耀变体PKS 1424-41的多波段光变特性研究
张顺1,2, 易庭丰1,2, 王娜1, 陈志晖1, 陈军平1, 马力1     
1. 云南师范大学物理与电子信息学院, 云南 昆明 650500;
2. 广西相对论天体物理重点实验室, 广西 南宁 530004
摘要: 光变是耀变体(Blazar)的重要观测特征。为了研究耀变体的多波段光变特征, 收集了Fermi(LAT), 中小型口径研究望远镜系统(Small and Moderate Aperture Research Telescope System, SMARTS), SWIFT(XRT)和亚毫米波阵列(Submillimeter Array, SMA)发布的PKS 1424-41在γ波段(0.1~100 GeV)、光学R波段、近红外K波段、X波段和射电波段的流量或星等值。用离散相关函数(Discrete Correlation Function, DCF)对各个波段光变曲线间进行相关性分析, 结果表明, γ波段、X波段、光学R波段、近红外K波段和射电波段彼此间存在强相关性, 各波段之间存在时间延迟。该结果支持同步辐射模型。利用LSP(Lomb-Scargle Periodogram)方法分析了PKS 1424-41的γ波段在一个爆发时间段(MJD 56100-56500)的光变曲线准周期振荡(Quasi-Periodic Oscillations, QPO), 发现它在这个时间段具有~75天和~50天两个准周期振荡, 比值为3∶2。喷流自身的螺旋结构及在其中运动的高能等离子体团块的辐射, 可能是这类月量级准周期振荡的起源。
关键词: 耀变体    PKS 1424-41    准周期振荡    
Study on Optical Variability of Blazar PKS 1424-41 in Multiband
Zhang Shun1,2, Yi Tingfeng1,2, Wang Na1, Chen Zhihui1, Chen Junping1, Ma Li1     
1. School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China;
2. Guangxi Key Laboratory for the Relativistic Astrophysics, Nanning 530004, China
Abstract: The variability is an important observational feature of Blazars. In order to study the multiband optical variability of Blazar, we collected the light curves of PKS 1424-41 of the gamma-ray band (0.1-100 GeV), optical R band, near infrared K band, X band and radio band, released by Fermi LAT, SMARTS, SWIFT (XRT) and Submillimeter Array (SMA). Discrete correlation function is used to analyze the correlation between the light curves. The results show that the gamma-ray band, X-band, optical R-band, near-infrared K-band and radio band are strongly correlated with each other, and there is a time delay between the bands. This result supports the "single region" lepton radiation model. The LSP (Lomb-Scargle Periodogram) method is used to analyze the Quasi-periodic Oscillations (QPO) of PKS 1424-41 for the γ band Light Curve in a flare period (MJD56100-MJD56500). It is found that there are two QPOs in this period: ~75 days and ~50 days, with a ratio of 3∶2. The helical structure of the jet itself and the radiation of high-energy plasma matter moving within it may be the origin of this monthly QPO.
Key words: Blazar    PKS 1424-41    Quasi Periodic Oscillation    

耀变体是活动星系核(Active Galactic Nuclei, AGN)中的一类,其相对性喷流几乎正对地球(角度≤10°)[1];它具有光度高、光变快、偏振高的特点,且具有从射电波段到γ波段的非热辐射。根据光学或红外光谱中的发射线,耀变体又可以分为平谱射电类星体(Flat-Spectrum Radio Quasar, FSRQ)和蝎虎座BL型天体(BL Lac)[2]。其中蝎虎座BL型天体只存在一些微弱的发射线,甚至没有发射线,却辐射出很强的X射线和γ射线。对于耀变体高能γ射线的产生机制,学者提出了不同的辐射模型进行解释,比如同步自康普顿(Synchrotron Self-Compton, SSC)模型和外康普顿机制(External Compton, EC)[3]。目前大家普遍认为γ射线来自于喷流。

PKS 1424-41是一个红移为1.522的平谱射电类星体[4-7],同步峰的峰值频率的对数为13.517 Hz。文[8]发现该源在γ波段存在年量级的准周期振荡,振荡周期约为355天。文[9]对PKS 1424-41在时间段MJD56000-56600做了多波段分析,发现红外波段与γ波段可能来自于同一区域。文[10]利用离散相关函数计算得到PKS 1424-41在γ波段和射电波段(2.3 GHz,4.8 GHz,12.2 GHz和8.4 GHz)相关性较好,且γ波段超前于射电波段。那么γ波段和光学波段,光学波段和射电波段是否存在相关性?同时,除了文[8]得到的准周期振荡以外,该耀变体是否还存在其他的准周期振荡?为此,我们收集最新Fermi(LAT)提供的γ波段数据、SMA发布的射电波段数据以及智利的美洲天文台SMARTS发布的光学数据,进行相关性研究和周期分析,以探讨上述问题。

1 数据样本和光变曲线

本文收集到来自Fermi γ射线空间卫星[11-13]在γ射线(4FGL J1427.9-4206)数据点836个;SWIFT(XRT)的X波段数据点78个;SMA的射电波段数据点86个;SMARTS中光学R波段数据点564个[14],近红外K波段数据点438个。其中,光学波段中的观测数据是星等值,我们利用

$ F_{\mathrm{v}}=3640 \times 10^{\frac{m_{\mathrm{v}}}{-2.5}} $ (1)

将星等值转化为流量数据,其中,mv是光学波段的星等值;Fv是星等值对应的流量。各波段光变曲线如图 1

图 1 PKS 1424-41在光学γ波段、X波段、光学R波段、近红外K波段和射电波段的光变曲线 Fig. 1 The light curves of PKS 1424-41 in gamma-ray, X-ray, optical R, near-infrared K and radio band
2 相关性分析

分析两组离散数据的相关性方法较多,比如离散相关函数。离散相关函数在天体物理中的应用较多[15-19],该方法的优点在于可以分析间隔不均匀的数据,而且不需要对数据样本做任何插值处理,这与天文观测数据很好地契合。

设有任意两个离散数据序列AiBj,则两组数的离散相关函数为

$ U D C F_{i j}=\frac{\left(A_i-\bar{A}\right)\left(B_j-\bar{B}\right)}{\sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}, $ (2)

其中,AB分别为离散数据序列AiBj的平均值;σAσB分别为相应的标准偏差。每一个数值的UDCFij值与时间延迟$\tau=\Delta \tau=\tau_j-\tau_i $相关,在含有噪声的数据序列中,我们将$\sigma_{\mathrm{A}} \sigma_{\mathrm{B}} $替换为($\sigma_{\mathrm{A}}^2-e_{\mathrm{A}}^2 $)($ \sigma_{\mathrm{B}}^2-e_{\mathrm{B}}^2$)。当τ确定时,若有M个数据的UDCFij满足$ \tau-\Delta \tau / 2 \leqslant \Delta t_{i j} \leqslant \tau+\Delta \tau / 2$,则DCF(τ)= $ \frac{1}{M} \sum U D C F_{i j}$。其中,DCF(τ)是离散相关函数。在离散相关函数分析图中,峰值越高,说明两列离散数据序列的相关性越强,反之越弱;若最高峰在0的左侧,说明序列Ai落后于序列Bj,反之说明序列Ai超前于序列Bj

通过离散相关函数对PKS 1424-41的γ波段分别与射电波段、X波段、近红外K波段和光学R波段做相关性分析,我们得到:(1)γ波段与各个波段均存在极强的相关性(峰值相关系数DCFpeak>0.8);在时间上,γ波段超前其他各波段,分别为0天(X波段)、28.4天(K波段)、19.6天(R波段)和3.5天(射电波段);(2)X波段与光学R波段、近红外K波段和射电波段间均存在强相关性(DCFpeak>0.8);(3)光学R波段与近红外K波段和射电波段有极强的相关性。各波段间的相关性分析图像如图 2,各波段间的相关性曲线峰值的高斯拟合结果如表 1

图 2 PKS 1424-41各波段间的离散相关函数分析,以及离散相关函数峰值附近的高斯拟合 Fig. 2 The DCFs of the light curves of PKS 1424-41 bands and the Gaussian fitting of the peak segments
表 1 各波段间离散相关函数峰值的高斯拟合结果 Table 1 Gaussian fitting results of DCF peak values of multi-wavelength
Gaussian fitting parameters X vs R radio vs R K vs X K vs radio K vs R K vs γ γ vs X γ vs radio X vs radio γ vs R
μ 35.4 -18.6 -65.0 11.4 -13.4 -28.4 0 3.5 50.4 19.6
DCFpeak 1.37 1.77 1.28 1.67 1.28 1.22 1.32 0.95 1.27 1.13
3 周期分析

LSP方法可以减少由于时间序列不均匀带来的虚假信号,还可以在红噪声中找出虚弱的光变周期[20]。因此,LSP方法广泛应用于寻找光变周期[21-23]。该方法是基于傅里叶变换,将输入的信号特征从时域转为频域。基本公式为[24]

$ P(\omega)=\frac{1}{2}\left\{\frac{\left[\sum\limits_{i=1}^{N_0} x\left(t_i\right) \cos \omega\left(t_i-\tau\right)\right]^2}{\sum\limits_{i=1}^{N_0} \cos ^2 \omega\left(t_j-\tau\right)}+\frac{\left[\sum\limits_{i=1}^{N_0} x\left(t_i\right) \sin \omega\left(t_i-\tau\right)\right]^2}{\sum\limits_{i=1}^{N_0} \sin ^2 \omega\left(t_i-\tau\right)}\right\}, $ (3)

其中,τ为对应时间t的相位修正,计算公式为

$ \tan (2 \omega \tau)=\frac{\sum\limits_{i=1}^{N_0} \sin \left(2 \omega t_i\right)}{\sum\limits_{i=1}^{N_0} \cos \left(2 \omega t_i\right)} . $ (4)

文[8]对该源在γ波段的部分数据做周期性分析,得到355天左右的暂现准周期振荡。我们对这个源在时间段MJD 56100-56500做周期分析,结果表明,该源在γ波段具有月量级的准周期振荡。在以3天为时间间隔(time bin)的γ波段光变曲线(图 3)中,有两个准周期振荡,分别为75.2天(>3σ)和49.2天(>3σ);在以7天为时间间隔(图 4)时,也有两个准周期振荡,分别为75.2天(>3σ)和51天(< 3σ)。该源在光学波段、射电波段和X波段未发现周期,这可能由于射电波段和X波段数据点稀少,光学波段因为天气、季节等因素导致观测数据空缺。

图 3 PKS 1424-41在γ波段(时间间隔3天)的光变曲线(MJD 56100-56500)和LSP计算结果。(a)光变曲线;(b)LSP计算结果 Fig. 3 The gamma-ray light curve of PKS 1424-41 with 3-day bin (MJD 56100-56500) and LSP calculation results. (a) The light curve; (b) the LSP calculation results
图 4 PKS 1424-41在γ波段(时间间隔7天)的光变曲线(MJD 56100-56500)和LSP计算结果。(a)光变曲线;(b)LSP计算结果 Fig. 4 The gamma-ray light curve of PKS 1424-41 with 7-day bin (MJD 56100-56500) and LSP calculation results. (a) The light curve; (b) the LSP calculation results
4 结论与讨论

基于PKS 1424-41在γ波段、X波段、光学R波段、近红外K波段和射电波段的观测数据,我们用离散相关函数对各个波段间做了相关性分析。结果显示,X波段与光学R波段、近红外K波段与射电波段间均存在强相关性;且X波段在时间上超前于各波段,超前时间分别为35.4天、65天和50.4天;光学R波段与近红外K波段和射电波段有极强的相关性。但γ波段与X波段存在极强的相关性,不存在时间延迟。研究结果表明,γ射线活动(可变性)在十几天内略早于光学R波段,不同波段的辐射源于同一区域(同一电子群)。这个结果支持单区轻子辐射模型[25-27]。但是,由于X波段和射电波段的数据点较少,这一结果还需要进一步的观测验证。

用LSP方法对γ波段在时间段MJD 56100-56500内的光变曲线进行周期分析,在时间间隔为3天的光变曲线中,存在两个准周期振荡,分别是75.2天和49.2天,置信度均大于3σ,这两个准周期振荡的比值约为3∶2。在时间间隔为7天的光变曲线中,存在一个75.2天的准周期振荡(置信度大于3σ),同时还存在一个51天的准周期振荡(置信度超过2σ不足3σ),两个准周期振荡的比值也接近3∶2。目前,耀变体准周期光变的物理本质还无法确定,但是耀变体光变曲线中的准周期振荡背后的物理机制已广泛讨论,并提出了许多可能的物理模型。具体的物理模型有:(1)超大质量双黑洞(Supermassive Binary Black Hole, SMBBH)系统,次级黑洞可以通过在轨道运动过程中穿过主黑洞的吸积盘,从而诱导准周期性[28-30]。(2)带有厚盘的超大质量双黑洞系统激发厚盘的p模振荡,随后振荡吸积盘的准周期等离子体注入喷流,因此喷流发射产生准周期流[31-32];如果内盘的角动量与中心超大质量黑洞的自旋不平行,它将围绕中心黑洞的自旋做Lense-Thirring进动[33-34]。相关喷流的方向也有进动[35-37],因此在每个电磁波段产生流量变化。(3)如果喷流具有大尺度螺旋状磁场,或者由于流体动力学不稳定、相对论冲击波或喷流等离子体中的湍流[38-39],喷流本身呈螺旋状,喷流辐射流量的变化也是准周期性的[40]。我们的分析结果更趋向于支持第3种模型。耀变体的准周期光变的物理本质仍然需要做进一步的研究。

参考文献
[1] ANTONUCCI R. Unified models for active galactic nuclei and quasars[J]. Annual Review of Astronomy and Astrophysics, 1993, 31(1): 473–521. DOI: 10.1146/annurev.aa.31.090193.002353
[2] PADOVANI P. Unified schemes for radio-loud AGN: recent results[J]. Memorie della Societa Astronomica Italiana, 1997, 68: 47–54.
[3] ZHANG X, YANG W G, HOU D D, et al. The variations characteristics and black hole mass of H0323+022 objects research[J]. Acta Physica Sinica, 2005, 54(6): 2961–2968. DOI: 10.7498/aps.54.2961
[4] HASAN I, MACPHERSON E, BUXTON M, et al. Latest OIR mags of PKS 1424-41[EB/OL]. (2013-01-31)[2023-03-29]. https://www.astronomerstelegram.org/? read=4775.
[5] D'AMMANDO F, ORIENTI M, LONGO F, et al. Detection of a strong optical and gamma-ray flare from blazar PKS 1424-41[EB/OL]. (2013-01-08)[2023-03-29]. https://www.astronomerstelegram.org/? read=4714.
[6] SAFNA P Z, STALIN C S, RAKSHIT S, et al. Long-term optical and infrared variability characteristics of Fermi blazars[J]. Monthly Notices of the Royal Astronomical Society, 2020, 498(3): 3578–3591. DOI: 10.1093/mnras/staa2622
[7] WHITE G L, JAUNCEY D L, SAVAGE A, et al. Redshifts of southern radio sources. Ⅶ[J]. The Astrophysical Journal, 1988, 327: 561–569. DOI: 10.1086/166216
[8] YANG J P, CAO G, ZHOU B, et al. Quasi-periodic oscillation of blazar PKS 1424-418 in γ-ray band[J]. Publications of the Astronomical Society of the Pacific, 2021, 133(1020): 024101. DOI: 10.1088/1538-3873/abd152
[9] ABHIR J, JOSEPH J, PATEL S R, et al. Multi-frequency temporal and spectral variability study of blazar PKS 1424-418[J]. Monthly Notices of the Royal Astronomical Society, 2021, 501(2): 2504–2511. DOI: 10.1093/mnras/staa3639
[10] VAN ZYL P V, GAYLARD M J. Examining the radio to gamma-ray correlation of the blazar PKS 1424-418 during its flaring state[J]. Memorie della Societa Astronomica Italiana, 2015, 86: 36–41.
[11] SZOSTEK A. Fermi LAT detection of a new GeV flare from blazar PKS 1424-4[EB/OL]. (2011-05-08)[2023-03-29]. https://www.astronomerstelegram.org/? read=3329.
[12] DONATO D. Fermi LAT detection of a GeV flare from blazar PKS 1424-41[EB/OL]. (2010-04-23)[2023-03-29]. https://www.astronomerstelegram.org/? read=2583.
[13] KADLER M, STEVENS J, OJHA R, et al. ATCA finds a long-term radio outburst of PKS1424-418 coincident with optical/gamma-ray flaring activity[EB/OL]. (2022-08-02)[2023-03-29]. https://www.astronomerstelegram.org/? read=15536.
[14] BONNING E, BAILYN C, BUXTON M, et al. SMARTS optical and IR observations of PKS 1424-41[EB/OL]. (2011-05-10)[2023-03-29]. https://www.astronomerstelegram.org/? read=3337.
[15] 程勇, 张雄, 伍林, 等. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性[J]. 物理学报, 2006, 55(2): 988–994
CHENG Y, ZHANG X, WU L, et al. Analysis of the correlation between γ-ray and radio emissions from γ-ray loud Blazar using the discrete correlation function[J]. Acta Physica Sinica, 2006, 55(2): 988–994.
[16] 刘文广, 李冬冬, 熊定荣, 等. 费米耀变体源多波段辐射流量的相关性分析[J]. 云南师范大学学报(自然科学版), 2012, 32(5): 1–6
LIU W G, LI D D, XIONG D R, et al. The correlation analysis of multi-wavelength emission from Fermi blazars[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2012, 32(5): 1–6.
[17] 王兴华, 张雄. 离散相关函数在Blazar天体中的应用[J]. 云南师范大学学报(自然科学版), 2010, 30(6): 25–33
WANG X H, ZHANG X. Applying the discrete correlation function to Blazar object[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2010, 30(6): 25–33.
[18] ZHOU B, DAI B, YANG J P. Long-term multiband correlation study and spectral energy distribution modeling of blazar 3C 454.3[J]. Publications of the Astronomical Society of Japan, 2021, 73(4): 850–863. DOI: 10.1093/pasj/psab051
[19] EDELSON R A, KROLIK J H. The discrete correlation function: a new method for analyzing unevenly sampled variability data[J]. The Astrophysical Journal, 1988, 333: 646–659. DOI: 10.1086/166773
[20] CHEN J P, YI T F, GONG Y L, et al. A 31.3 day transient quasiperiodic oscillation in gamma-ray emission from blazar S5 0716+714[J]. The Astrophysical Journal, 2022, 938(1): 8–17. DOI: 10.3847/1538-4357/ac91c3
[21] 常鑫, 易庭丰, 杨星, 等. BL Lac天体CGRaBS J0141-0928的光变特性分析[J]. 天文研究与技术, 2022, 19(5): 401–411
CHANG X, YI T F, YANG X, et al. Analysis of optical property of BL Lac object CGRaBS J0141-0928[J]. Astronomical Research & Technology, 2022, 19(5): 401–411.
[22] 陈军平, 马力, 龚云露, 等. 耀变体CGRaBS J0929+5013和J2146-1525光变相关性及准周期分析[J]. 天文研究与技术, 2022, 19(3): 189–197
CHEN J P, MA L, GONG Y L, et al. Correlation and quasi-periodic oscillation analysis of light variation in blazar CGRaBS J0929+5013 and J2146-1525[J]. Astronomical Research & Technology, 2022, 19(3): 189–197.
[23] 杨星, 易庭丰, 毛李胜. 平谱射电类星体B30307+380的15 GHz射电光变分析[J]. 天文研究与技术, 2020, 17(2): 137–143
YANG X, YI T F, MAO L S. On the 15 GHz radio variability of flat-spectrum radio quasar B30307+380[J]. Astronomical Research & Technology, 2020, 17(2): 137–143.
[24] YANG X, YI T F, ZHANG Y, et al. The γ-ray and optical variability analysis of the BL Lac object 3FGL J0449.4 4350[J]. Publications of the Astronomical Society of the Pacific, 2020, 132(1010): 044101. DOI: 10.1088/1538-3873/ab779e
[25] CARNERERO M I, RAITERI C M, VILLATA M, et al. Multiwavelength behaviour of the blazar OJ 248 from radio to γ-rays[J]. Monthly Notices of the Royal Astronomical Society, 2015, 450(3): 2677–2691. DOI: 10.1093/mnras/stv823
[26] SOKOLOV A, MARSCHER A P, MCHARDY I M. Synchrotron self-Compton model for rapid nonthermal flares in blazars with frequency-dependent time lags[J]. The Astrophysical Journal, 2004, 613(2): 725–746. DOI: 10.1086/423165
[27] SIKORA M, BŁAZŻEJOWSKI M, BEGELMAN M C, et al. Modeling the production of flares in gamma-ray quasars[J]. The Astrophysical Journal, 2001, 554(1): 1–11. DOI: 10.1086/321329
[28] SANDRINELLI A, COVINO S, DOTTI M, et al. Quasi-periodicities at year-like timescales in blazars[J]. The Astronomical Journal, 2016, 151(3): 54. DOI: 10.3847/0004-6256/151/3/54
[29] VILLFORTH C, NILSSON K, HEIDT J, et al. Variability and stability in blazar jets on time-scales of years: optical polarization monitoring of OJ 287 in 2005-2009[J]. Monthly Notices of the Royal Astronomical Society, 2010, 402(3): 2087–2111. DOI: 10.1111/j.1365-2966.2009.16133.x
[30] VALTONEN M J, LEHTO H J, NILSSON K, et al. A massive binary black-hole system in OJ287 and a test of general relativity[J]. Nature, 2008, 452(7189): 851–853. DOI: 10.1038/nature06896
[31] ACKERMANN M, AJELLO M, ALBERT A, et al. Multiwavelength evidence for quasi-periodic modulation in the gamma-ray blazar PG 1553+113[J]. The Astrophysical Journal, 2015, 813(2): L41. DOI: 10.1088/2041-8205/813/2/L41
[32] LIU F K, CHEN X. Evolution of supermassive black hole binaries and acceleration of jet precession in galactic nuclei[J]. The Astrophysical Journal, 2007, 671(2): 1272–1283. DOI: 10.1086/522910
[33] LI H Z, XIE G Z, ZHOU S B, et al. A periodicity analysis of the light curve of 3C 454.3[J]. Chinese Journal of Astronomy and Astrophysics, 2006, 6(4): 421–429. DOI: 10.1088/1009-9271/6/4/04
[34] WILKINS D C. Bound geodesics in the kerr metric[J]. Physical Review D, 1972, 5(4): 814. DOI: 10.1103/PhysRevD.5.814
[35] CAPRONI A, MOSQUERA CUESTA H J, ABRAHAM Z. Observational evidence of spin-induced precession in active galactic nuclei[J]. The Astrophysical Journal, 2004, 616(2): L99–L102. DOI: 10.1086/426863
[36] CAPRONI A, ABRAHAM Z. Can long-term periodic variability and jet helicity in 3C 120 be explained by jet precession?[J]. Monthly Notices of the Royal Astronomical Society, 2004, 349(4): 1218–1226. DOI: 10.1111/j.1365-2966.2004.07550.x
[37] KUDRYAVTSEVA N A, BRITZEN S, WITZEL A, et al. A possible jet precession in the periodic quasar B0605-085[J]. Astronomy & Astrophysics, 2011, 526: A51.
[38] MARSCHER A P, GEAR W K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273[J]. The Astrophysical Journal, 1985, 298: 114–127. DOI: 10.1086/163592
[39] LARIONOV V M, JORSTAD S G, MARSCHER A P, et al. The outburst of the blazar S5 0716+71 in 2011 October: shock in a helical jet[J]. The Astrophysical Journal, 2013, 768(1): 40. DOI: 10.1088/0004-637X/768/1/40
[40] CAMENZIND M, KROCKENBERGER M. The lighthouse effect of relativistic jets in blazars. A geometric origin of intraday variability[J]. Astronomy & Astrophysics, 1992, 255: 59–62.
由中国科学院国家天文台主办。
0

文章信息

张顺, 易庭丰, 王娜, 陈志晖, 陈军平, 马力
Zhang Shun, Yi Tingfeng, Wang Na, Chen Zhihui, Chen Junping, Ma Li
耀变体PKS 1424-41的多波段光变特性研究
Study on Optical Variability of Blazar PKS 1424-41 in Multiband
天文研究与技术, 2023, 20(4): 275-282.
Astronomical Research and Technology, 2023, 20(4): 275-282.
收稿日期: 2023-03-29
修订日期: 2023-04-06

工作空间