min \left\{\frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}\right\}$, 存在T>0使得(a1-b1u(t, x)-c1v(t, x)) < 0, tT, 0≤x < h(t), 剩下的证明与参考文献[6]类似。

参考文献
[1]
BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. The Journal of Animal Ecology, 1975, 44(1): 331-340. DOI:10.2307/3866
[2]
BUNTING G, DU Y, KRAKOWSKI K. Spreading speed revisited: analysis of a free boundary model[J]. Networks & Heterogeneous Media, 2012, 7(4): 583-603.
[3]
WANG M X, ZHAO J F. Free boundary problems for a Lotka-Volterra competition system[J]. Dynamic Differential Equations, 2014, 26(3): 655-672. DOI:10.1007/s10884-014-9363-4
[4]
WANG M X, ZHAO J F. A free boundary problem for the predator-prey model with double free boundaries[J]. Journal of Dynamics and Differential Equations, 2017, 29(3): 957-979.
[5]
GUO J S, WU C H. Dynamics for a two-species competition-diffusion model with two free boundaries[J]. Nonlinearity, 2014, 28(1): 1-27.
[6]
DU Y H, LIN Z G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor[J]. arXiv preprint arXiv: 1303.0454, 2013.
[7]
周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(2): 60-65.
[8]
朱丹丹. 几类反应扩散系统的自由边界问题[D]. 郑州: 郑州大学, 2019.
[9]
王一拙. 具自由边界反应扩散模型动力学研究[D]. 长沙: 湖南大学, 2020.
[10]
DU Y H, MA L. Logistic type equations on ℝ N by a squeezing method involving boundary blow-up solutions[J]. Journal of the London Mathematical Society, 2001, 64(1): 107-124.
[11]
HIRSCH M W, SMITH H. Monotone dynamical systems[J]. Handbook of Differential Equations: Ordinary Differential Equations, 2006, 2: 239-357.
[12]
MORITA Y, TACHIBANA K. An entire solution to the Lotka-Volterra competition-diffusion equations[J]. SIAM Journal on Mathematical Analysis, 2009, 40(6): 2217-2240. DOI:10.1137/080723715
[13]
WANG M X. Spreading and vanishing in the diffusive prey-predator model with a free boundary[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 23(1/2/3): 311-327.