| 一类竞争模型解的长时间渐近行为 |
近年来, 外来物种入侵逐渐成为人们热议的话题, 同样也引起了许多数学家的关注, 为此他们建立了竞争模型[1]从生物数学的角度进行了研究。随着研究的深入, 发现在有界的特定区域上建立的竞争模型具有一定的理论缺陷, 因此数学家们引入了自由边界来避开这些缺陷, 自由边界的生态背景可参考[2]。
目前带自由边界条件的竞争模型已经有了广泛的研究。例如, 王明新和赵景服[3-4]考虑了带Dirichlet和Neumann边界条件的一维空间反应扩散竞争模型, 证明了在强-弱、弱-强两种情形下入侵物种扩张和消失二择一性质成立, 并且给出了物种扩张时自由边界渐近扩张速度的一个估计。郭忠勝等[5]研究了带Neumann边界条件的强-弱情形, 证明了两个物种扩张时, 存在一个临界值, 使得当其领地范围大小高于该值时, 优势竞争物种总是能够成功扩张。杜一宏等[6]提出了具有Neumann边界条件的高维空间反应扩散竞争模型来描述入侵物种的传播, 讨论了强-弱、弱-强两种情形, 并给出了u发生扩张时扩张速度的一个粗略估计。
上述研究都是针对于Dirichlet和Neumann边界条件, 而关于Robin边界条件的研究却极少, 因为带Robin边界的竞争模型更符合某些实际情况中的物种传播过程, 具有理论意义和实际意义[7-9], 所以本文我们主要考虑以下带Robin自由边界的Lotka-Volterra模型:
| $ \begin{cases}u_{t}-d_{1} u_{x x}=u\left(a_{1}-b_{1} u-c_{1} v\right) & t>0, 0<x<h(t), \\ v_{t}-d_{2} v_{x x}=v\left(a_{2}-b_{2} u-c_{2} v\right) & t>0, 0<x<h(t), \\ u(t, 0)=b u_{x}(t, 0), v_{x}(t, 0)=0 & t \geqslant 0, x=0, \\ u=v=0, h^{\prime}(t)=-\mu u_{x} & t \geqslant 0, x=h(t), \\ h=h_{0}, u=u_{0}(x), v=v_{0}(x) & t=0, x \in\left[0, h_{0}\right]。\end{cases} $ | ($H_{1}$) |
其中x=h(t)是待确定的移动边界, h0, μ, di, ai, bi, ci(i=1, 2)是给定的正常数, 初始函数u0, v0满足
| $ \begin{cases}u_{0} \in C^{2}\left(\left[0, h_{0}\right]\right), u_{0}^{\prime}=u_{0}\left(h_{0}\right)=0, u_{0}>0, & x \in\left[0, h_{0}\right), \\ v_{0} \in C^{2}\left(\left[0, h_{0}\right]\right), v_{0}^{\prime}(0)=0, v_{0}>0, & x \in\left[0, h_{0}\right) 。\end{cases} $ | ($H_{2}$) |
本文主要讨论了u是劣势竞争者的情形, 即
| $ \frac{a_{1}}{a_{2}}<\min \left\{\frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}\right\}。$ | ($H_{3}$) |
类似参考文献[6]的方法, 我们得到(H1)解的全局存在性, 即:
引理1.1对于满足(H2)的(u0, v0)和任意的α∈(0, 1), 存在一个T>0, L>0使得当u(a1-b1u-c1v)≤L(u+v), v(a2-b2u-c2v)≤L(u+v)时, 对任意t>0, 问题(H1)有唯一有界解:
(u, v, h)∈C(1+α)/2, 1+α(DT)×C(1+α)/2, 1+α(DT)×C1+α/2([0, T]);
且‖u‖C(1+α)/2, 1+α(DT)+‖v‖C(1+α)/2, 1+α(DT)+‖h‖C1+α/2([0, T])≤C,
其中DT: ={(t, x)∈R2: t∈[0, T], x∈[0, h(t)]}, C和T只取决于h0, α, ‖u0‖C2([0, h0])和‖v0‖C2([0, h0])。
引理1.2对于T∈(0, ∞),
DT*: ={(t, x)∈R2: t∈(0, T], x∈(0, h(t))}, DT**: ={(t, x)∈R2: t∈(0, T], x∈(0, h(t))}
| $ \left\{ \begin{array}{l} \bar{u}_{t}-d_{1} \bar{u}_{x x} \geqslant \bar{u}\left(a_{1}-b_{1} \bar{u}-c_{1} \underline{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\bar{h}(t), \\ \underline{u}_{t}-d_{1} \underline{u}_{x x} \leqslant \underline{u}\left(a_{1}-b_{1} \underline{u}-c_{1} \bar{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\underline{h}(t), \\ \bar{v}_{t}-d_{1} \bar{v}_{x x} \geqslant \bar{v}\left(a_{2}-b_{2} \underline{u}-c_{2} \bar{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\underline{h}(t) \\ \underline{v}_{t}-d_{1} \underline{v}_{x x} \leqslant \underline{v}\left(a_{2}-b_{2} \bar{u}-c_{2} \underline{v}\right), \quad 0<t \leqslant T, 0 \leqslant x<\bar{h}(t), \\ \bar{u}(t, 0) \geqslant b \bar{u}_{x}(t, 0), \underline{v}_{x}(t, 0)=0, \bar{u}(t, x)=\underline{v}(t, x)=0, \quad 0<t \leqslant T, \bar{h}(t) \leqslant x<\infty, \\ \underline{u}(t, 0) \leqslant b \underline{u}_{x}(t, 0), \bar{v}_{x}(t, 0)=0, \underline{u}(t, x)=\bar{v}(t, x)=0, \quad 0<t \leqslant T, \underline{h}(t) \leqslant x<\infty \\ \underline{h}^{\prime}(t) \leqslant-\mu \underline{u}_{x}(t, h(t)), \bar{h}^{\prime}(t) \geqslant-\mu \bar{u}_{x}(t, h(t)), \quad 0<t \leqslant T, \\ \underline{h}(0) \leqslant h_{0} \leqslant \bar{h}(0), \\ \underline{u}(0, x) \leqslant u_{0}(x) \leqslant \bar{u}(0, x), \quad 0 \leqslant x \leqslant h_{0}, \\ \underline{v}(0, x) \leqslant v_{0}(x) \leqslant \bar{v}(0, x), \quad 0 \leqslant x<\infty。\end{array} \right. $ |
令(u, v, h)是(H1)的唯一有界解, 则
| $ h(t) \leqslant \bar{h}(t) t \in(0, T], u(t, x) \leqslant \bar{u}(t, x), v(t, x) \geqslant \underline{v}(t, x)(t, x) \in(0, T] \times[0, \infty), \\ h(t) \geqslant \underline{h}(t) t \in(0, T], u(t, x) \geqslant \underline{u}(t, x), {v}(t, x) \leqslant \bar{v}(t, x)(t, x) \in(0, T] \times[0, \infty) 。$ |
利用引理1.2, 易知下列定理成立。
引理1.3 问题(H1)有唯一的一致有界解(u, v, h), 即在t>0上都有解, 存在常数M1和M2使得
| $ \begin{array}{ll} 0<u(t, x) \leqslant M_{1} & t \in(0, +\infty), 0 \leqslant x<h(t), \\ 0<v(t, x) \leqslant M_{2} & t \in(0, +\infty), 0 \leqslant x<h(t) 。\end{array} $ |
并且存在一个常数M3使得
| $ 0<h^{\prime}(t) \leqslant M_{3} \quad t \in(0, +\infty) 。$ |
而且(H1)没有任何无界解。
2 解的长时间渐近行为定理2.1 若(H3)成立, v0≡0, 则
证明: 当t>0, x∈[0, h(t)]时, 由比较原理得u(t, x)≤u*(t), 其中
| $ u^{*}=\frac{a_{1}}{b_{1}} e^{a_{1} t}\left(e^{a_{1} t}+\frac{a_{1}}{b_{1}\left\|u_{0}\right\| \infty_{\infty}}-1\right)^{-1} 。$ |
是问题
| $ \left\{\begin{array}{l} \left(u^{*}\right)^{\prime}=u^{*}\left(a_{1}-b_{1} u^{*}\right), \quad t>0, \\ u^{*}(0)=\left\|u_{0}\right\|_{\infty}。\end{array}\right. $ | (1) |
的解
又因为
| $ \lim\limits_{t \rightarrow+\infty} {supv}(t, x) \leqslant \frac{a_{2}}{c_{2}} 。$ | (2) |
因此对于
| $ \begin{cases}v_{t}-d_{2} v_{x x} \geqslant v\left(b_{2} \varepsilon_{1}-c_{2} v\right), & t>t_{1}, 0 \leqslant x<h(t), \\ v_{x}(t, 0)=0, v(t, h(t))=0, & t>t_{1}, \\ v\left(t_{1}, x\right)>0, & 0 \leqslant x<h(t)。\end{cases} $ | (3) |
令v*是下列问题
| $ \begin{cases}\left(v_{*}\right)_{t}-d_{2}\left(v_{*}\right)_{x x}=\left(v_{*}\right)\left(b_{2} \varepsilon_{1}-c_{2} v_{*}\right), & t>t_{1}, 0 \leqslant x<h(t), \\ \left(v_{*}\right)_{x}(t, 0)=0, v_{*}(t, h(t))=0, & t>t_{1}, \\ v_{*}\left(t_{1}, x\right)=v\left(t_{1}, x\right), & 0 \leqslant x<h(t)。\end{cases} $ |
的唯一解, 且可知
| $ v(t, x) \geqslant v_{*}(t, x) \geqslant \frac{b_{2} \varepsilon_{1}}{2 c_{2}}。$ | (4) |
现在(u, v)满足
| $ \begin{cases}u_{t}-d_{1} u_{x x}=u\left(a_{1}-b_{1} u-c_{1} v\right), & t>t_{L}, 0<x<h(t), \\ v_{t}-d_{1} v_{x x}=v\left(a_{2}-b_{2} u-c_{2} v\right), & t>t_{L}, 0<x<h(t), \\ u(t, 0)=b u_{x}(t, 0), v_{x}(t, 0)=0, & t>t_{L}, \\ u(t, x) \leqslant \frac{a_{1}}{b_{1}}+\varepsilon_{1}, v(t, x) \geqslant \frac{b_{2} \varepsilon_{1}}{2 c_{2}}, & t>t_{L}, 0 \leqslant x \leqslant L。\end{cases} $ | (5) |
因为当t>tL, x≥h(t), 无论是否满足h(t)≤L, 我们总是有u≤u, v≥v,
(t, x)∈[tL, ∞)×[0, L], 并且(u, v)满足
| $ \left\{ \begin{array}{l} \begin{array}{ll} \bar{u}_{t}-d_{1} \bar{u}_{x x}=\bar{u}\left(a_{1}-b_{1} \bar{u}-c_{1} \underline{v}\right), & t>t_{L}, 0<x<L, \\ \underline{v}_{t}-d_{1} \underline{v}_{x x}=\underline{v}\left(a_{2}-b_{2} \bar{u}-c_{2} \underline{v}\right), & t>t_{L}, 0<x<L, \end{array} \\ \begin{aligned} &\bar{u}(t, 0) \geqslant b\bar{u}_{x}(t, 0), \underline{v}_{x}(t, 0)=0, \quad t>t_{L}, \\ &\bar{u}(t, x)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, \underline{v}(t, x)=\frac{b_{2} \varepsilon_{1}}{2 c_{2}}, \quad t>t_{L}, x={Lort}=t_{L}, 0 \leqslant x<L。\end{aligned} \end{array} \right. $ | (6) |
单调动力系统(6)是拟减的, 当且仅当u1≤u2, v1≥v2时(u1, v1)≤p(u2, v2), 其中初始值
| $ \left\{ \begin{array}{l} -d_{1}\left(\bar{u}_{L}\right)_{x x}=\bar{u}_{L}\left(a_{1}-b_{1} \bar{u}_{L}-c_{1} \underline{v}_{L}\right), \quad 0 \leqslant x<L\\-d_{1}\left(\underline{v}_{L}\right)_{x x}=\underline{v}_{L}\left(a_{2}-b_{2} \bar{u}_{L}-c_{2} \underline{v}_{L}\right), \quad 0 \leqslant x<L, \\ \bar{u}_{L}(0) \geqslant b \frac{\partial \bar{u}_{L}}{\partial x}(0), \frac{\partial \underline{v}_{L}}{\partial x}(0)=0, \\ \bar{u}_{L}(L)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, \underline{v}_{L}(L)=\frac{b_{2} \varepsilon_{1}}{2 c_{2}} 。\end{array} \right. $ | (7) |
并且
接下来我们通过比较式(6)中L=L1和L=L2的边界条件和初始条件得到若0 < L1 < L2, 则在[0, L1]中有uL1(x)≥uL2(x)和vL1(x)≤vL2(x)。
令L→∞, 通过经典椭圆正则性理论和对角线过程, 在任何[0, ∞)的紧子集中(uL(x), vL(x))一致收敛到(
| $ \begin{cases}-d_{1}\left(\bar{u}_{\infty}\right)_{x x}=\bar{u}_{\infty}\left(a_{1}-b_{1} \bar{u}_{\infty}-c_{1} \underline{v}_{\infty}\right), & 0 \leqslant x<\infty, \\ -d_{1}\left(\underline{v}_{\infty}\right)_{x x}=\underline{v}_{\infty}\left(a_{2}-b_{2} \bar{u}_{\infty}-c_{2} \underline{v}_{\infty}\right), & 0 \leqslant x<\infty, \\ \bar{u}_{\infty}(0) \geqslant b \frac{\partial \bar{u}_{\infty}}{\partial x}(0), \frac{\partial \underline{v}_{\infty}}{\partial x}(0)=0, & \\ \bar{u}_{\infty}(x) \leqslant \frac{a_{1}}{b_{1}}+\varepsilon_{1}, \underline{v}_{\infty}(x) \geqslant \frac{b_{2} \varepsilon_{1}}{2 c_{2}}, & 0 \leqslant x<\infty 。\end{cases} $ |
下面证明
| $ \left\{\begin{array}{l} z_{t}=z\left(a_{1}-b_{1} z-c_{1} w\right), t>0 \\ w_{t}=w\left(a_{2}-b_{2} z-c_{2} w\right), t>0 \\ z(0)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, w(0)=\frac{b_{2} \varepsilon_{2}}{2 c_{2}} 。\end{array}\right. $ | (8) |
因为a1/a2 < min{c1/c2, b1/b2}, 则当t→∞时,
| $ \begin{cases}Z_{t}-d_{1} Z_{x x}=Z\left(a_{1}-b_{1} Z-c_{1} W\right), & t>0, x \geqslant 0, \\ W_{t}-d_{1} W_{x x}=Z\left(a_{2}-b_{2} Z-c_{2} W\right), & t>0, x \geqslant 0, \\ Z(t, 0)=b Z_{x}(t, 0), W_{x}(t, 0)=0, & t>0, \\ Z(0, x)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, W(0, x)=\frac{b_{2} \varepsilon_{1}}{c_{2}}, & x \geqslant 0 。\end{cases} $ | (9) |
满足当t→∞时,
因此我们有
定理2.2 假设(H3)成立, v0(x)≥δ>0, 0≤x < h0, 则h∞ < ∞, 且在[0, ∞)中一致地有
证明: 首先根据比较原则
因此对于
因为当t>0, 0≤x < ∞时,
| $ \begin{cases}v_{t}-d_{2} v_{x x} \geqslant v\left(a_{2}-b_{2} M_{1}-c_{2} M_{2}\right), & t>0, 0 \leqslant x<h(t), \\ v_{x}(t, 0)=0, v(t, h(t))=0, & t>0, \\ v(0, x) \geqslant \delta, & 0 \leqslant x<h(t)。\end{cases} $ |
当t>0, 0≤x < ∞时, 有v(t, x)≥δe(-b2M1-c2M2)t。
然后考虑下列问题:
| $ \left\{\begin{array}{l} z_{t}=z\left(a_{1}-b_{1} z-c_{1} w\right), t>t_{1}, \\ w_{t}=w\left(a_{2}-b_{2} z-c_{2} w\right), t>t_{1}, \\ z\left(t_{1}\right)=\frac{a_{1}}{b_{1}}+\varepsilon_{1}, w\left(t_{1}\right)=\delta \mathrm{e}^{\left(-b_{2} M_{1}-c_{2} M_{2}\right) t_{1}}。\end{array}\right. $ | (10) |
根据比较原理u(t, x)≤z(t), v(t, x)≥w(t), t≥t1, 0≤x≤∞。在假设条件
a1/a2 < min{c1/c2, b1/b2}下, 当t→∞时, 有
| $ \begin{cases}v_{t}-d_{2} v_{x x} \geqslant v\left(a_{2}-b_{2} \varepsilon-c_{2} v\right), & t \geqslant T, 0 \leqslant x<h(t), \\ v_{x}(t, 0)=0, v(t, h(t))=0, & t>T, \\ v(T, x) \geqslant \delta \mathrm{e}^{\left(-b_{2} M_{1}-c_{2} M_{2}\right) T}, & 0 \leqslant x<h(t)。\end{cases} $ |
设
根据比较原理
接下来证明h∞ < ∞, 因为在[0, ∞)中一致地有
直接计算可得
| $ \begin{aligned} &\frac{\mathrm{d}}{\mathrm{d} t} \int_{0}^{h(t)} x u(t, x) \mathrm{d} x=\int_{0}^{h(t)} x u_{t}(t, x) \mathrm{d} x \\ &=\int_{0}^{h(t)} d_{1} x u_{x x} \mathrm{~d} x+\int_{0}^{h(t)} d_{1} x u\left(a_{1}-b_{1} u-c_{1} v\right) \mathrm{d} x \\ &=-\frac{1}{\mu} h(t) h^{\prime}(t)+u(t, 0)+\int_{0}^{h(t)} d_{1} x u\left(a_{1}-b_{1} u-c_{1} v\right) \mathrm{d} x \end{aligned} $ |
在[T*, t]上积分得
| $ \begin{aligned} &0 \leqslant \int_{0}^{h(t)} x u(t, x) \mathrm{d} x=\int_{0}^{h\left(T^{*}\right)} x u\left(T^{*}, x\right) \mathrm{d} x+\frac{d_{1}}{2 \mu} h^{2}\left(T^{*}\right)-\frac{d_{1}}{2 \mu} h^{2}(t)+\int_{T^{*}}^{t} u(s, 0) \mathrm{d} s+\int_{T^{*}}^{t} \int_{0}^{h(s)} d_{1} x u\left(a_{1}-b_{1} u-c_{1} v\right) \mathrm{d} x \mathrm{~d} s, \\ &t \geqslant T^{*} \end{aligned} $ |
因为(a1-b1u(t, x)-c1v(t, x))≤0, t≥T*, 0≤x < ∞, 我们有
| $ h^{2}(t) \leqslant \frac{2 \mu}{d_{1}} \int_{0}^{h\left(T^{*}\right)} x u\left(T^{*}, x\right) \mathrm{d} x+h^{2}\left(T^{*}\right)+\frac{2 \mu}{d_{1}} \int_{T^{*}}^{t} u(s, 0) \mathrm{d} s, t \geqslant T^{*} 。$ |
则h∞ < ∞。
定理2.2表明劣势竞争者不可能深入到一个建立良好的本地物种栖息地, 它在入侵的锋线到达一定的有限限制位置之前就灭绝了。
定理2.3 如果(H3)成立, 则对于所有的μ>0有h∞ < ∞。
证明: 无论h∞ < ∞或者h∞=∞都有
| [1] |
BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. The Journal of Animal Ecology, 1975, 44(1): 331-340. DOI:10.2307/3866 |
| [2] |
BUNTING G, DU Y, KRAKOWSKI K. Spreading speed revisited: analysis of a free boundary model[J]. Networks & Heterogeneous Media, 2012, 7(4): 583-603. |
| [3] |
WANG M X, ZHAO J F. Free boundary problems for a Lotka-Volterra competition system[J]. Dynamic Differential Equations, 2014, 26(3): 655-672. DOI:10.1007/s10884-014-9363-4 |
| [4] |
WANG M X, ZHAO J F. A free boundary problem for the predator-prey model with double free boundaries[J]. Journal of Dynamics and Differential Equations, 2017, 29(3): 957-979. |
| [5] |
GUO J S, WU C H. Dynamics for a two-species competition-diffusion model with two free boundaries[J]. Nonlinearity, 2014, 28(1): 1-27. |
| [6] |
DU Y H, LIN Z G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor[J]. arXiv preprint arXiv: 1303.0454, 2013.
|
| [7] |
周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(2): 60-65. |
| [8] |
朱丹丹. 几类反应扩散系统的自由边界问题[D]. 郑州: 郑州大学, 2019.
|
| [9] |
王一拙. 具自由边界反应扩散模型动力学研究[D]. 长沙: 湖南大学, 2020.
|
| [10] |
DU Y H, MA L. Logistic type equations on ℝ N by a squeezing method involving boundary blow-up solutions[J]. Journal of the London Mathematical Society, 2001, 64(1): 107-124. |
| [11] |
HIRSCH M W, SMITH H. Monotone dynamical systems[J]. Handbook of Differential Equations: Ordinary Differential Equations, 2006, 2: 239-357. |
| [12] |
MORITA Y, TACHIBANA K. An entire solution to the Lotka-Volterra competition-diffusion equations[J]. SIAM Journal on Mathematical Analysis, 2009, 40(6): 2217-2240. DOI:10.1137/080723715 |
| [13] |
WANG M X. Spreading and vanishing in the diffusive prey-predator model with a free boundary[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 23(1/2/3): 311-327. |
2022, Vol. 36


