文章快速检索     高级检索
  南方经济  2018, Vol. 37 Issue (6): 132-144  
0

引用本文 

张欣, 朱怀念, 张成科, 宾宁. Lévy过程驱动的随机LQ控制在均值-方差投资组合中的应用[J]. 南方经济, 2018, 37(6): 132-144.
Zhang Xin, Zhu Huainian, Zhang Chengke, Bin Ning. Application of Stochastic LQ Control Driven by Lévy Processes in Mean-Variance Portfolio Selection Problem[J]. South China Journal of Economics, 2018, 37(6): 132-144.

基金项目

国家自然科学基金(71571053)、广东省自然科学基金(2014A030310366,2015A030310218,2016A030313701)、广东省教育厅普通高校特色创新项目(2015WTSCX014)

作者简介

张欣, 广东工业大学管理学院, E-mail:714114899@qq.com, 通讯地址:广州市天河区迎龙路161号广东工业大学管理学院, 邮编:510520;
朱怀念, 广东工业大学经济与贸易学院, E-mail:zhuhuainian@gdut.edu.cn, 通讯地址:广州市天河区迎龙路161号广东工业大学经贸学院, 邮编:510520;
张成科, 广东工业大学经济与贸易学院, E-mail:zhangck@gdut.edu.cn;
宾宁, 广东工业大学管理学院, E-mail:bn_gdut@163.com
Lévy过程驱动的随机LQ控制在均值-方差投资组合中的应用
张欣, 朱怀念, 张成科, 宾宁     
摘要:文章研究了风险资产价格由Lévy过程和与之独立的多维Brown运动共同驱动的连续时间均值-方差型投资组合选择问题,Lévy过程是由与之相关的Teugles鞅描述。为了求解该问题,首先讨论了由Lévy过程和多维Brown运动共同驱动的非齐次随机系统的线性二次控制问题。借助配方法得到了一个新的随机Riccati方程,若此方程有解,就可以得到系统的最优反馈控制。然后将该理论结果用于求解均值-方差型投资组合问题,在自融资的条件下,得到了最优证券组合的显式表达。最后通过数值算例对比分析有Lévy过程和无Lévy过程情形下投资者的最优投资策略和有效前沿,发现Lévy过程的存在增加了投资者的投资风险,投资者应正确视之。
关键词线性二次控制    Lévy过程    均值-方差    投资组合    
Application of Stochastic LQ Control Driven by Lévy Processes in Mean-Variance Portfolio Selection Problem
Zhang Xin , Zhu Huainian , Zhang Chengke , Bin Ning
Abstract: This paper is concerned with a class of mean-variance portfolio selection problem in which the price processes of the risky assets are driven by Lévy processes and an independent multi-dimensional Brownian motion. Here Lévy processes are presented by Teugels martingale which are a family of pairwise strongly orthonormal martingales associated with Lévy processes. In order to obtain the solution of the problem, a stochastic LQ control problem driven by Lévy processes and Brownian motion is discussed, and by using the Riccati equation approach, the optimal feedback control is obtained. As its application, we transform the mean-variance portfolio selection problem into a stochastic LQ control problem by the way of embedded. Moreover, the explicit expression of the optimal portfolio is obtained under the condition of self-financing, and an numerical example is given to compare the optimal portfolio selection strategy and efficient frontier at last.
Key Words: linear quadratic control    Lévy processes    mean-variance    portfolio    
一、引言

1952年,Markowitz(1952)在他开创性的论文中建立了著名的均值-方差模型,奠定了现代投资组合选择理论的基石,使金融研究由定性描述走向定量分析。经典的Markowitz模型只考虑了单期静态情形,之后学者们致力于把它推广到更符合实际的多期及连续时间情形。其中Li and Ng(2000)Zhou and Li(2000)利用嵌入法技术分别给出了多期和连续时间情形下均值-方差投资组合选择模型的解析解。随后,关于动态均值-方差投资组合选择的研究得到蓬勃发展,如傅毅等(2017)Zhang and Chen(2016)Chen et al.(2008)Wei et al.(2013)

但上述文献中均假定风险资产价格的随机过程为几何Brown运动,即随机扰动项服从正态分布。然而,大量的实证研究表明,风险资产的收益率并非是高斯分布的并且存在条件异方差(Christoffersen et al., 2009Andersen et al., 2001)。因而一些学者提出了各种随机波动率的股价模型,如平均值回复模型(Heston,1993),带跳的随机波动率模型(Duffie et al., 2000Barndorff-Nielsen and Shephard, 2001)和常方差弹性模型(Bakkaloglu et al., 2017Li et al., 2017)。

另一方面,Lévy过程作为一类广义随机过程,它能够涵盖常见的连续扩散和随机跳跃(Papapantoleon,2005)。研究表明Lévy模型对资产价格的随机过程有着卓越的刻画能力,也可以用小跳跃取代连续扩散(Carr et al., 2002Carr and Wu, 2004),因此不少学者展开了Lévy过程在金融保险中的应用研究。其中,吴恒煜等(2014)考虑股票收益与波动的负相关关系,建立了漂移率和波动率随条件变化的时变无穷纯跳跃Lévy过程。根据局部鞅测度变换方法,推导了条件Lévy过程的风险中性定价模型,并运用于恒生指数期权进行实证研究。De Vallière et al.(2016)在考虑交易费用的条件下研究了风险资产价格由Lévy过程驱动的最优消费投资问题。Nowak and Pawłowski(2017)考虑了基础资产价格服从Lévy过程的期权问题。Mitsui and Yoshio(2008)讨论了Lévy过程和多维Brown运动共同驱动的齐次随机系统的线性二次(linear quadratic,LQ)控制问题,并将所得结果应用于套期保值问题。

但上述关于Lévy过程在金融保险中的应用研究很少涉及到均值-方差模型的投资组合选择问题,因此本文在Zhou and Li(2000)张伏等(2014)的基础上,将仅由Brown运动驱动的随机LQ控制问题推广至由Lévy过程和与之独立的多维Brown运动共同驱动的随机LQ控制问题,并将其应用到风险资产价格过程由Lévy过程和与之独立的多维Brown运动共同驱动的均值-方差型投资组合选择问题中。通过运用所得的随机LQ控制结果对模型进行求解,得到了模型的最优投资策略的解析式和有效前沿,最后通过数值算例分析了Lévy过程对最优投资策略和有效前沿影响。

二、模型假设 (一) 记号和准备工作

T≥0是一个固定的数值,(Ω, f,{ft}t≥0, P)是完备的概率空间,流域{ft}t≥0是由m-维Brown运动{W(t)=(W1(t), W2(t), …, Wm(t))′, 0≤tT}和一维Lévy过程{L(t), 0≤tT}生成的右连续的流域。Lévy过程在ℝ上的测度ν满足∫(1∧x2)ν(dx) < ∞。

参照张伏等(2014),用{Hi(t), 0≤tT}i=1表示与Lévy过程{L(t), 0≤tT}相关联的Teugles鞅,Hi(t)的定义如下:

$ {H_i}\left( t \right) = {c_{i,i}}{Y^{\left( i \right)}}\left( t \right) + {c_{i,i - 1}}{Y^{\left( {i - 1} \right)}}\left( t \right) + \cdots + {c_{i,1}}{Y^{\left( 1 \right)}}\left( t \right), $

其中,对任意i≥1,Y(i)(t)=L(i)(t)-E[L(i)(t)],L(i)(t)是所谓的幂跳过程; L(1)(t)=L(t),对任意i≥2,L(i)(t)=∑0 < st(ΔL(s))icij是多项式1, x, x2, …关于测度μ(dz)=z2ν(dz)+σ2δ0(dz)的正交化系数。关于Teugles鞅的更详细讨论,请读者参阅Nualart and Schoutens(2000)

为了便于表述,本文引入下面的记号:

·ℝnn-维欧式空间;

·M′:矩阵M的转置;

· $\left\| M \right\| = \sqrt {\sum\nolimits_{i,j} {m_{ij}^2} } $ :矩阵M=(mij)的范数;

·Sn:ℝn×n中所有对称矩阵组成的空间;

·S+n:由Sn中所有非负定矩阵组成的子空间;

·C(0, T; X):由[0, T]上的取值于空间X的连续函数构成的巴拿赫空间,其范数为给定希尔伯特空间X上的最大值范数;

·LF2(0, T; X):由满足下列条件的φ={φ(t, ω):0≤tT}构成的空间:φ为[0, T]上取值于空间XFtt -适应过程,其范数 $\left\| {\varphi \left( \cdot \right)} \right\| = {(E\int_0^T {\left\| {\varphi \left( {t,\omega } \right)} \right\|_X^2dt} )^{\frac{1}{2}}} < \infty $

在后文的表述中,我们用上述Teugles鞅{Hi(t)}i=1表示Lévy过程。

(二) 金融市场

假设市场上有m+1种连续交易的资产,其中一种为无风险资产(如银行账户),其在t∈[0, T]时刻的价格过程P0(t)满足如下常微分方程:

$ d{P_0}\left( t \right) = r\left( t \right){P_0}\left( t \right)dt,\;\;\;\;{P_0}\left( 0 \right) = {p_0} > 0, $ (1)

式中的r(t)>0表示无风险利率。其余m种资产为风险资产(如股票),其在t∈[0, T]时刻的价格过程P1(t), …, Pm(t)满足如下随机微分方程:

$ d{P_i}\left( t \right) = {P_i}\left( {{t^ - }} \right)\left[ {{b_i}\left( t \right)dt + \sum\limits_{j = 1}^m {{\sigma _{ij}}\left( t \right)d{W_j}\left( t \right)} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{\theta _{ijk}}\left( t \right)d{H_{jk}}\left( t \right)} } } \right],\;\;\;\;{P_i}\left( 0 \right) = {p_i} > 0 $ (2)

式中的bi(t)表示第i种风险资产的期望收益率,且bi(t)>r(t);σij(t)表示第j个Brown运动对第i种资产的价格所产生的波动率;θijk(t)表示第j个Lévy过程的跳跃对第i种风险资产的价格所产生的影响;假设对∀t∈[0, T],∃ε>0,使得 $\Sigma \left( t \right) = \sum\limits_{j = 1}^m {{\sigma _j}\left( t \right)\sigma {\prime _j}\left( t \right)} + $ $\sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{\theta _{jk}}\left( t \right)\theta {\prime _{jk}}\left( t \right)} } = $ $\sigma \left( t \right)\sigma \prime \left( t \right) + \sum\limits_{k = 1}^\infty {{\theta _k}\left( t \right){{\theta '}_k}\left( t \right)} \ge \varepsilon {I_{m \times m}}$ ,其中σ(t)∈ℝm×mθk(t) ∈ℝm×mIm×mm阶单位矩阵。进一步,假设r(t),bi(t),σ(t),θk(t)均为可测的,关于时间t一致有界的函数。

(三) 均值—方差投资组合问题描述

考虑一个初始资产为x0的投资者,其在t≥0时刻的资产记为x(t)。设u(t)=(u1(t), …, um(t))′为投资者的一个交易策略,其中ui(t)为t时刻投资到第i种风险资产上的资金,t时刻投资到无风险资产的资金为 $x\left( t \right) - \sum\limits_{i = 1}^m {{u_i}\left( t \right)} $ ,则有

$ \begin{array}{l} dx\left( t \right) = \left[ {x\left( t \right) - \sum\limits_{i = 1}^m {{u_i}\left( t \right)} } \right]\frac{{d{P_0}\left( t \right)}}{{{P_0}\left( t \right)}} + \sum\limits_{i = 1}^m {{u_i}\left( t \right)\frac{{d{P_i}\left( t \right)}}{{{P_i}\left( t \right)}}} \\ \;\;\;\;\;\;\;\; = \left[ {r\left( t \right)x\left( t \right) + \tilde r\left( t \right)u\left( t \right)} \right]dt + \sum\limits_{j = 1}^m {u'\left( t \right){{\sigma '}_j}\left( t \right)d{W_j}\left( t \right)} \\ \;\;\;\;\;\;\;\; + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {u'\left( t \right){\theta _{jk}}\left( t \right)d{H_{jk}}\left( t \right)} } ,\;\;\;\;x\left( 0 \right) = {x_0} > 0, \end{array} $ (3)

其中 $\tilde r\left( t \right) = ({b_1}\left( t \right) - r\left( t \right), \ldots ,{b_m}\left( t \right) - r\left( t \right))$ ,式(3)称为投资者的财富方程。假设投资者的目标是最大化终端时刻财富的均值,同时最小化终端时刻财富的方差

$ {\rm{Var}}\;x\left( T \right) \equiv E{\left[ {x\left( T \right) - Ex\left( T \right)} \right]^2} = E{x^2}\left( T \right) - {\left[ {Ex\left( T \right)} \right]^2} $ (4)

定义1策略u称为允许策略,若对∀t∈[0, T],u(t)关于ft-循序可测,E0Tu(t)‖2dt < ∞,且对任意的初始资产x0,随机微分方程(3)存在唯一解x(t)。所有允许策略组成的集合记为U

定义2均值-方差投资组合优化问题记为

$ \begin{array}{l} \min \;\;\left( {{J_1}\left( {u\left( \cdot \right)} \right),{J_2}\left( {u\left( \cdot \right)} \right)} \right) \equiv \left( { - Ex\left( T \right),{\rm{Var}}\;x\left( T \right)} \right)\\ s.t\left\{ \begin{array}{l} u\left( \cdot \right) \in U,\\ \left( {x\left( \cdot \right),u\left( \cdot \right)} \right)满足\left( 3 \right) \end{array} \right. \end{array} $ (5)

显然,该优化问题是一个双目标优化问题。

定义3允许策略u(·)称为有效的投资组合,如果不存在投资组合u(·)使得下列两个不等式至少有一个严格成立

$ {J_1}\left( {u\left( \cdot \right)} \right) \le {J_1}\left( {\bar u\left( \cdot \right)} \right),\;\;\;\;{J_2}\left( {u\left( \cdot \right)} \right) \le {J_2}\left( {\bar u\left( \cdot \right)} \right) $ (6)

此时,称(J1(u(·)), J2(u(·)))∈ℝ2为有效点,有效点的全体构成了有效前沿。

根据多目标优化理论,若将多目标优化中的目标函数乘以一个权重,就可将多目标优化问题转化为一个单目标优化问题。因此,问题(5)可转化为下列的一个单目标最优化问题

$ \begin{array}{l} \min \;\;{J_1}\left( {u\left( \cdot \right)} \right) + \mu {J_2}\left( {u\left( \cdot \right)} \right) \equiv - Ex\left( T \right) + \mu {\rm{Var}}\;x\left( T \right)\\ \quad \quad s.t\left\{ \begin{array}{l} u\left( \cdot \right) \in U,\\ \left( {x\left( \cdot \right),u\left( \cdot \right)} \right)满足\left( 3 \right) \end{array} \right. \end{array} $ (7)

其中μ>0。把上述问题记为P(μ),定义

$ {\Pi _{P\left( \mu \right)}} = \left\{ {u\left( \cdot \right)\left| {u\left( \cdot \right)\;是\;P\left( \mu \right)\;的最优控制} \right.} \right\} $ (8)

把问题P(μ)嵌入到下述辅助问题中

$ \begin{array}{l} \min \;\;J\left( {u\left( \cdot \right),\mu ,\lambda } \right) = E\left\{ {\mu {x^2}\left( T \right) - \lambda x\left( T \right)} \right\}\\ \;\;\;\;\;\;{\rm{s}}.\;\;{\rm{t}}.\left\{ \begin{array}{l} u\left( \cdot \right) \in U,\\ \left( {x\left( \cdot \right),u\left( \cdot \right)} \right)满足\left( 3 \right) \end{array} \right. \end{array} $ (9)

其中0 < λ < +∞。为表述方便,把上述问题记为A(μ, λ),定义

$ {\Pi _{A\left( {\mu ,\lambda } \right)}} = \left\{ {u\left( \cdot \right)\left| {u\left( \cdot \right)\;是\;A\left( {\mu ,\lambda } \right)\;的最优控制} \right.} \right\} $ (10)

下述引理1给出了问题P(μ)与A(μ, λ)二者之间的关系。

引理1  对∀μ>0,若μ(·)∈ΠP(μ) $\hat \mu \left( \cdot \right) \in {\Pi _{A(\mu ,\lambda )}}$ ,其中λ=1+2μEx(T),x(·)为μ对应的轨道, $\hat x\left( \cdot \right)$ ${\hat \mu }$ 对应的轨道,则 $\hat \mu \left( T \right) = \hat x\left( T \right)$ ,即 $\bar \mu \left( T \right) = \hat \mu \left( T \right)$ 等价。

引理1的证明类似Zhou and Li(2000),囿于篇幅,这里不再给出详细的证明过程。

由引理1可知,通过解决A(μ, λ)可以得到P(μ)问题的最优解。

三、一般的随机LQ问题

本节讨论一般情形下由Brown运动和Lévy过程共同驱动的随机LQ问题,而A(μ, λ)问题只是其中的一种特殊情况,我们将在下一节给出详细讨论。

考虑如下的随机微分方程描述的非齐次线性系统

$ \left\{ \begin{array}{l} dx\left( t \right) = \left[ {A\left( t \right)x\left( t \right) + B\left( t \right)u\left( t \right) + f\left( t \right)} \right]dt + \sum\limits_{j = 1}^m {{D_j}\left( t \right)u\left( t \right)d{W_j}\left( t \right)} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{F_{jk}}\left( t \right)u\left( t \right)d{H_{jk}}\left( t \right)} } , \hfill \\ x\left( 0 \right) = {x_0} \in {\mathbb{R}^n}, \hfill \\ \end{array} \right. $ (11)

其中,x0是系统的初始状态,W(t)≡(W1(t), W2(t), …, Wm(t))′为m-维Brown运动,{Hjk(t)}k=1为1维的Teugles鞅,u(t)∈Lf2(0, T; ℝm)是系统的控制输入。系数矩阵A(t)∈C(0, T; ℝn×n),B(t), Dj(t), Fjk(t),∈C(0, T; ℝn×m),f(t)∈Lf2(0, T; ℝn)。

对于每一个u(·)∈Lf2(0, T; ℝm),相应的性能指标取经典的线性二次型

$ J\left( {u\left( \cdot \right)} \right) = E\int_0^T {\left\{ {\left[ {x'\left( t \right)Q\left( t \right)x\left( t \right) + u'\left( t \right)R\left( t \right)u\left( t \right)} \right]dt + x'\left( T \right)Hx\left( T \right)} \right\}} , $ (12)

式中的控制加权矩阵R(t)∈C(0, T; Sm);状态加权矩阵Q(t)∈C(0, T; S+n);HS+n。方程(11)的解x(·)称为控制u(·)的响应,(x(·), u(·))称为一个容许对。所谓的随机LQ问题就是在式(11)的约束下寻求最优控制u(·),使得式(12)的J(u(·))达到最小。

现在引入如下受限的随机Riccati方程和常微分方程:

$ \left\{ \begin{array}{l} \dot P\left( t \right) = - P\left( t \right)A\left( t \right) - A'\left( t \right)P\left( t \right) - Q\left( t \right) + P\left( t \right)B\left( t \right){K^{ - 1}}\left( t \right)B'\left( t \right)P\left( t \right),\\ P\left( T \right) = H,\\ K\left( t \right) \equiv R\left( t \right) + \sum\limits_{j = 1}^m {{{D'}_j}\left( t \right)P\left( t \right){D_j}\left( t \right)} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{{F'}_{jk}}\left( t \right)P\left( t \right){F_{jk}}\left( t \right)} } > 0, \end{array} \right. $ (13)
$ \left\{ \begin{array}{l} \dot g\left( t \right) = - A'\left( t \right)g\left( t \right) + P\left( t \right)B\left( t \right){K^{ - 1}}\left( t \right)B'\left( t \right)g\left( t \right) - P\left( t \right)f\left( t \right),\\ g\left( T \right) = 0 \end{array} \right. $ (14)

定理1如式(13)和(14)存在解P(·)∈C(0, T; S+n)和g(·)∈C(0, T; Sn),则随机LQ问题(11)-(12)的最优反馈控制和最优性能指标分别为

$ {u^ * }\left( {t,x} \right) = - {K^{ - 1}}\left( t \right)B'\left( t \right)\left( {P\left( t \right)x\left( t \right) + g\left( t \right)} \right), $ (15)
$ {J^ * } = \int_0^T {\left[ {2f'\left( t \right)g\left( t \right) - g'\left( t \right)B\left( t \right){K^{ - 1}}\left( t \right)B'\left( t \right)g\left( t \right)} \right]dt} + x'\left( 0 \right)P\left( 0 \right)x\left( 0 \right) + 2x'\left( 0 \right)g\left( 0 \right) $ (16)

证明:假设P(·)∈C(0, T; S+n)和g(·)∈C(0, T; Sn)分别是式(13)和(14)的解,(x(·), u(·))称为一个容许对,利用Itô公式得

$ \begin{array}{l} d\left( {x'Px + 2x'g} \right)\\ {\rm{ = }}\left\{ {x'\left( {\dot P + A'P + PA} \right)x + 2u'B'\left( {Px + g} \right) + u'\left( {\sum\limits_{j = 1}^m {{{D'}_j}P{D_j}} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{{F'}_{jk}}P{F_{jk}}} } } \right)u} \right.\\ \;\;\left. { + 2x'\left( {Pf + A'g} \right) + 2f'g} \right\}dt + \sum\limits_{j = 1}^m {\left\{ \cdots \right\}d{W_j}\left( t \right)} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {\left\{ \cdots \right\}d{H_{jk}}\left( t \right)} } . \end{array} $ (17)

将式(17)从0到T上积分,并取期望得

$ \begin{array}{l} E\left[ {x'\left( T \right)P\left( T \right)x\left( T \right) + 2x'\left( T \right)g\left( T \right)} \right] - x'\left( T \right)P\left( T \right)x\left( T \right) - 2x'\left( T \right)g\left( T \right)\\ = E\int_0^T {\left\{ {x'\left( {\dot P + A'P + PA} \right)x + 2u'B'\left( {Px + g} \right) + u'\left( {\sum\limits_{j = 1}^m {{{D'}_j}P{D_j}} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{{F'}_{jk}}P{F_{jk}}} } } \right)u} \right.} \\ \;\;\;\;\;\left. { + 2x'\left( {Pf + A'g} \right) + 2f'g} \right\}dt. \end{array} $ (18)

将式(18)加到式(12),并结合式(13)和(14)得

$ \begin{array}{l} J\left( {u\left( \cdot \right)} \right) = E\int_0^T {\left\{ {{{\left[ {u + {K^{ - 1}}B'Px + g} \right]}^\prime }K\left[ {u + {K^{ - 1}}B'Px + g} \right] + 2f'g - g'B{K^{ - 1}}B'g} \right\}dt} + x'\left( 0 \right)\\ P\left( 0 \right)x\left( 0 \right) + 2x'\left( 0 \right)g\left( 0 \right) \end{array} $ (19)

观察式(19)易知最优反馈控制和最优性能指标分别如式(15)和(16)所示。将最优反馈控制(15)代回式(11)得

$ \left\{ \begin{array}{l} dx\left( t \right) = \left[ {A\left( t \right)x\left( t \right) - B\left( t \right){K^{ - 1}}\left( t \right)B'\left( t \right)\left( {P\left( t \right)x\left( t \right) + g\left( t \right)} \right) + f\left( t \right)} \right]dt - \sum\limits_{j = 1}^\infty {{D_j}\left( t \right){K^{ - 1}}\left( t \right)B'\left( t \right)} \\ \;\;\;\;\;\;\;\;\;\; + \left( {P\left( t \right)x\left( t \right) + g\left( t \right)} \right)d{W_j}\left( t \right) - \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{F_{jk}}\left( t \right){K^{ - 1}}\left( t \right)B'\left( t \right)\left( {P\left( t \right)x\left( t \right) + g\left( t \right)} \right)d{H_{jk}}\left( t \right)} } ,\\ x\left( 0 \right) = {x_0}, \end{array} \right. $ (20)

式(20)是一个非齐次线性随机微分方程,由于P(t)∈C(0, T; S+n),g(t)∈C(0, T; Sn)和K-1(t)∈C(0, T; S+m),结合随机微分方程理论知式(20)存在唯一解。证毕。

四、辅助问题的解

在本节中,我们将借助一般的随机LQ问题的结果求解A(μ, λ)问题。令γ=λ/2μy(t)=x(t)-γ,则A(μ, λ)等价于下述的随机LQ问题

$ \left\{ \begin{array}{l} dy\left( t \right) = \left[ {A\left( t \right)y\left( t \right) + B\left( t \right)u\left( t \right) + f\left( t \right)} \right]dt + \sum\limits_{j = 1}^m {{D_j}\left( t \right)u\left( t \right)d{W_j}\left( t \right)} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{F_{jk}}\left( t \right)u\left( t \right)d{H_{jk}}\left( t \right)} } , \hfill \\ y\left( 0 \right) = {x_0} - \gamma \in {\mathbb{R}^n}, \hfill \\ \end{array} \right. $ (21)

性能指标为J(u(·), μ, λ)=E{μx2(T)-λx(T)}=E{μy2(T)-μλ2}等价于minJ(u(·))=E{μy2(T)}。

写成标准二次型形式为

$ J\left( {u\left( \cdot \right)} \right) = E\left\{ {\int_0^T {\left[ {x'\left( t \right)Q\left( t \right)x\left( t \right) + u'\left( t \right)R\left( t \right)u\left( t \right)} \right]dt + x'\left( T \right)Hx\left( T \right)} } \right\} $ (22)

在式(21)和(22)中,A(t)=r(t), $B\left( t \right) = \tilde r\left( t \right)$ f(t)=γr(t),Dj(t)=σj(t),Fjk(t)=θjk(t),Q(t)=R(t)=0,H=μ

注意到式(22)中,控制加权矩阵R(t)=0,这说明在随机LQ框架下,均值-方差模型是一个奇异随机LQ问题。为了书写方便,记

$ \rho \left( t \right) = B\left( t \right){\left[ {\sum\limits_{j = 1}^m {{D_j}\left( t \right){{D'}_j}\left( t \right)} + \sum\limits_{j = 1}^m {\sum\limits_{k = 1}^\infty {{{F'}_{jk}}\left( t \right){F_{jk}}\left( t \right)} } } \right]^{ - 1}}B'\left( t \right) = B\left( t \right){\Sigma ^{ - 1}}B'\left( t \right) $ (23)

则Riccati方程(13)退化为

$ \left\{ \begin{array}{l} \dot P\left( t \right) = \left( {\rho \left( t \right) - 2r\left( t \right)} \right)P\left( t \right),\\ P\left( T \right) = \mu ,\\ P\left( t \right)\Sigma \left( t \right) > 0,\;\;\;t \in \left[ {0,T} \right] \end{array} \right. $ (24)

常微分方程(14)退化为

$ \left\{ \begin{array}{l} \dot g\left( t \right) = \left( {\rho \left( t \right) - r\left( t \right)} \right)g\left( t \right) - \gamma r\left( t \right)P\left( t \right),\\ g\left( T \right) = 0,\;\;\;\;\;t \in \left[ {0,T} \right] \end{array} \right. $ (25)

最优反馈控制为

$ \bar u\left( {t,y} \right) \equiv {\left( {{{\bar u}_1}\left( {t,y} \right), \cdots ,{{\bar u}_m}\left( {t,y} \right)} \right)^\prime } = - {\Sigma ^{ - 1}}\left( t \right)B'\left( t \right)\left( {y + \frac{{g\left( t \right)}}{{P\left( t \right)}}} \right) $ (26)

$h\left( t \right) = \frac{{g\left( t \right)}}{{P\left( t \right)}}$ 并结合式(24)和(25)得

$ h\left( t \right) = \frac{{P\left( t \right)\dot g\left( t \right) - \dot P\left( t \right)g\left( t \right)}}{{{P^2}\left( t \right)}} = \frac{{r\left( t \right)P\left( t \right)g\left( t \right) - \gamma r\left( t \right){P^2}\left( t \right)}}{{{P^2}\left( t \right)}} = r\left( t \right)h\left( t \right) - \gamma r\left( t \right) $ (27)

由定解条件h(T)=0可得上述方程的解为

$ \frac{{g\left( t \right)}}{{P\left( t \right)}} = h\left( t \right) = \gamma \left( {1 - {e^{ - \int_t^T {r\left( s \right)ds} }}} \right) $ (28)

将式(28)代入式(26)得

$ \begin{array}{l} \bar u\left( {t,x} \right) = {\left( {{{\bar u}_1}\left( {t,x} \right), \cdots ,{{\bar u}_m}\left( {t,x} \right)} \right)^\prime } = - {\Sigma ^{ - 1}}\left( t \right)B'\left( t \right)\left[ {x - \gamma + \gamma \left( {1 - {e^{ - \int_t^T {r\left( s \right)ds} }}} \right)} \right]\\ \;\;\;\;\;\;\;\;\;\;\;\;\; = {\Sigma ^{ - 1}}\left( t \right)B'\left( t \right)\left[ {\gamma {e^{ - \int_t^T {r\left( s \right)ds} }} - x} \right] \end{array} $ (29)
五、有效前沿

建立在均值-方差基础上的投资组合选择理论,寻求的最优投资组合结果是在等方差的情况下收益的最大化, 或者在等收益的情况下方差的最小化。而这一结果可以通过均值-方差平面上的有效前沿来直观给出。因此,本节推到原均值-方差问题(5)的有效前沿。

将式(29)代回式(3),则投资者的财富方程变为

$ \left\{ \begin{array}{l} {\rm{dx}}\left( t \right) = \left\{ {\left( {{\rm{r}}\left( {\rm{t}} \right) - {\rm{ \mathit{ ρ} }}\left( {\rm{t}} \right)} \right){\rm{x}}\left( {\rm{t}} \right) + {\rm{ \mathit{ γ} }}{{\rm{e}}^{ - \int_{\rm{t}}^{\rm{T}} {{\rm{r}}\left( {\rm{s}} \right){\rm{ds}}} }}{\rm{ \mathit{ ρ} }}\left( {\rm{t}} \right)} \right\}{\rm{dt}} + {\rm{B}}\left( {\rm{t}} \right){\mathit{\Sigma }^{ - 1}}\left( {\rm{t}} \right)\left[ {{\rm{ \mathit{ γ} }}{{\rm{e}}^{ - \int_{\rm{t}}^{\rm{T}} {{\rm{r}}\left( {\rm{s}} \right){\rm{ds}}} }} - {\rm{x}}} \right]\\ \left[ {{\rm{ \mathit{ σ} }}\left( {\rm{t}} \right){\rm{d}}W\left( {\rm{t}} \right) + \sum\limits_{{\rm{k}} = 1}^\infty {{{\rm{ \mathit{ θ} }}_{\rm{k}}}\left( {\rm{t}} \right){\rm{d}}{{\rm{H}}_{\rm{k}}}\left( {\rm{t}} \right)} } \right],\\ {\rm{x}}\left( 0 \right) = {{\rm{x}}_0} > 0 \end{array} \right. $ (30)

x2(t)利用Itô公式,得

$ \left\{ \begin{array}{l} d{x^2}\left( t \right) = \left\{ {\left( {2r\left( t \right) - \rho \left( t \right)} \right){x^2}\left( t \right) + {\gamma ^2}{e^{ - \int_t^T {r\left( s \right)ds} }}\rho \left( t \right)} \right\}dt + 2x\left( t \right)B\left( t \right){\mathit{\Sigma }^{ - 1}}\left( t \right)\\ \left[ {\gamma {e^{ - \int_t^T {r\left( s \right)ds} }} - x} \right]\left[ {\sigma \left( t \right)dW\left( t \right) + \sum\limits_{k = 1}^\infty {{\theta _k}\left( t \right)d{H_k}\left( t \right)} } \right],\\ {x^2}\left( 0 \right) = x_0^2 > 0 \end{array} \right. $ (31)

式(30)和(31)同时取数学期望,得Ex(t)和Ex2(t)满足如下两个非齐次线性常微分方程

$ \left\{ \begin{array}{l} dEx\left( t \right) = \left\{ {\left( {r\left( t \right) - \rho \left( t \right)} \right)Ex\left( t \right) + \gamma {e^{ - \int_t^T {r\left( s \right)ds} }}\rho \left( t \right)} \right\}dt,\\ Ex\left( 0 \right) = {x_0} > 0, \end{array} \right. $ (32)
$ \left\{ \begin{array}{l} dE{x^2}\left( t \right) = \left\{ {\left( {2r\left( t \right) - \rho \left( t \right)} \right)E{x^2}\left( t \right) + {\gamma ^2}{e^{ - 2\int_t^T {r\left( s \right)ds} }}\rho \left( t \right)} \right\}dt,\\ E{x^2}\left( 0 \right) = x_0^2 > 0 \end{array} \right. $ (33)

求解上述两个方程可得

$ Ex\left( T \right) = \alpha {x_0} + \beta \gamma ,E{x^2}\left( T \right) = \delta x_0^2 + {\gamma ^2}, $ (34)

其中

$ \alpha = {e^{\int_0^T {\left( {r\left( t \right) - \rho \left( t \right)} \right)dt} }},\beta = 1 - {e^{ - \int_0^T {\rho \left( t \right)dt} }},\delta = {e^{\int_0^T {\left( {2r\left( t \right) - \rho \left( t \right)} \right)dt} }} $ (35)

由引理1知,若问题P(μ)的最优控制存在,则可以通过选择下式所示的λ来求得

$ \bar \lambda = 1 + 2\mu E\bar x\left( T \right) = 1 + 2\mu \left( {\alpha {x_0} + \beta \frac{\lambda }{{2\mu }}} \right) $ (36)

解上式得

$ \bar \lambda = \frac{{1 + 2\mu \alpha {x_0}}}{{1 - \beta }} = {e^{\int_0^T {\rho \left( t \right)dt} }} + 2\mu {x_0}{e^{\int_0^T {r\left( t \right)dt} }},\gamma = \bar \gamma = \frac{{\bar \lambda }}{{2\mu }} $ (37)

将式(37)代回式(29)可得问题P(μ)的最优投资组合

$ \bar u\left( {t,x} \right) = {\mathit{\Sigma }^{ - 1}}\left( t \right)B'\left( t \right)\left( {{x_0}{e^{\int_0^T {r\left( s \right)ds} }} - x + \frac{{{e^{\int_0^T {\rho \left( t \right)dt} - - \int_t^T {r\left( s \right)dt} }}}}{{2\mu }}} \right) $ (38)

相应地,终端财富的方差为

$ \begin{array}{l} {\rm{Var}}\;\bar x\left( T \right) = E{{\bar x}^2}\left( T \right) - \left[ {{}^E\bar x\left( T \right)} \right]2\\ = \beta \left( {1 - \beta } \right){{\bar \gamma }^2} - 2\alpha \beta {x_0}\bar \gamma + \left( {\delta - {\alpha ^2}} \right)x_0^2 = \frac{{1 - \beta }}{\beta }\left[ {{\beta ^2}{{\bar \gamma }^2} - 2\frac{{\alpha {\beta ^2}{x_0}\bar \gamma }}{{1 - \beta }} + \frac{{\beta \left( {\delta - {\alpha ^2}} \right)}}{{1 - \beta }}x_0^2} \right] \end{array} $ (39)

将式(34)中的βγ=Ex(T)-αx0代入上式,并结合式(35)得

$ \begin{array}{l} {\rm{Var}}\;\bar x\left( T \right) = \frac{{1 - \beta }}{\beta }\left[ {{{\left( {E\bar x\left( T \right)} \right)}^2} - 2\frac{\alpha }{{1 - \beta }}{x_0}E\bar x\left( T \right) + \frac{{\beta \delta + {\alpha ^2}}}{{1 - \beta }}x_0^2} \right]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{1 - \beta }}{\beta }{\left[ {E\bar x\left( T \right) - {x_0}{e^{\int_0^T {r\left( t \right)dt} }}} \right]^2}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{{e^{ - \int_0^T {\rho \left( t \right)dt} }}}}{{1 - {e^{ - \int_0^T {\rho \left( t \right)dt} }}}}{\left[ {E\bar x\left( T \right) - {x_0}{e^{\int_0^T {r\left( t \right)dt} }}} \right]^2} \end{array} $ (40)

综合上述分析,可得如下结论。

定理2  对于双目标最优投资组合选择问题(5),如果它的有效前沿存在,则由式(40)确定。

式(40)揭示了投资者对于投资的均值(期望回报Ex(T))与其所承受的方差(风险水平varx(T))之间的关系。若记终端财富的标准差为σx(T),则由式(40)可得

$ E\bar x\left( T \right) = {x_0}{e^{\int_0^T {r\left( t \right)dt} }} + \sqrt {\frac{{1 - {e^{ - \int_0^T {\rho \left( t \right)dt} }}}}{{{e^{ - \int_0^T {\rho \left( t \right)dt} }}}}} {\sigma _{\bar x}}\left( t \right) $ (41)

对于无Lévy过程情形下的均值-方差模型已在文献Zhou and Li(2000)中讨论过,对比该文可以发现,本文中所得的如式(40)所示的有效前沿与Zhou and Li(2000)中式(6.9)所得的有效前沿在形式上是一致的。在给定相同的期望回报(Ex(T))、相同的初始财富(x0)和相同的无风险利率水平(r(t))下,varx(T)主要受到ρ(t)的影响。而本文中由于Lévy过程的引入,使得式(23)中的Σ(t)增大,从而使得ρ(t)的取值比文献Zhou and Li(2000)中式(5.6)所示的ρ(t)的取值要小,这就使得 ${e^{ - \int_0^T {\rho \left( t \right)dt} }}/(1 - {e^{ - \int_0^T {\rho \left( t \right)dt} }})$ 这一项变大(ex/(1-ex)是单调递减函数),因而导致Var x(T)变大。

六、数值算例

本节通过数值算例对比分析有Lévy过程和无Lévy过程两种情形下投资者的最优决策,从而得出Lévy过程的引入对投资者决策的影响。为了便于比较,我们沿用Zhou and Li(2000)中所使用的例子,考虑1种风险资产,它由一个Brown运动和一个Lévy过程共同驱动,假设模型中的各参数均为常数,取值如下表 1所示。

表 1 模型中所用的参数取值及初始值

在有Lévy过程的情形下,计算得Σ=σ2+θ2=0.0325,ρ=(br)2/Σ=0.1108,代入式(40)得

$ {\rm{Var}}\bar x\left( 1 \right) = \frac{{{e^{ - 0.1108}}}}{{1 - {e^{ - 0.1108}}}}{\left( {E\bar x\left( 1 \right) - {e^{0.06}}} \right)^2} $

而在无Lévy过程的情形下,投资者对于期望回报(Ex(1))与其所承受的风险水平(varx(1))之间的关系如下式所示

$ {\rm{Var}}\bar x\left( 1 \right) = \frac{{{e^{ - 0.1600}}}}{{1 - {e^{ - 0.1600}}}}{\left( {E\bar x\left( 1 \right) - {e^{0.06}}} \right)^2} $

图 1给出了有Lévy过程和无Lévy过程两种情形下投资者的有效前沿。

图 1 M-V平面内的有效前沿

图 1可以看出,在相同的期望收益下,有Lévy过程情形下投资者承担的风险要比无Lévy过程情形下投资者承担的风险要高。出现这种情况的原因可能是,Lévy过程作为除布朗运动以外的不确定干扰,投资者已无额外的投资机会去对冲掉该风险,因而增加了投资者的投资风险。

接下来比较有Lévy过程和无Lévy过程两种情形下投资者的最优投资策略。

Zhou and Li(2000)所示,假设投资者希望在这1年内取得20%的期望回报,即终端财富Ex(1)=1.2,将该值代入式(34)得 $\gamma = \frac{{1.2 - {e^{ - 0.0508}}}}{{1 - {e^{ - 0.1108}}}} = 2.3792$ ,因此由式(29)知最优投资策略为

$ \bar u\left( {t,x} \right) = 1.8462\left( {2.3792{e^{0.06\left( {t - 1} \right)}} - x} \right) $

而在无Lévy过程情形下的最优投资策略为

$ \bar u\left( {t,x} \right) = 2.6667\left( {1.9963{e^{0.06\left( {t - 1} \right)}} - x} \right) $

为了直观地比较有Lévy过程和无Lévy过程两种情形下投资者的最优投资策略,不妨限定u(t, x)中的x取一个常值x0,下图 2给出了两种情形下的最优投资策略。

图 2 最优投资策略

图 2可以看出,无Lévy过程情形下的最优投资策略曲线明显位于有Lévy过程情形下的最优投资策略曲线的上端,表明因为Lévy过程的存在,导致投资者在风险资产上的投资减少。

七、结语

本文在连续时间框架下,研究了由Lévy过程和与之独立的多维Brown运动共同驱动的非齐次随机系统的LQ控制问题。利用Riccati方程法得到系统的最优反馈控制策略,并将所得理论结果应用于风险资产价格由Lévy过程和Brown运动共同驱动的均值-方差投资组合选择问题中,使用“嵌入”方法将其转化为随机LQ控制问题,在自融资的条件下,得到了最优证券组合的显式表达。最后通过数值算例对比分析有Lévy过程和无Lévy过程情形下投资者的最优投资策略和有效前沿,发现Lévy过程的存在增加了投资者的投资风险,使得投资者的投资都变得更加谨慎。本文推广了Zhou and Li(2000)的研究,因而所得的结论具有更广泛的用途。

参考文献
[]
傅毅、张寄洲、周翠, 2017, “基于均值-方差模型的P2P债权投资策略与风险度量问题研究”, 《管理评论》, 第 7 期, 第 19-28 页。
[]
吴恒煜、朱福敏、温金明, 2014, “带杠杆效应的无穷纯跳跃Levy过程期权定价”, 《管理科学学报》, 第 8 期, 第 74-94 页。
[]
张伏、唐矛宁、孟庆欣, 2014, “Lévy过程驱动的正倒向随机系统的随机最大值原理”, 《数学年刊》, 第 1 期, 第 83-100 页。
[]
Markowitz H., 1952, "Portfolio Selection". Journal of Finance, 7(1), 77–91.
[]
Li D., Ng W. L., 2000, "Optimal Dynamic Portfolio Selection:Multiperiod Mean-Variance Formulation". Mathematical Finance, 10(3), 387–406. DOI:10.1111/mafi.2000.10.issue-3
[]
Zhou X. Y., Li D., 2000, "Continuous-Time Mean-Variance Portfolio Selection:A Stochastic LQ Framework". Applied Mathematics & Optimization, 42(1), 19–33.
[]
Zhang M., Chen P., 2016, "Mean-Variance Asset-Liability Management under Constant Elasticity of Variance Process". Insurance:Mathematics and Economics, 70, 11–18. DOI:10.1016/j.insmatheco.2016.05.019
[]
Chen P., Yang H. and Yin G., 2008, "Markowitz's Mean-Variance Asset-Liability Management with Regime Switching:A Continuous-Time Model". Insurance:Mathematics and Economics, 43(3), 456–465. DOI:10.1016/j.insmatheco.2008.09.001
[]
Wei J., Wong K. C., Yam S. C. P. and Yung S. P., 2013, "Markowitz's Mean-Variance Asset-Liability Management with Regime Switching:A Time-Consistent Approach". Insurance:Mathematics and Economics, 53(1), 281–291. DOI:10.1016/j.insmatheco.2013.05.008
[]
Christoffersen P., Elkamhi R., Feunou B. and Jacobs K., 2009, "Option Valuation with Conditional Heteroskedasticity and Nonnormality". The Review of Financial Studies, 23(5), 2139–2183.
[]
Andersen T. G., Bollerslev T., Diebold F. X. and Ebens H., 2001, "The Distribution of Realized Stock Return Volatility". Journal of Financial Economics, 61(1), 43–76. DOI:10.1016/S0304-405X(01)00055-1
[]
Heston S. L., 1993, "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options". The Review of Financial Studies, 6(2), 327–343. DOI:10.1093/rfs/6.2.327
[]
Duffie D., Pan J. and Singleton K., 2000, "Transform Analysis and Asset Pricing for Affine Jump-Diffusions". Econometrica, 68(6), 1343–1376. DOI:10.1111/ecta.2000.68.issue-6
[]
Barndorff-Nielsen O. E., Shephard N., 2001, "Non-Gaussian Ornstein-Uhlenbeck-Based Models and Some of Their Uses in Financial Economics". Journal of the Royal Statistical Society:Series B, 63(2), 167–241. DOI:10.1111/rssb.2001.63.issue-2
[]
Bakkaloglu A., Aziz T., Fatima A., Mahomed F. M. and Khalique C. M., 2017, "Invariant Approach to Optimal Investment-Consumption Problem:the Constant Elasticity of Variance (CEV) Model". Mathematical Methods in the Applied Sciences, 40(5), 1382–1395. DOI:10.1002/mma.v40.5
[]
Li D., Rong X., Zhao H. and Yi B., 2017, "Equilibrium Investment Strategy for DC Pension Plan with Default Risk and Return of Premiums Clauses under CEV Model". Insurance:Mathematics and Economics, 72, 6–20. DOI:10.1016/j.insmatheco.2016.10.007
[]
Papapantoleon, A., 2008, An Introduction to Lévy Processes with Applications in Finance, Lecture Notes, TU Vienna.
[]
Carr P., Geman H., Madan D. B. and Yor M., 2002, "The Fine Structure of Asset Returns:An Empirical Investigation". The Journal of Business, 75(2), 305–332. DOI:10.1086/jb.2002.75.issue-2
[]
Carr P., Wu L., 2004, "Time-Changed Lévy Processes and Option Pricing". Journal of Financial Economics, 71(1), 113–141. DOI:10.1016/S0304-405X(03)00171-5
[]
De Vallière D., Kabanov Y. and Lépinette E., 2016, "Consumption-Investment Problem with Transaction Costs for Lévy-Driven Price Processes". Finance and Stochastics, 20(3), 705–740. DOI:10.1007/s00780-016-0303-5
[]
Nowak P., Pawłowski M., 2017, "Option Pricing with Application of Levy Processes and the Minimal Variance Equivalent Martingale Measure under Uncertainty". IEEE Transactions on Fuzzy Systems, 25(2), 402–416. DOI:10.1109/TFUZZ.2016.2637372
[]
Mitsui K., Yoshio T., 2008, "A Stochastic Linear-Quadratic Problem with Lévy Processes and Its Application to Finance". Stochastic Processes and their Applications, 118(1), 120–152. DOI:10.1016/j.spa.2007.03.011
[]
Nualart D., Schoutens W., 2000, "Chaotic and Predictable Representations for Lévy Processes". Stochastic processes and their applications, 90(1), 109–122. DOI:10.1016/S0304-4149(00)00035-1