黑洞自旋和质量是Blazar的两个基本物理量。黑洞自旋与黑洞合并和吸积有着明显的关系[1]。文[2, 3, 4, 5, 6, 7]的研究均得出相同的结论。文[2]认为黑洞自旋和质量的变化在二元合并时是同时发生的。在并合的过程中黑洞的自旋速率会慢慢降低。文[6]认为大质量黑洞的吸积可能是由一系列连续随机的吸积事件组成的,正是由于这些吸积事件使大质量黑洞具有中等的自旋。文[8]认为自旋及其参量与红移一样的功能,能对AGN黑洞的并合与吸积特征进行精确的描绘。
大质量黑洞自旋的研究为大质量黑洞合并与吸积提供了全新的视角。现在有很多可行的方法估算大质量黑洞的自旋。例如当AGN吸积盘区域能观测到X射线时,就可根据其辐射光谱的特性估算黑洞自旋[9]。又如当一个AGN拥有较强的喷流时,其喷流的特性也可用于估算AGN黑洞的自旋大小。正如文[10]所总结的,当黑洞样本中有X射线辐射源或较强的喷流时能提供一个凭借经验估算黑洞自旋的途径。
在文[11, 12]的模型中黑洞自旋能量与自旋在不同磁场下均存在紧密的联系。研究显示,黑洞自旋能量作为黑洞自旋的重要参量,与红移之间同样存在着相关性。文[5]认为,对自旋及其自旋能量的研究同红移一样,可以对AGN黑洞的合并吸积特性进行精确的描绘。但目前为止自旋及自旋能量与红移关系仍没有统一定论。
文[1]讨论了自旋与红移的关系,其结果表明自旋与红移存在着明显的相关性。但对于黑洞自旋能量仅仅讨论了黑洞吸积盘提取的自旋能量片段,没有详细讨论黑洞自旋与黑洞质量共同作用下的总自旋能量与红移的相关性。本文对黑洞的自旋能量与红移进行相关性分析。
运用文[1, 13]的黑洞样本数据为基础将数据扩大到112个Blazer源,其中包含了67个FR II射电星系(RG)、11个FR II射电噪类星体(RLQ)、27个中核星系(CD)。运用黑洞自旋的关系式计算出自旋能量,讨论了不同类型的源在3种不同特性磁场下黑洞自旋能量与红移的相关特性,得出的结果表明Blazer黑洞自旋能量与红移存在较为直接的联系,这与文[1]得出的结论相同。同时也表明黑洞自旋能量同样能在一定程度上给出黑洞合并与吸积的信息。本文给出了用模型公式估算Blazer自旋能量大小的方法,为下一步自旋能量与模型的研究提供了依据。
1 黑洞自旋及自旋能量的计算 1.1 黑洞自旋
计算黑洞自旋数据的方法与文[13]相同。在著名的BZ模型中电子束功率Lj的产生与自旋j的关系:
| Lj=(j2B2p0r2Hc)/32≈2×1043 j2M28B24erg s-1 , | (1) |
| jbBZ≈(BE,4M8)-15L44≈17.5Lj/LE | (2) |
| Lj(M)≈1044j2M28B24 erg s-1 . | (3) |
当黑洞喷流较强时用这种方法估算黑洞自旋比较准确[13]。这种方法是基于喷流较强时其自旋能量与旋转的黑洞周围区域的吸积物质有关的标准模型[14, 15, 16]。很多黑洞自旋与喷流电子束关系模型中http://arxiv.org/abs/1307.3246,磁场强度和黑洞质量通常被设定为常数[17, 18],它们有如下关系[19, 20]:
| Lj∝j2M2B2 , | (4) |
| j=k(L44)0.5B4-1M8-1 , | (5) |
在本文中运用文[1]的计算公式求出黑洞样本的自旋能量。用(5)计算出黑洞自旋j后,可以用其估算自旋能量ES[23]:
| ESMc2=1-(1+[1-j2]1/22)1/2 . | (6) |
根据文[1]及文[15]的黑洞样本[1, 15]收集扩充了Blazar源[14],用(5)、 (6)式计算了相关的量给出了表 1。本文着重讨论黑洞自旋能量与红移的相关性。计算过程这里不再复述。数据源按红移值由小到大排列。
| Source (1) | Type (2) | z (3) | L44a (4) | M8b (5) | JM (B=BEDD) (6) | Es(B=BEDD) Mc2 (7) | JM (B=104) (8) | Es(B=104) Mc2 (9) | JM (B∝j) (10) | Es(B∝j) Mc2 (11) |
| 3C405 | RG | 0.056 | 47 | 25 | 0.23 | 0.006 725 | 0.27 | 0.009 328 | 0.31 | 0.012 393 |
| 3C244.1 | RG | 0.43 | 14 | 9.5 | 0.2 | 0.005 064 | 0.38 | 0.018 933 | 0.37 | 0.017 902 |
| 3C172 | RG | 0.519 | 31 | 7.8 | 0.33 | 0.014 104 | 0.7 | 0.074 218 | 0.5 | 0.034 074 |
| 3C330 | RG | 0.549 | 80 | 13 | 0.41 | 0.022 226 | 0.68 | 0.069 083 | 0.49 | 0.032 601 |
| 3C427.1 | RG | 0.572 | 31 | 14 | 0.25 | 0.007 97 | 0.38 | 0.018 933 | 0.37 | 0.017 902 |
| 3C33 | RG | 0.059 5 | 2.4 | 3.7 | 0.13 | 0.002 124 | 0.42 | 0.023 393 | 0.39 | 0.019 996 |
| 3C192 | RG | 0.059 8 | 1.1 | 2.6 | 0.11 | 0.001 518 | 0.4 | 0.021 094 | 0.38 | 0.018 933 |
| 3C337 | RG | 0.63 | 20 | 9.1 | 0.25 | 0.007 97 | 0.48 | 0.031 169 | 0.41 | 0.022 226 |
| 3C35 | RG | 0.067 7 | 0.77 | 4.4 | 0.068 | 0.000 579 | 0.19 | 0.004 564 | 0.26 | 0.008 635 |
| 3C34 | RG | 0.69 | 65 | 16 | 0.33 | 0.014 104 | 0.48 | 0.031 169 | 0.41 | 0.022 226 |
| 3C441 | RG | 0.707 | 65 | 18 | 0.32 | 0.013 233 | 0.45 | 0.027 11 | 0.4 | 0.021 094 |
| 3C55 | RG | 0.72 | 180 | 14 | 0.58 | 0.047 473 | 0.91 | 0.158 986 | 0.57 | 0.045 63 |
| 3C247 | RG | 0.749 | 35 | 26 | 0.19 | 0.004 564 | 0.22 | 0.006 144 | 0.28 | 0.010 051 |
| 3C285 | RG | 0.079 4 | 1.1 | 3.4 | 0.093 | 0.001 084 | 0.3 | 0.011 582 | 0.33 | 0.014 104 |
| 3C452 | RG | 0.081 1 | 4.2 | 5.1 | 0.15 | 0.002 833 | 0.39 | 0.019 996 | 0.37 | 0.017 902 |
| 3C326 | RG | 0.089 8 | 2.2 | 2.4 | 0.16 | 0.003 226 | 0.6 | 0.051 317 | 0.46 | 0.028 424 |
| 3C388 | RG | 0.090 8 | 2.6 | 6.9 | 0.1 | 0.001 254 | 0.23 | 0.006 725 | 0.29 | 0.010 802 |
| 3C321 | RG | 0.096 | 1.7 | 6.1 | 0.086 | 0.000 927 | 0.21 | 0.005 59 | 0.27 | 0.009 328 |
| 3C289 | RG | 0.967 | 85 | 27 | 0.3 | 0.011 582 | 0.34 | 0.015 006 | 0.35 | 0.015 94 |
| 3C280 | RG | 0.996 | 53 | 27 | 0.23 | 0.006 725 | 0.26 | 0.008 635 | 0.31 | 0.012 393 |
| 3C236 | RG | 0.098 9 | 1.9 | 6.5 | 0.088 | 0.000 97 | 0.21 | 0.005 59 | 0.27 | 0.009 328 |
| 3C433 | RG | 0.101 6 | 6.3 | 9.2 | 0.14 | 0.002 465 | 0.27 | 0.009 328 | 0.31 | 0.012 393 |
| 3C223 | RG | 0.136 8 | 3.5 | 3 | 0.18 | 0.004 092 | 0.61 | 0.053 321 | 0.47 | 0.029 777 |
| 4C12.03 | RG | 0.156 | 3.3 | 7.1 | 0.11 | 0.001 518 | 0.25 | 0.007 97 | 0.3 | 0.011 582 |
| 3C28 | RG | 0.195 2 | 7.6 | 7.5 | 0.16 | 0.003 226 | 0.36 | 0.016 905 | 0.36 | 0.016 905 |
| 3C349 | RG | 0.205 | 6.7 | 3.6 | 0.22 | 0.006 144 | 0.7 | 0.074 218 | 0.5 | 0.034 074 |
| 3C132 | RG | 0.214 | 7.3 | 5.5 | 0.19 | 0.004 564 | 0.48 | 0.031 169 | 0.42 | 0.023 393 |
| 3C436 | RG | 0.214 5 | 9.4 | 7.1 | 0.19 | 0.004 564 | 0.42 | 0.023 393 | 0.39 | 0.019 996 |
| 3C171 | RG | 0.238 4 | 12 | 3.9 | 0.29 | 0.010 802 | 0.87 | 0.135 983 | 0.56 | 0.043 838 |
| 3C284 | RG | 0.239 4 | 8 | 7.8 | 0.17 | 0.003 646 | 0.36 | 0.016 905 | 0.36 | 0.016 905 |
| 3C79 | RG | 0.255 9 | 21 | 6 | 0.3 | 0.011 582 | 0.73 | 0.082 545 | 0.51 | 0.035 59 |
| 3C300 | RG | 0.272 | 14 | 3.6 | 0.33 | 0.014 104 | 1 | 0.292 893 | 0.61 | 0.053 321 |
| 3C153 | RG | 0.276 9 | 13 | 8.6 | 0.2 | 0.005 064 | 0.4 | 0.021 094 | 0.38 | 0.018 933 |
| 3C438 | RG | 0.29 | 36 | 13 | 0.27 | 0.009 328 | 0.45 | 0.027 11 | 0.4 | 0.021 094 |
| 3C14.27 | RG | 0.392 | 20 | 5.4 | 0.31 | 0.012 393 | 0.82 | 0.113 331 | 0.54 | 0.040 4 |
| 3C42 | RG | 0.395 | 21 | 8.8 | 0.25 | 0.007 97 | 0.51 | 0.035 59 | 0.43 | 0.024 595 |
| 3C16 | RG | 0.405 | 22 | 4.6 | 0.35 | 0.015 94 | 1 | 0.292 893 | 0.6 | 0.051 317 |
| 3C274.1 | RG | 0.422 | 32 | 8.6 | 0.31 | 0.012 393 | 0.64 | 0.059 688 | 0.48 | 0.031 169 |
| 3C457 | RG | 0.428 | 28 | 6.4 | 0.34 | 0.015 006 | 0.81 | 0.109 374 | 0.54 | 0.040 4 |
| 3C46 | RG | 0.437 3 | 25 | 15 | 0.21 | 0.005 59 | 0.31 | 0.012 393 | 0.34 | 0.015 006 |
| 3C341 | RG | 0.448 | 25 | 10 | 0.25 | 0.007 97 | 0.47 | 0.029 777 | 0.41 | 0.022 226 |
| 3C200 | RG | 0.458 | 27 | 8.8 | 0.29 | 0.010 802 | 0.58 | 0.047 473 | 0.46 | 0.028 424 |
| 3C295 | RG | 0.461 4 | 130 | 29 | 0.35 | 0.015 94 | 0.4 | 0.021 094 | 0.38 | 0.018 933 |
| 3C192 | RG | 0.482 | 29 | 14 | 0.23 | 0.006 725 | 0.37 | 0.017 902 | 0.36 | 0.016 905 |
| 3C225B | RG | 0.58 | 76 | 10 | 0.45 | 0.027 11 | 0.85 | 0.126 277 | 0.55 | 0.042 095 |
| 3C49 | RG | 0.602 07 | 42 | 13 | 0.29 | 0.010 802 | 0.49 | 0.032 601 | 0.42 | 0.023 393 |
| 3C277.2 | RG | 0.766 | 85 | 11 | 0.45 | 0.027 11 | 0.83 | 0.117 457 | 0.54 | 0.040 4 |
| 3C340 | RG | 0.775 4 | 65 | 11 | 0.4 | 0.021 094 | 0.72 | 0.079 681 | 0.51 | 0.035 59 |
| 3C352 | RG | 0.806 | 83 | 16 | 0.37 | 0.017 902 | 0.57 | 0.045 63 | 0.45 | 0.027 11 |
| 3C263.1 | RG | 0.824 | 130 | 19 | 0.43 | 0.024 595 | 0.6 | 0.051 317 | 0.46 | 0.028 424 |
| 3C175.1 | RG | 0.92 | 110 | 12 | 0.49 | 0.032 601 | 0.85 | 0.126 277 | 0.55 | 0.042 095 |
| 3C356 | RG | 1.079 | 250 | 28 | 0.5 | 0.034 074 | 0.55 | 0.042 095 | 0.44 | 0.025 834 |
| 3C252 | RG | 1.105 | 170 | 20 | 0.47 | 0.029 777 | 0.63 | 0.057 505 | 0.48 | 0.031 169 |
| 3C368 | RG | 1.132 | 240 | 28 | 0.48 | 0.031 169 | 0.54 | 0.040 4 | 0.44 | 0.025 834 |
| 3C267 | RG | 1.144 | 190 | 24 | 0.47 | 0.029 777 | 0.55 | 0.042 095 | 0.44 | 0.025 834 |
| 3C324 | RG | 1.21 | 150 | 37 | 0.34 | 0.015 006 | 0.33 | 0.014 104 | 0.34 | 0.015 006 |
| 3C266 | RG | 1.272 | 220 | 23 | 0.5 | 0.034 074 | 0.62 | 0.055 383 | 0.47 | 0.029 777 |
| 3C13 | RG | 1.351 | 260 | 40 | 0.41 | 0.022 226 | 0.39 | 0.019 996 | 0.38 | 0.018 933 |
| 4C13.66 | RG | 1.45 | 260 | 16 | 0.66 | 0.064 247 | 0.99 | 0.244 663 | 0.6 | 0.051 317 |
| 3C68.2 | RG | 1.575 | 210 | 35 | 0.41 | 0.022 226 | 0.41 | 0.022 226 | 0.38 | 0.018 933 |
| 3C241 | RG | 1.617 | 370 | 37 | 0.51 | 0.035 59 | 0.5 | 0.034 074 | 0.43 | 0.024 595 |
| 3C470 | RG | 1.653 | 290 | 28 | 0.53 | 0.038 751 | 0.6 | 0.051 317 | 0.47 | 0.029 777 |
| 3C322 | RG | 1.681 | 510 | 32 | 0.66 | 0.064 247 | 0.68 | 0.069 083 | 0.49 | 0.032 601 |
| 3C294 | RG | 1.786 | 440 | 29 | 0.64 | 0.059 688 | 0.71 | 0.076 907 | 0.51 | 0.035 59 |
| 3C239 | RG | 1.79 | 480 | 37 | 0.6 | 0.051 317 | 0.58 | 0.047 473 | 0.45 | 0.027 11 |
| 3C334 | RLQ | 0.555 | 62 | 50 | 0.19 | 0.004 564 | 0.15 | 0.002 833 | 0.23 | 0.006 725 |
| 3C254 | RLQ | 0.734 | 63 | 20 | 0.3 | 0.011 582 | 0.39 | 0.019 996 | 0.37 | 0.017 902 |
| 3C175.1 | RLQ | 0.768 | 130 | 79 | 0.21 | 0.005 59 | 0.14 | 0.002 465 | 0.22 | 0.006 144 |
| 3C336 | RLQ | 0.927 | 100 | 16 | 0.41 | 0.045 63 | 0.63 | 0.211 614 | 0.47 | 0.049 368 |
| 3C245 | RLQ | 1.029 | 160 | 25 | 0.41 | 0.022 226 | 0.49 | 0.057 505 | 0.42 | 0.029 777 |
| 3C212 | RLQ | 1.049 | 190 | 16 | 0.56 | 0.022 226 | 0.84 | 0.032 601 | 0.55 | 0.023 393 |
| 3C186 | RLQ | 1.063 | 210 | 32 | 0.41 | 0.043 838 | 0.44 | 0.121 767 | 0.4 | 0.042 095 |
| 3C208 | RLQ | 1.109 | 230 | 25 | 0.49 | 0.022 226 | 0.59 | 0.025 834 | 0.46 | 0.021 094 |
| 3C204 | RLQ | 1.112 | 170 | 32 | 0.38 | 0.032 601 | 0.4 | 0.049 368 | 0.38 | 0.028 424 |
| 4C16.49 | RLQ | 1.296 | 220 | 63 | 0.3 | 0.018 933 | 0.23 | 0.021 094 | 0.29 | 0.018 933 |
| 3C68.1 | RLQ | 1.238 | 410 | 79 | 0.38 | 0.018 933 | 0.25 | 0.007 97 | 0.3 | 0.011 582 |
| 3C181 | RLQ | 1.382 | 330 | 40 | 0.47 | 0.011 582 | 0.44 | 0.006 725 | 0.4 | 0.010 802 |
| 3C268.4 | RLQ | 1.4 | 830 | 63 | 0.6 | 0.051 317 | 0.45 | 0.027 11 | 0.4 | 0.021 094 |
| 3C191 | RLQ | 1.952 3 | 600 | 50 | 0.56 | 0.029 78 | 0.48 | 0.027 11 | 0.41 | 0.021 094 |
| 3C9 | RLQ | 2.012 | 940 | 63 | 0.63 | 0.043 838 | 0.47 | 0.031 2 | 0.41 | 0.022 226 |
| M87 | CD | 0.004 2 | 0.06 | 8.6 | 0.014 | 0.000 01 | 0.028 | 0.000 1 | 0.1 | 0.001 254 |
| Centaurus | CD | 0.011 | 0.074 | 8.6 | 0.015 | 0.000 03 | 0.031 | 0.000 1 | 0.1 | 0.001 254 |
| HCG 62 | CD | 0.014 | 0.039 | 5.7 | 0.014 | 0.000 03 | 0.034 | 0.000 12 | 0.11 | 0.001 254 |
| A262 | CD | 0.016 | 0.097 | 8.6 | 0.018 | 0.000 02 | 0.035 | 0.000 145 | 0.11 | 0.001 518 |
| Perseus | CD | 0.018 | 1.5 | 17 | 0.049 | 0.000 04 | 0.07 | 0.000 153 | 0.16 | 0.001 518 |
| PKS1404 -267 | CD | 0.022 | 0.2 | 5.7 | 0.031 | 0.000 3 | 0.076 | 0.000 613 | 0.16 | 0.003 226 |
| A2199 | CD | 0.03 | 2.7 | 20 | 0.061 | 0.000 12 | 0.08 | 0.000 723 | 0.17 | 0.003 226 |
| A2052 | CD | 0.035 | 1.5 | 17 | 0.049 | 0.000 466 | 0.07 | 0.000 802 | 0.16 | 0.003 646 |
| 2A0335 +096 | CD | 0.035 | 0.24 | 14 | 0.022 | 0.000 3 | 0.033 | 0.000 613 | 0.11 | 0.003 226 |
| MKW 3S | CD | 0.045 | 4.1 | 8.6 | 0.12 | 0.000 05 | 0.23 | 0.000 136 | 0.29 | 0.001 518 |
| A4059 | CD | 0.048 | 0.96 | 29 | 0.031 | 0.001 808 | 0.033 | 0.006 725 | 0.11 | 0.010 802 |
| Hydra A | CD | 0.055 | 4.3 | 11 | 0.1 | 0.000 12 | 0.18 | 0.000 136 | 0.25 | 0.001 518 |
| A85 | CD | 0.055 | 0.37 | 29 | 0.019 | 0.001 254 | 0.021 | 0.004 092 | 0.086 | 0.007 97 |
| Cygnus A | CD | 0.056 | 13 | 29 | 0.11 | 0.000 005 | 0.12 | 0.000 06 | 0.21 | 0.000 927 |
| Sersic 159/03 | CD | 0.058 | 7.8 | 17 | 0.11 | 0.001 518 | 0.16 | 0.001 808 | 0.4 | 0.005 59 |
| A 133 | CD | 0.06 | 6.2 | 20 | 0.093 | 0.001 518 | 0.12 | 0.003 226 | 0.21 | 0.021 094 |
| A1795 | CD | 0.063 | 1.6 | 23 | 0.044 | 0.001 084 | 0.054 | 0.001 808 | 0.14 | 0.005 59 |
| A2029 | CD | 0.077 | 0.87 | 60 | 0.02 | 0.000 242 | 0.015 | 0.000 365 | 0.073 | 0.002 465 |
| A478 | CD | 0.081 | 1 | 26 | 0.033 | 0.000 05 | 0.038 | 0.000 003 | 0.12 | 0.000 667 |
| A2597 | CD | 0.085 | 0.67 | 8.6 | 0.047 | 0.000 136 | 0.093 | 0.000 181 | 0.18 | 0.001 808 |
| 3C388 | CD | 0.092 | 2 | 17 | 0.057 | 0.000 276 | 0.081 | 0.001 084 | 0.17 | 0.004 092 |
| PKS0745 -191 | CD | 0.103 | 17 | 31 | 0.12 | 0.000 407 | 0.13 | 0.000 822 | 0.21 | 0.003 646 |
| Hercules A | CD | 0.154 | 3.1 | 20 | 0.066 | 0.001 808 | 0.086 | 0.002 124 | 0.17 | 0.005 59 |
| Zw2701 | CD | 0.214 | 60 | 17 | 0.31 | 0.000 545 | 0.44 | 0.000 927 | 0.4 | 0.003 646 |
| MS0735.6 +7421 | CD | 0.216 | 69 | 20 | 0.31 | 0.012 393 | 0.41 | 0.025 834 | 0.38 | 0.021 094 |
| 4C55.16 | CD | 0.242 | 4.2 | 14 | 0.09 | 0.012 393 | 0.14 | 0.022 226 | 0.22 | 0.018 933 |
| A1835 | CD | 0.253 | 18 | 54 | 0.1 | 0.001 015 | 0.076 | 0.002 465 | 0.16 | 0.006 144 |
| Zw3146 | CD | 0.291 | 58 | 74 | 0.15 | 0.001 254 | 0.1 | 0.000 723 | 0.19 | 0.003 226 |
| 注:表中 (1) 源; (2) 类型; (3) 红移; (4) 喷流中电子束功率; (5) 黑洞质量部分来源于文[13]及文[14],其余均源于NED 网络数据库; (6) 爱丁顿磁场条件下的自旋; (7) 爱丁顿磁场条件下的自旋能量; (8) 静磁场条件下的自旋; (9) 静磁场条件下的自旋能量; (10) 与自旋有关的磁场条件下的自旋; (11) 与自旋有关的磁场条件下的自旋能量 (运用(6)式计算得出) Notes: The meanings of the columns are as follows. Column (1): Source name. Column (2): AGN type. Column (3): Redshift value. Column (4): Power of the electron beam in the jet. Column (5): Mass value of the black hole. Column (6): Spin of the black hole with B=BEDD assumed. Column (7): Spin energy of the black hole with B=BEDD assumed. Column (8): Spin of the black hole with B=104G assumed. Column (9): Spin energy of the black hole with B=104G assumed. Column (10): Spin of the black hole with B∝jM assumed. Column (11): Spin energy of the black hole with B∝jM assumed. | ||||||||||
在考虑黑洞质量的情况下,由图 1、2、3可以看出ES/Mc2与红移z分别在B=BEDD、B=104G、B∝j 3种磁场情况下具有较高的相关性。说明黑洞的自旋能量和红移z都存在联系,红移z与黑洞自旋能量在总体上的关联紧密。自旋能量与红移的关系满足Blazar的一些基本观测特征。
|
| 图 1 ES/Mc2与红移z的相关性(B=BEDD) Fig. 1The correlation between redshifts and ES/Mc2 (with B=BEDD assumed) of the black holes |
|
| 图 2 ES/Mc2与红移z的相关性(B=104G) Fig. 2The correlation between redshifts and ES/Mc2 (with B=104G assumed) of the black holes |
|
| 图 3 ES/Mc2与红移z的相关性(B∝j) Fig. 3The correlation between redshifts and ES/Mc2 (with B∝jM assumed) of the black holes |
如图 4射电星系ES/Mc2与红移z在3种不同磁场下均存在一定相关性。在爱丁顿磁场(B=BEDD)条件下射电星系的ES/Mc2与红移z存在强相关性。但在B=104G与B∝j两种磁场条件下,射电星系ES/Mc2与红移z有弱相关性。但总体上射电星系ES/Mc2与红移z存在正比关系,说明黑洞的自旋能量随红移z的增大而增加。这与文[1]的研究结果相同。
|
| 图 4 RG类黑洞ES/Mc2与红移z的相关性 Fig. 4The correlation between redshifts and ES/Mc2 of the black holes in RG-type AGN |
如图 5射电噪类星体(RLQ)的ES/Mc2与红移z的相关性与射电星系(RG)相比较低,但数据整体趋势非常相似。射电噪类星体(RLQ)ES/Mc2与红移z在3种不同磁场下均存在一定相关性。在B=BEDD磁场条件下,射电噪类星体(RLQ)Es/Mc2与红移z存在强相关性。但在B=104G与B∝j两种磁场条件下,射电噪类星体ES/Mc2与红移z有弱相关性。但总体上射电星系(RG)的ES/Mc2与红移z存在正比关系,说明黑洞的自旋能量随红移z的增大而增加。这与文[1]的研究结果也是相同的。
|
| 图 5 RLQ类黑洞ES/Mc2与红移z的相关性 Fig. 5The correlation between redshifts and ES/Mc2 of the black holes in RLQ-type AGN |
如图 6,核占优星系(CD)的ES/Mc2与红移z在3种不同磁场的相关性均存在相关性。在B=BEDD,B=104G,B∝j 3种磁场条件下,核占优星系(CD)的ES/Mc2与红移z均存在较明显的相关性。说明核占优星系(CD)的黑洞自旋能量在3种磁场条件下均与红移z存在较为直接的关联。
|
| 图 6 cD类黑洞ES/Mc2与红移z的相关性 Fig. 6 The correlation between redshifts and ES/Mc2 of the black holes in cD-type AGN |
不同条件下黑洞自旋能量与红移的相关性的详细分析数据如表 2。总体上ES/Mc2均与红移z存在相关性。自旋能量随红移z的增大而增加,与文[1]的研究结论相同。
| X | Y | N | R Value | Prob>F | Value (Intercept) | Value (Slope) | Error (Slope) | B | 类型 |
| Z | ES/Mc2 | 112 | 0.802 | 0 | -0.001 4 | 0.023 | 0.001 7 | B=BEDD | — |
| Z | ES/Mc2 | 112 | 0.827 | 0 | 0.000 2 | 0.025 | 0.002 8 | B=104G | — |
| Z | ES/Mc2 | 112 | 0.827 | 0 | 0.004 2 | 0.013 | 0.001 8 | B∝j | — |
| Z | ES/Mc2 | 67 | 0.84 | 0 | 0.002 2 | -0.027 | -0.000 3 | B=BEDD | RG |
| Z | ES/Mc2 | 67 | 0.142 | 0.259 | 0.042 9 | 0.016 | 0.013 9 | B=104G | RG |
| Z | ES/Mc2 | 67 | 0.243 | 0.051 | 0.022 1 | 0.005 | 0.002 7 | B∝j | RG |
| Z | ES/Mc2 | 11 | 0.712 | 0.003 | -0.004 8 | 0.023 | 0.006 4 | B=BEDD | RLQ |
| Z | ES/Mc2 | 11 | 0.293 | 0.29 | 0.010 7 | 0.012 | 0.011 2 | B=104G | RLQ |
| Z | ES/Mc2 | 11 | 0.396 | 0.144 | 0.010 2 | 0.007 32 | 0.004 7 | B∝j | RLQ |
| Z | ES/Mc2 | 27 | 0.601 | 0.002 | 0.000 1 | 0.004 07 | 0.001 2 | B=BEDD | CD |
| Z | ES/Mc2 | 27 | 0.529 | 0.009 | 0.000 3 | 0.004 87 | 0.001 7 | B=104G | CD |
| Z | ES/Mc2 | 27 | 0.492 | 0.017 | 0.002 1 | 0.010 54 | 0.004 | B∝j | CD |
| 注:表中类型“—”表示本文中RG,RLQ,cD 3种类型均考虑的总体情况 Notes: The sign‘—’means the results are for all AGN types (RG,RLQ,and cD) combined | |||||||||
由于射电噪类星体(RLQ)及核占优星系(CD)的样本数量较少,可能对黑洞自旋能量与红移的相关性分析产生一定的误差。要进一步详细探讨黑洞自旋能量与红移的相关性以及测定自旋能量与红移的关系公式,就需要更多的观测数据来验证本文的研究结果。
本文依据文[14]与文[1]的黑洞质量、中子束功率及磁场强度等运用(1)式(Blandford & Znajek[13] Blandford[28];Meier[12];Narayan[21])依次计算出3种磁场条件下的自旋j,后运用(3)式计算出对应的ES/Mc2(其中自旋、黑洞、磁场测量值均独立于红移),并依据文[2]和文[6]的模型,对黑洞自旋能量进行估算。最后对黑洞自旋能量与红移进行相关性分析。
本文结果表明Blazar的黑洞总体自旋能量与红移存在关系,尤其以在爱丁顿磁场条件下(B=BEDD)最为明显。黑洞自旋能量在3种不同类型的磁场条件下(B=BEDD,B=104G,B∝j)的趋势均较为相似,呈现正比关系。实验结果与文[1]得出的结论相同。说明Blazar黑洞自旋能量与红移存在较直接的联系。这为依据红移与自旋能量的关系,估算Blazar自旋能量提供了依据。黑洞自旋和质量的变化在二元合并时是共同发生的,随着合并的发生其自旋速度降低。由于黑洞自旋能量与AGN红移的相关性,可推断黑洞自旋能量能如同红移一样可以对AGN黑洞的合并吸积历史进行一定的描绘。
| [1] | Daly R A, Sprinkle T B. Black hole spin properties of 130 AGN[J]. Monthly Notices of the Royal Astronomical Society, 2014, 438(4): 3233-3242. |
| [2] | Hughes S A, Blandford R D. Black hole mass and spin coevolution by mergers[J]. The Astrophysical Journal Letters, 2003, 585(2): L101-L104. |
| [3] | Volonteri M, Rees M A. Rapid growth of high redshift black holes[J]. The Astrophysical Journal, 2005, 633(2): 624-629. |
| [4] | King A R, Pringle J E. Fuelling active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 2007, 385(3): 1621-1627. |
| [5] | Volonteri M, Sikora M, Lasota J P. Black-hole spin and galactic morphology[J]. The Astrophysical Journal, 2007, 667(2): 704-713. |
| [6] | Berti E, Volonteri M. Cosmological black hole spin evolution by mergers and accretion[J]. The Astrophysical Journal, 2008, 684(2): 822-828. |
| [7] | Zhang S N, Cui W, Chen W. Black hole spin in X-ray binaries: observational consequences[J]. The Astrophysical Journal, 1997, 482(2): L155-L158. |
| [8] | McClintock J E, Narayan R, Steiner J F. Black hole spin via continuum fitting and the role of spin in powering transient jets[J]. Space Science Reviews, 2013, 2(1): 256-258. |
| [9] | Steiner J F, McClintock J E. Measuring black-hole spin and modeling the jet dynamics in microquasar XTE J1550-564[J]. Monthly Notices of the Royal Astronomical Society, 2011, 416(1): 941-946. |
| [10] | Richardson G A, Nishikawa K I. Simulations of relativistic jet formation[J]. The Astrophysical Journal, 1999, 35: 1333. |
| [11] | Blandford R D. Spectrum of a radio pulse from an exploding black hole[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(2): 489-498. |
| [12] | Schmoll S, Miller J M, Volonteri M, et al. Constraining the spin of the black hole in Fairall 9 with Suzaku[J]. The Astrophysical Journal, 2009, 703(2): 2171-2176. |
| [13] | Daly R A. Estimates of black hole spin properties of 55 sources[J]. Monthly Notices of the Royal Astronomical Society, 2011, 414(2): 1253-1262. |
| [14] | Reynolds C S, Garofalo D, Begelman M C. Trapping of magnetic flux by the plunge region of a black hole accretion disk[J]. The Astrophysical Journal, 2006, 651(2): 1023-1030. |
| [15] | Tatum M M, Turner T J, Miller L, et al. The global implications of the hard X-ray excess in type 1 AGN[J]. The Astrophysical Journal, 2012, 762(2): 80-108. |
| [16] | Tchekhovskoy A, Narayan R, McKinney J C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(1): L79-L83. |
| [17] | Thorne K S, Price R H, MacDonald D A. Book-review-black-holes-the membrane paradigm[J]. The Astrophysical Journal, 1990, 311(2): 122. |
| [18] | Nardini E, Fabian A C, Walton D J. Investigating the reflection contribution to the X-ray emission of Ton S180[J]. Monthly Notices of the Royal Astronomical Society, 2012, 423(4): 3299-3307. |
| [19] | Zoghbi A, Fabian A C, Uttley P, et al. Broad iron L-line and X-ray reverberation in 1H0707-495[J]. Monthly Notices of the Royal Astronomical Society, 2010, 401(1): 2419-2432. |
| [20] | Daly R A. Bounds on black hole spins[J]. The Astrophysical Journal Letters, 2009, 696(1): L32-L33. |
| [21] | Narayan R, McClintock J E. Observational evidence for a correlation between jet power and black hole spin[J]. Monthly Notices of the Royal Astronomical Society, 2011, 419(1): L69-L73. |
| [22] | Blandford R D, Netzer H, Woltjer L. Active galactic nuclei [M]. New York: Springer-Verlag, 1990. |
| [23] | Punsly B, Coroniti F V. Relativistic winds from pulsar and black hole magnetospheres[J]. The Astrophysical Journal, 1990, 350(2): 518-535. |
| [24] | Rees M J. Black hole models for active galactic nuclei[J]. Annual Review of Astronomy and Astrophysics, 1984, 22(1): 471-506. |
| [25] | King A R. Black hole outflows[J]. Monthly Notices of the Royal Astronomical Society, 2010, 402(1): 1516-1522. |
| [26] | Daly R A, Mory M P, Guerra E J. High-redshift radio galaxies as a cosmological tool: exploration of a key assumption and comparison with supernova results[C]//American Institute of Physics Conference Proceedings. 2002: 87-94. |
| [27] | Allen S W, Dunn R J H, Fabian A C, et al. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2006, 372(1): 21-30. |
| [28] | Merloni A, Heinz S. Measuring the kinetic power of active galactic nuclei in the radio mode[J]. Monthly Notices of the Royal Astronomical Society, 2007, 381(2): 589-601. |



