相对类星体,赛弗特星系是一种低光度活动星系核,绝对星等MB>-21.51+5logh0,容易观测到其寄主星系[1]。根据发射线性质可将赛弗特星系分为两个子类:赛弗特1型星系和赛弗特2型星系[2],前者的光谱中存在宽的允许线,半峰全宽(Full Width at Half Maximum, FWHM)可达104 km·s-1,后者的允许线宽度和禁线宽度差不多,一般在500~1 000 km·s-1。在活动星系核统一模型中,两者的中心引擎结构相同,观测性质的不同是由倾角效应导致的,赛弗特2型星系观测视角大,导致宽线区辐射被视线上更外层的光学厚尘埃环遮蔽[3-4]。
窄线赛弗特1型星系(Narrow-Line Seyfert 1 galaxies, NLS1s)是一类性质非常独特的赛弗特星系。文[5]给出了最初的定义:具有相对窄的Hβ发射线线宽(FWHM < 2 000 km·s-1)和较弱的禁线([O Ⅲ]λ5007/Hβ < 3),Fe Ⅱ发射线强,软X射线谱陡。一般认为,窄线赛弗特1型星系具有相对较小的中心黑洞质量和较高的爱丁顿比[6-9]。绝大部分窄线赛弗特1型星系是射电宁静的(射电噪度R < 10),仅有约7%表现为射电噪(R > 10),约2.5%表现为射电甚噪(R > 100)[10-12]。最近十多年来,费米大面积空间望远镜(Fermi/LAT)发现的伽马噪窄线赛弗特1型星系(γ-NLS1s)受到天文界广泛和持续关注,被探测到伽马射线辐射表明,这些窄线赛弗特1型星系中存在相对论性喷流。伽马噪窄线赛弗特1型星系可能具有类似耀变体(Blazars)的观测特征,例如致密射电核、非常高的亮温度、快速大幅光变、平的射电谱以及双峰结构的宽波段能谱分布等[13-16]。
截至目前,伽马噪窄线赛弗特1型星系的数量较少,但系统地研究它们的观测和统计性质对于理解喷流形成、吸积盘-冕-喷流关联性、伽马射线辐射机制和区域、星系演化等意义重大[14]。本文基于目前最大的伽马噪窄线赛弗特1型星系样本,系统地研究它们的长期红外亮度和颜色变化,以期获取红外波段辐射的有用线索。
1 样本和数据 1.1 样本文[13]收集了目前已知的所有伽马噪窄线赛弗特1型星系,包括22个源,文[17]给出了3个另外的高置信度伽马噪窄线赛弗特1型星系候选体,上述25个源作为本文的分析样本。表 1中2~5列给出了具体信息,包括源名、度为单位的赤经和赤纬以及红移。
No. | Source name | RA | Dec | Redshift | Nep | Brightness variability | Color variability |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
1 | SDSS J003159.85+093618.4 | 7.999 | 9.605 | 0.221 | 15 | Yes | Yes |
2 | 1H 0323+342 | 51.172 | 34.179 | 0.061 | 14 | Yes | Yes |
3 | SBS 0846+513† | 132.492 | 51.141 | 0.584 | 13 | Yes | Yes |
4 | SDSS J090113.23+465734.7 | 135.305 | 46.960 | 0.430 | 13 | Yes | No |
5 | NVSS J093241+530633† | 143.171 | 53.109 | 0.597 | 14 | Yes | Yes |
6 | GB6 J0937+5008† | 144.301 | 50.148 | 0.275 | 14 | Yes | Yes |
7 | SDSS J094635.06+101706.1 | 146.646 | 10.285 | 1.004 | 14 | Yes | No |
8 | PMN J0948+0022† | 147.239 | 0.374 | 0.585 | 13 | Yes | Yes |
9 | NVSS J095820+322401 | 149.587 | 32.401 | 0.531 | 14 | Yes | Yes |
10 | SDSS J110223.38+223920.7 | 165.597 | 22.656 | 0.453 | 14 | Yes | Yes |
11 | SDSS J122222.55+041315.7 | 185.594 | 4.221 | 0.966 | 14 | Yes | No |
12 | SDSS J122844.81+501751.2 | 187.187 | 50.298 | 0.262 | 14 | Yes | No |
13 | SDSS J123220.11+495721.8 | 188.084 | 49.956 | 0.262 | 14 | Yes | Yes |
14 | SDSS J124634.65+023809.0 | 191.644 | 2.636 | 0.363 | 14 | Yes | Yes |
15 | SDSS J130522.75+511640.3 | 196.345 | 51.278 | 0.788 | 14 | Yes | No |
16 | 3C 286 | 202.785 | 30.509 | 0.850 | 14 | No | No |
17 | NVSS J142106+385522† | 215.275 | 38.923 | 0.489 | 15 | Yes | No |
18 | SDSS J144318.56+472556.7 | 220.827 | 47.432 | 0.705 | 14 | Yes | No |
19 | PKS 1502+036† | 226.277 | 3.442 | 0.409 | 14 | Yes | Yes |
20 | TXS 1518+423† | 230.165 | 42.186 | 0.484 | 15 | Yes | Yes |
21 | SDSS J164100.10+345452.7 | 250.250 | 34.915 | 0.164 | 14 | Yes | Yes |
22 | FBQS J1644+2619 | 251.177 | 26.320 | 0.145 | 14 | Yes | Yes |
23 | PKS 2004-447 | 301.980 | -44.579 | 0.240 | 13 | Yes | Yes |
24 | PMN J2118+0013† | 319.573 | 0.221 | 0.463 | 13 | Yes | Yes |
25 | SDSS J211852.96-073227.5† | 319.721 | -7.541 | 0.260 | 14 | Yes | Yes |
广域红外巡天探测器是美国宇航局在2009年12月发射的空间望远镜,旨在以红外线绘制整个天空的图像[18]。广域红外巡天探测器搭载了一台40 cm的红外望远镜,工作在3.4 μm,4.6 μm,12 μm和22 μm波段(分别称为W1,W2,W3和W4波段),空间分辨率为6.1″,6.4″,6.5″和12″。2010年9月30日前,广域红外巡天探测器在W1-W4或W1-W3波段开展全天区扫描, 随后仅在W1和W2波段进行一项名为近地天体广域红外巡天探索(Near-Earth Object Wide-field Infrared Survey Explorer, NEOWISE)的任务,直到2011年2月进入休眠期。2013年10月,广域红外巡天探测器重新启用,继续在W1和W2波段进行NEOWISE-R任务,直至现在[19-20]。广域红外巡天探测器每6个月完成一次全天区巡天,在大约1天时间内,绕轨道运行15次,因而可得到目标源包含多个测光数据点(典型值12个)的天量级光变曲线[21]。相比于以前的红外天文卫星(Infrared Astronomical Satellite, IRAS),广域红外巡天探测器的灵敏度提高了100倍,为研究活动星系核的红外性质提供了前所未有的机遇[22]。
1.3 光变曲线本文利用美国宇航局的红外科学档案(Infrared Science Archive, IRSA)(https: //irsa.ipac.caltech.edu/frontpage/),采用3″的搜索半径,首先获取了25个源2010年1月~2019年12月的W1和W2波段测光数据。需要强调的是,W3和W4波段的测光数据相对少很多,且测光精度较差,因此没有包含在下面的分析中。然后对数据进行了必要的筛选,剔除不良数据,采用如下标准:nb≤ 2,na=0,moon_masked=‘00’, cc_flags=‘00’,w1sat=0,w2sat=0,w1snr ≥ 7,w2snr ≥ 5,w1rchi2 < 10,w2rchi2 < 10,qual_frame > 0,qi_fact > 0,saa_sep > 0,sso_flag=0。另外,还剔除了仅有W1或W2星等上限的数据点以及星等误差(w1sigmpro, w2sigmpro)超过0.2 mag的数据点,测光数据质量详情可参考广域红外巡天探测器官方文档(http://wise2.ipac.caltech.edu/docs/release/neowise/expsup/),最后得到了25个源的W1和W2波段同时光变曲线。所有源在广域红外巡天探测器巡天中观测了13~15次(见表 1的第6列),每个观测窗口(Epoch)平均包含14组W1/W2测光数据,平均观测时长约1.3天。
为了讨论伽马噪窄线赛弗特1型星系的长期红外亮度和颜色变化,我们对每个观测窗口的数据进行加权平均[23]:一组时间序列数据x1, x2, ..., xN,误差为σ1, σ2, ..., σN,参数x的加权平均值xwtd为
$ {{\bar x}_{{\rm{wtd}}}} = \frac{{\sum\limits_{i = 1}^N {{\omega _i}} {x_i}}}{{\sum\limits_{i = 1}^N {{\omega _i}} }}, $ | (1) |
权重
$ \left. {{\sigma _{{{\bar x}_{{\rm{wtd }}}}}} = \sqrt {\frac{1}{{N - 1}}\left[ {\frac{{\sum\limits_{i = 1}^N {{\omega _i}} x_i^2}}{{\sum\limits_{i = 1}^N {{\omega _i}} }} - {{\left( {{{\bar x}_{{\rm{wtd }}}}} \right)}^2}} \right.} } \right]. $ | (2) |
利用(1)式和(2)式计算单个源每个观测窗口对应的加权平均W1星等及标准误差,加权平均颜色(W1-W2)及标准误差(表 2给出两个源的数据作为示例),从而得到了源的W1星等和颜色(W1-W2)长期变化曲线。图 1给出了PMN J0948 + 0022所有观测窗口光变曲线(蓝色点W1星等,红色点W2星等),平均后的W1星等光变曲线,平均后的颜色(W1-W2)变化曲线作为示例。所有样本源的变化曲线和完整版表 2可从国家天文科学数据中心(NADC)获取(http://paperdata.china-vo.org/MLS/2021/ART/data.rar)。
Source name | No. | MJD1 | MJD2 | Δt | Nob | W1 | σW1 | W1-W2 | σ(W1-W2) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
SDSS | 1 | 55378.87002 | 55379.72993 | 0.86 | 9 | 14.855 | 0.026 | 1.252 | 0.034 |
J003159.85+093618.4 | 2 | 55557.74387 | 55558.73583 | 0.99 | 11 | 14.822 | 0.035 | 1.135 | 0.065 |
3 | 56655.44236 | 56656.43076 | 0.99 | 11 | 14.337 | 0.032 | 1.045 | 0.049 | |
4 | 56843.36991 | 56844.48832 | 1.12 | 12 | 14.430 | 0.019 | 1.174 | 0.035 | |
5 | 57022.46688 | 57023.32106 | 0.85 | 10 | 14.344 | 0.024 | 1.048 | 0.041 | |
6 | 57205.21781 | 57206.20213 | 0.98 | 11 | 14.553 | 0.028 | 1.202 | 0.031 | |
7 | 57381.55958 | 57382.54302 | 0.98 | 10 | 14.557 | 0.033 | 1.168 | 0.044 | |
8 | 57572.23797 | 57573.22064 | 0.98 | 11 | 14.575 | 0.034 | 1.143 | 0.043 | |
9 | 57740.75946 | 57741.61097 | 0.85 | 11 | 14.547 | 0.033 | 1.118 | 0.041 | |
10 | 57936.38729 | 57937.36931 | 0.98 | 11 | 14.553 | 0.030 | 1.061 | 0.052 | |
11 | 58101.39723 | 58102.37913 | 0.98 | 13 | 14.657 | 0.029 | 1.129 | 0.040 | |
12 | 58300.58144 | 58301.56296 | 0.98 | 10 | 14.489 | 0.024 | 1.044 | 0.055 | |
13 | 58462.11437 | 58463.09589 | 0.98 | 12 | 14.702 | 0.027 | 1.192 | 0.038 | |
14 | 58667.76717 | 58668.74843 | 0.98 | 12 | 14.799 | 0.032 | 1.150 | 0.050 | |
15 | 58829.24517 | 58830.22644 | 0.98 | 11 | 14.731 | 0.033 | 1.128 | 0.055 | |
1H 0323+342 | 1 | 55237.59762 | 55238.59009 | 0.99 | 12 | 10.930 | 0.004 | 0.961 | 0.006 |
2 | 55427.94941 | 55428.94163 | 0.99 | 12 | 10.579 | 0.012 | 0.962 | 0.010 | |
3 | 56702.35038 | 56703.33840 | 0.99 | 12 | 10.779 | 0.009 | 0.945 | 0.004 | |
4 | 56892.90342 | 56893.89016 | 0.99 | 12 | 10.734 | 0.006 | 0.941 | 0.008 | |
5 | 57061.49425 | 57062.47959 | 0.99 | 12 | 10.606 | 0.008 | 0.909 | 0.005 | |
6 | 57254.68065 | 57255.79588 | 1.12 | 14 | 10.721 | 0.008 | 0.924 | 0.005 | |
7 | 57421.02901 | 57422.01232 | 0.98 | 12 | 10.680 | 0.013 | 0.936 | 0.005 | |
8 | 57618.88168 | 57619.86435 | 0.98 | 11 | 10.662 | 0.008 | 0.912 | 0.008 | |
9 | 57784.90554 | 57785.75692 | 0.85 | 10 | 10.670 | 0.010 | 0.965 | 0.008 | |
10 | 57986.01132 | 57986.99335 | 0.98 | 11 | 10.795 | 0.006 | 0.932 | 0.008 | |
11 | 58142.11335 | 58142.96473 | 0.85 | 10 | 10.803 | 0.006 | 0.953 | 0.008 | |
12 | 58350.04976 | 58351.16218 | 1.11 | 13 | 10.879 | 0.005 | 0.956 | 0.007 | |
13 | 58508.96498 | 58509.94651 | 0.98 | 13 | 10.991 | 0.006 | 0.997 | 0.008 | |
14 | 58714.33992 | 58715.19041 | 0.85 | 10 | 10.990 | 0.003 | 0.993 | 0.005 | |
Note: (1) Source name; (2) The serial number of observational epochs; (3) The beginning MJD; (4) The ending MJD; (5) The duration time; (6) The number of photometric data points; (7) The average W1 magnitude; (8) The standard error of the average W1 magnitude; (9) The average color W1-W2; (10) The standard error of the average color W1-W2 |
![]() |
图 1 PMN J0948+0022每个观测窗口的W1/W2光变曲线;观测窗口平均后的W1星等和颜色(W1-W2)长期变化曲线 Fig. 1 The W1/W2 light curves of PMN J0948+0022 during all epochs; the epoch-averaged long-term variation curves of the W1 magnitude and the color of (W1-W2) |
本文利用两种方法探讨样本源是否表现出长期的亮度和颜色变化。
2.1 参数V文[24]定义了衡量光变概率的参数V,广泛用于各种光变研究。参数V由光变曲线的卡方值导出
$ {\chi ^2} = \sum\limits_{i = 1}^{{N_{{\rm{ob}}}}} {\frac{{{{\left( {{y_i} - \bar y} \right)}^2}}}{{\sigma _{err, i}^2}}} , $ | (3) |
其中,yi为观测星等(颜色);σerr, i为星等(颜色)误差;y为平均星等(颜色);Nob为数据点个数。
$ V = - \log \left[ {1 - \Gamma \left( {\frac{{{N_{{\rm{ob}}}} - 1}}{2}, \frac{{{\chi ^2}}}{2}} \right)} \right], $ | (4) |
其中,Γ为不完全伽马函数[25]。V值越大,光变的概率越高。历史文献中常采用的标准为V > 1.3,即光变概率高于95%[26]。
2.2 标准额外方差σNXV2标准额外方差(Normalized Excess Variance, σNXV2)常用来衡量光变幅度,“额外”表示从总方差中去除观测误差带来的方差[27],具体定义为
$ \sigma _{{\rm{NXV}}}^2 = \frac{1}{{{N_{{\rm{ob}}}}{{\bar y}^2}}}\sum\limits_{i = 1}^{{N_{{\rm{ob}}}}} {\left[ {{{\left( {{y_i} - \bar y} \right)}^2} - \sigma _{err, i}^2} \right]} , $ | (56) |
σNXV2的误差为
$ {err\left( {\sigma _{{\rm{NXV}}}^2} \right) = \frac{{{S_{\rm{D}}}}}{{{{\bar y}^2}N_{{\rm{ob}}}^{1/2}}}, } $ | (6) |
$ {S_{\rm{D}}^2 = \frac{1}{{{N_{{\rm{ob}}}}}}\sum\limits_{i = 1}^{{N_{{\rm{ob}}}}} {{{\left\{ {\left[ {{{\left( {{y_i} - \bar y} \right)}^2} - \sigma _{err, i}^2} \right] - \sigma _{{\rm{NXV}}}^2{{\bar y}^2}} \right\}}^2}.} } $ | (7) |
观测数据的误差较大时,err(σNXV2)可能大于σNXV2。根据文[26],定义Δ=σNXV2-err(σNXV2)。如果Δ > 0,表明经误差修正后的光变幅度大于0。
2.3 结果采用上述两种方法研究了样本源的长期亮度和颜色变化。如W1星等(颜色W1-W2)变化曲线同时满足V > 1.3和Δ > 0,则认为表现出统计意义上显著的亮度(颜色)变化。结果发现:(1)除3C 286外,其他伽马噪窄线赛弗特1型星系表现出长期亮度变化;(2)17个伽马噪窄线赛弗特1型星系表现出长期颜色变化。具体结果见表 1的第7、第8列。
利用广域红外巡天探测器研究红外颜色变化的优势体现在W1和W2两个波段的观测是同时的。为进一步了解样本源的长期颜色变化,我们构建了它们的颜色-星等图,W1星等作为横坐标,颜色(W1-W2)作为纵坐标。考虑亮度和颜色变化分析的结果,本文只对17个既表现出长期亮度变化又表现出长期颜色变化的伽马噪窄线赛弗特1型星系构建颜色-星等图。采用加权最小二乘法拟合颜色-星等散点图:(W1-W2)=AW1+ B,A为斜率,B为截距,既考虑颜色的误差又考虑星等的误差[25]。表 3的第3到第6列给出了17个源的线性拟合结果,最佳拟合直线的斜率A可用来衡量谱形变化,图 2给出了A的分布情况。另外我们计算了W1星等和颜色(W1-W2)之间的相关系数和偶然概率,考虑到数据分布的非正态性,采用斯皮尔曼等级相关系数描述两者之间的相关性,计算结果见表 3的第7、第8列,前者列出斯皮尔曼等级相关系数rs,后者列出偶然概率p。类似于文[28],本文表征颜色变化趋势如下:(1)如果A > 0,rs > 0.5,p < 0.05,则源表现出变亮变蓝趋势;(2)如果A < 0,rs < -0.5,p < 0.05,则源表现出变亮变红趋势。按照此判断标准,4个伽马噪窄线赛弗特1型星系表现出显著的变亮变蓝趋势(图 3),7个伽马噪窄线赛弗特1型星系表现出显著的变亮变红趋势(图 4)。
Name | Nep | A | σA | B | σB | rs | p | Note |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
SDSS J003159.85+093618.4 | 15 | 2.62E-01 | 7.36E-02 | -2.68E+00 | 1.07E+00 | 0.54 | 3.78E-02 | BWB |
1H 0323+342 | 14 | 1.73E-01 | 1.34E-02 | -9.19E-01 | 1.46E-01 | 0.53 | 5.14E-02 | — |
SBS 0846+513 | 13 | -5.10E-02 | 8.60E-03 | 1.62E+00 | 1.14E-01 | -0.77 | 1.87E-03 | RWB |
NVSS J093241+530633 | 14 | -8.10E-02 | 1.96E-02 | 2.17E+00 | 2.76E-01 | -0.76 | 1.51E-03 | RWB |
GB6 J0937+5008 | 14 | 2.25E-03 | 8.02E-03 | 1.08E+00 | 1.02E-01 | 0.23 | 4.27E-01 | — |
PMN J0948+0022 | 13 | -6.80E-02 | 1.60E-02 | 1.96E+00 | 2.10E-01 | -0.57 | 3.98E-02 | RWB |
NVSS J095820+322401 | 14 | -2.83E-01 | 4.83E-02 | 4.45E+00 | 6.08E-01 | -0.90 | 9.56E-06 | RWB |
SDSS J110223.38+223920.7 | 14 | 3.48E-01 | 9.60E-02 | -3.51E+00 | 1.27E+00 | 0.63 | 1.50E-02 | BWB |
SDSS J123220.11+495721.8 | 14 | 1.19E-01 | 2.41E-02 | -5.90E-01 | 3.24E-01 | 0.69 | 6.22E-03 | BWB |
SDSS J124634.65+023809.0 | 14 | 4.46E-01 | 9.76E-02 | -5.26E+00 | 1.36E+00 | 0.74 | 2.68E-03 | BWB |
PKS 1502+036 | 14 | -1.28E-01 | 4.17E-02 | 2.68E+00 | 5.85E-01 | -0.66 | 1.02E-02 | RWB |
TXS 1518+423 | 15 | -2.47E-01 | 1.40E-02 | 4.21E+00 | 1.95E-01 | -0.84 | 7.21E-05 | RWB |
SDSS J164100.10+345452.7 | 14 | 2.05E-01 | 2.78E-02 | -1.80E+00 | 3.52E-01 | 0.20 | 5.03E-01 | — |
FBQS J1644+2619 | 14 | -2.43E-02 | 1.18E-02 | 1.28E+00 | 1.54E-01 | -0.32 | 2.67E-01 | — |
PKS 2004-447 | 13 | 4.63E-02 | 4.39E-02 | 4.15E-01 | 5.91E-01 | 0.20 | 5.17E-01 | — |
PMN J2118+0013 | 13 | 7.26E-02 | 2.45E-02 | 4.97E-02 | 3.47E-01 | 0.12 | 6.94E-01 | — |
SDSS J211852.96-073227.5 | 14 | -1.02E-01 | 2.40E-02 | 2.31E+00 | 3.24E-01 | -0.70 | 5.21E-03 | RWB |
Note: (1) Source name; (2) The total number of observational epochs; (3) The best-fit slope; (4) The uncertainty of the best-fit slope; (5) The best-fit intercept; (6) The uncertainty of the best-fit intercept; (7) Spearman rank correlation coefficient, rs; (8) The probability of no correlation, p; (9) Note: “BWB”and“RWB”denote the trends of bluer-when-brighter and redder-when-brighter, respectively |
![]() |
图 2 最佳拟合直线的斜率A的分布 Fig. 2 The distribution of the slope of best fit line (A) |
![]() |
图 3 4个伽马噪窄线赛弗特1型星系的变亮变蓝现象 Fig. 3 BWB trends for 4 γ-NLS1s |
![]() |
图 4 7个伽马噪窄线赛弗特1型星系的变亮变红现象 Fig. 4 RWB trends for 7 γ-NLS1s |
活动星系核的红外波段辐射可能包括多种成分,既有热致辐射,也有非热致辐射,各种成分的贡献比很大程度上依赖于类型和波段。活动星系核中,尘埃环吸收来自吸积盘的紫外/光学辐射后,将能量以红外辐射的形式释放,辐射的波长由尘埃温度决定,尘埃环的温度在1 500 K左右,辐射峰值大约几微米[29]。除尘埃环外,寄主星系以及喷流同步辐射(对于射电噪活动星系核)的贡献也应适时考虑[30]。
文[31]利用广域红外巡天探测器巡天的W1/W2波段数据研究了492个探测到射电辐射的窄线赛弗特1型星系长期红外颜色(W1-W2)变化,发现69%的源表现出大于1σ的颜色变化,在这些源中,27%表现出变亮变红趋势,42%表现出变亮变蓝趋势。在双成分(活动星系核辐射+ 寄主星系辐射)框架下,文中给出了变亮变红和变亮变蓝趋势的可能解释:在活动星系核辐射主导的情况下(明亮状态),倾向于表现出变亮变红的趋势,而当活动星系核的辐射和寄主星系的辐射可以比较时(暗弱状态),倾向于表现出变亮变蓝的趋势。本文聚焦于其中更为特殊的伽马噪窄线赛弗特1型星系子类,研究了它们的长期亮度和颜色变化。需要指出的是:(1)9个列入文[31]的伽马噪窄线赛弗特1型星系全部包含在本文的分析样本中(表 1的源名用“†”标记),对于其中的8个源,分析结果与文[31]得到的结果完全一致(SBS 0846+513,NVSS J093241+530633,PMN J0948+0022,PKS 1502+036,TXS 1518+423和SDSS J211852.96-073227.5表现出显著的变亮变红趋势,GB6 J0937+5008和PMN J2118+0013未表现显著的变亮变红或变亮变蓝趋势)。文[31]认为NVSS J142106+385522表现出长期的变亮变红趋势,而根据本文的分析,这个源表现出显著的长期亮度变化,但却未表现出显著的长期颜色变化,因而未对其进行颜色-星等的线性拟合和相关分析。(2)利用截至2019年12月的广域红外巡天探测器观测数据,每个源的观测窗口数比文[31]多2~5个。本文的分析结果表明,伽马噪窄线赛弗特1型星系同时存在变亮变红和变亮变蓝的趋势,其中68%(17/25)的源表现出统计上显著的长期颜色(W1-W2)变化,与文[31]的结果吻合,在这些源中,41%(7/17)表现出变亮变红趋势,24%(4/17)表现出变亮变蓝趋势,暗示伽马噪窄线赛弗特1型星系更倾向于表现出变亮变红的趋势,这可能是由于伽马噪窄线赛弗特1型星系存在明显的喷流辐射且吸积率更高,更容易主导整体辐射所导致的。目前已知的伽马噪窄线赛弗特1型星系样本小,文中的分析比较仅提供了伽马噪窄线赛弗特1型星系红外辐射的些许线索,本文的猜想有待将来更大样本分析的验证。另外,结合其他手段(例如快速光变和能谱拟合)能更好地探索,定量得出不同成分在红外辐射中的贡献比例。
致谢: 感谢芬兰图尔库大学Suvendu Rakshit博士的热心帮助。感谢广域红外巡天探测器提供的数据。本文得到国家天文科学数据中心、中国科学院天文科学数据中心、中国虚拟天文台、国家天文台-阿里云天文大数据联合研究中心提供的数据资源和技术支持,在此一并表示感谢。
[1] | PETERSON B M. An introduction to active galactic nuclei[M]. London: Cambridge University Press, 1997: 21-23. |
[2] | KHACHIKIAN E, WEEDMAN D W. An atlas of Seyfert galaxies[J]. The Astrophysical Journal, 1974, 192: 581–589. DOI: 10.1086/153093 |
[3] | NETZER H. Revisiting the unified model of active galactic nuclei[J]. Annual Review of Astronomy and Astrophysics, 2015, 53: 365–408. DOI: 10.1146/annurev-astro-082214-122302 |
[4] | URRY C M, PADOVANI P. Unified schemes for radio-loud active galactic nuclei[J]. Publications of the Astronomical Society of the Pacific, 1995, 107(715): 803–845. DOI: 10.1086/133630 |
[5] | OSTERBROCK D E, POGGE R W. The spectra of narrow-line Seyfert 1 galaxies[J]. The Astrophysical Journal, 1985, 297: 166–176. DOI: 10.1086/163513 |
[6] | MATHUR S. Narrow-line Seyfert 1 galaxies and the evolution of galaxies and active galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2000, 314(4): 17–20. DOI: 10.1046/j.1365-8711.2000.03530.x |
[7] | COLLIN S, KAWAGUCHI T. Super-Eddington accretion rates in Narrow Line Seyfert 1 galaxies[J]. Astrophysics & Astronomy, 2004, 426: 797–808. |
[8] | KOMOSSA S, XU D. Narrow-Line Seyfert 1 Galaxies and the MBH-σ Relation[J]. The Astrophysical Journal Letters, 2007, 667(1): 33–36. DOI: 10.1086/522002 |
[9] | PETERSON B M, MCHARDY I M, WILKES B J, et al. X-ray and optical variability in NGC 4051 and the nature of Narrow-Line Seyfert 1 Galaxies[J]. The Astrophysical Journal, 2000, 542(1): 161–174. DOI: 10.1086/309518 |
[10] | ZHOU H, WANG T, YUAN W, et al. A comprehensive study of 2000 Narrow Line Seyfert 1 Galaxies from the sloan digital sky survey. Ⅰ. the sample[J]. The Astrophysical Journal Supplement, 2006, 166(1): 128–153. DOI: 10.1086/504869 |
[11] | YUAN W, ZHOU H Y, KOMOSSA S, et al. A population of radio-loud Narrow-Line Seyfert 1 Galaxies with blazar-like properties?[J]. The Astrophysical Journal, 2008, 685(2): 801–827. DOI: 10.1086/591046 |
[12] | KOMOSSA S, VOGES W, XU D, et al. Radio-loud Narrow-Line Type 1 Quasars[J]. The Astronomical Journal, 2006, 132(2): 531–545. DOI: 10.1086/505043 |
[13] | PALIYA V S. Gamma-ray emitting narrow-line Seyfert 1 galaxies: past, present, and future[J]. Astrophysics & Astronomy, 2019, 40(5): 39. DOI: 10.1007/s12036-019-9604-3 |
[14] | D'AMMANDO F. Relativistic jets in Gamma-ray-emitting narrow-line Seyfert 1 galaxies[J]. Astrophysics & Astronomy, 2019, 7(4): 87. |
[15] | ACKERMANN M, AJELLO M, ATWOOD W B, et al. The third catalog of active galactic nuclei detected by the Fermi Large Area Telescope[J]. The Astrophysical Journal, 2015, 810(1): 14. DOI: 10.1088/0004-637X/810/1/14 |
[16] | PALIYA V S, STALIN C S, RAVIKUMAR C D. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies[J]. The Astronomical Journal, 2015, 149(2): 41. DOI: 10.1088/0004-6256/149/2/41 |
[17] | LÄHTEENMÄKI A, JÄRVELÄ E, RAMAKRISHNAN V, et al. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies[J]. Astrophysics & Astronomy, 2018, 614: 1. |
[18] | WRIGHT E L, EISENHARDT P R M, MAINZER A K, et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance[J]. The Astronomical Journal, 2010, 140(6): 1868–1881. DOI: 10.1088/0004-6256/140/6/1868 |
[19] | MAINZER A, BAUER J, GRAV T, et al. Preliminary results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for solar system science[J]. The Astrophysical Journal, 2011, 731(1): 53. DOI: 10.1088/0004-637X/731/1/53 |
[20] | MAINZER A, BAUER J, CUTRI R M, et al. Initial performance of the NEOWISE reactivation mission[J]. The Astrophysical Journal, 2014, 792(1): 30. DOI: 10.1088/0004-637X/792/1/30 |
[21] | JIANG N, ZHOU H, HO L C, et al. Rapid infrared variability of three radio-loud narrow-line Seyfert 1 galaxies: a view from the Wide-field Infrared Survey Explorer[J]. The Astrophysical Journal Letters, 2012, 759(2): 31. DOI: 10.1088/2041-8205/759/2/L31 |
[22] | ASSEF R J, STERN D, NOIROT G, et al. The WISE AGN catalog[J]. The Astrophysical Journal Supplement, 2018, 234: 23. DOI: 10.3847/1538-4365/aaa00a |
[23] | BEVINGTON P R. Data reduction and error analysis for the physical sciences[M]. New York: McGraw-Hill, 1969: 57-58. |
[24] | MCLAUGHLIN M A, MATTOX J R, CORDES J M, et al. Variability of CGRO/EGRET Gamma- ray sources[J]. The Astrophysical Journal, 1996, 473: 763–772. DOI: 10.1086/178188 |
[25] | PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical recipes: the art of scientific computing[M]. London: Cambridge University Press, 1992: 209-664. |
[26] | SÁNCHEZ P, LIRA P, CARTIER R, et al. Near-infrared variability of obscured and unobscured X-ray-selected AGNs in the COSMOS field[J]. The Astrophysical Journal, 2017, 849(2): 110. DOI: 10.3847/1538-4357/aa9188 |
[27] | VAUGHAN S, EDELSON R, WARWICK R S, et al. On characterizing the variability properties of X-ray light curves from active galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2003, 345(4): 1271–1284. DOI: 10.1046/j.1365-2966.2003.07042.x |
[28] | ANJUM A, STALIN C S, RAKSHIT S, et al. Mid-infrared variability of gamma-ray emitting blazars[J]. Monthly Notices of the Royal Astronomical Society, 2020, 494(1): 764–774. DOI: 10.1093/mnras/staa771 |
[29] | FRITZ J, FRANCESCHINI A, HATZIMINAOGLOU E. Revisiting the infrared spectra of active galactic nuclei with a new torus emission model[J]. Monthly Notices of the Royal Astronomical Society, 2006, 366(3): 767–786. DOI: 10.1111/j.1365-2966.2006.09866.x |
[30] | CACCIANIGA A, ANTÓN S, BALLO L, et al. WISE colours and star formation in the host galaxies of radio-loud narrow-line Seyfert 1[J]. Monthly Notices of the Royal Astronomical Society, 2015, 451(2): 1795–1805. DOI: 10.1093/mnras/stv939 |
[31] | RAKSHIT S, JOHNSON A, STALIN C S, et al. WISE view of narrow-line Seyfert 1 galaxies: mid-infrared colour and variability[J]. Monthly Notices of the Royal Astronomical Society, 2019, 483(2): 2362–2370. DOI: 10.1093/mnras/sty3261 |