Blazar黑洞自旋能量与红移相关性研究
张旭, 张雄    
云南师范大学物理与电子信息学院, 云南 昆明 650500
摘要: 黑洞自旋及其参量能提供黑洞合并及吸积的信息。从文献资料中收集了112个Blazar源,这些源包含了67个FR II射电星系(RG),11个FR II射电噪类星体(RLQ),27个核占优星系(CD)。通过样本数据研究黑洞自旋能量与红移的相关性。研究结果表明:(1)112个Blazar的黑洞自旋能量与红移存在相关性,尤其在爱丁顿磁场条件下(B=BEDD),黑洞自旋能量与红移的相关性最为明显;(2)FR II射电星系(RG)、FR II射电噪类星体(RLQ)、核占优星系(CD)的黑洞自旋能量在3种磁场条件下(B=BEDD,B=104G,B∝j)与红移的相关性强弱上存在差异,但总体趋势较为相似,均呈现正比关系;(3)黑洞自旋能量与红移的强相关性表明,黑洞自旋能量在一定程度上给出黑洞并合与吸积的信息。这些研究结果与其他人用其他方法获得的结果是一致的。
关键词Blazar     黑洞自旋     自旋能量     红移     相关性    
A Study of Correlations between Redshifts and Spin Energies of Black Holes in AGN
Zhang Xu, Zhang Xiong     
College of Physics and Electronic Information Technology, Yunnan Normal University, Kunming 650500, China
Abstract: We have collected a sample of 112 Blazars. Our sample includes 67 FRII Quasars, 11 FRII Radio-Loud Quasars, and 27 FRII cD galaxies. The Quasars and Radio-Loud Quasars have redshifts from about 0 to about 2. We have analyzed correlations between redshifts and spin energies of black holes for our sampled AGN. The spin energies were calculated using a set of assumptions. Our conclusions are as follows. (1) The spin energies of the sampled Blazars show appreciable correlations with redshifts; the correlations are most obvious if magnetic-field strengths (B)around the black holes are assumed to follow B=BEDD; (2) The correlations are similar for different types of Blazars and for three different assumptions of magnetic-field strengths (, i.e., B=BEDD, B=104G, and B∝jM); (3) The results suggest that spin energies statistically increase with redshifts for black holes in the redshift range of 0 to 3, which is consistent with independent studies of other authors.
Blazar     Spin of a black hole     Spin energy     Redshfit     Correlation    

黑洞自旋和质量是Blazar的两个基本物理量。黑洞自旋与黑洞合并和吸积有着明显的关系[1]。文[2, 3, 4, 5, 6, 7]的研究均得出相同的结论。文[2]认为黑洞自旋和质量的变化在二元合并时是同时发生的。在并合的过程中黑洞的自旋速率会慢慢降低。文[6]认为大质量黑洞的吸积可能是由一系列连续随机的吸积事件组成的,正是由于这些吸积事件使大质量黑洞具有中等的自旋。文[8]认为自旋及其参量与红移一样的功能,能对AGN黑洞的并合与吸积特征进行精确的描绘。

大质量黑洞自旋的研究为大质量黑洞合并与吸积提供了全新的视角。现在有很多可行的方法估算大质量黑洞的自旋。例如当AGN吸积盘区域能观测到X射线时,就可根据其辐射光谱的特性估算黑洞自旋[9]。又如当一个AGN拥有较强的喷流时,其喷流的特性也可用于估算AGN黑洞的自旋大小。正如文[10]所总结的,当黑洞样本中有X射线辐射源或较强的喷流时能提供一个凭借经验估算黑洞自旋的途径。

在文[11, 12]的模型中黑洞自旋能量与自旋在不同磁场下均存在紧密的联系。研究显示,黑洞自旋能量作为黑洞自旋的重要参量,与红移之间同样存在着相关性。文[5]认为,对自旋及其自旋能量的研究同红移一样,可以对AGN黑洞的合并吸积特性进行精确的描绘。但目前为止自旋及自旋能量与红移关系仍没有统一定论。

[1]讨论了自旋与红移的关系,其结果表明自旋与红移存在着明显的相关性。但对于黑洞自旋能量仅仅讨论了黑洞吸积盘提取的自旋能量片段,没有详细讨论黑洞自旋与黑洞质量共同作用下的总自旋能量与红移的相关性。本文对黑洞的自旋能量与红移进行相关性分析。

运用文[1, 13]的黑洞样本数据为基础将数据扩大到112个Blazer源,其中包含了67个FR II射电星系(RG)、11个FR II射电噪类星体(RLQ)、27个中核星系(CD)。运用黑洞自旋的关系式计算出自旋能量,讨论了不同类型的源在3种不同特性磁场下黑洞自旋能量与红移的相关特性,得出的结果表明Blazer黑洞自旋能量与红移存在较为直接的联系,这与文[1]得出的结论相同。同时也表明黑洞自旋能量同样能在一定程度上给出黑洞合并与吸积的信息。本文给出了用模型公式估算Blazer自旋能量大小的方法,为下一步自旋能量与模型的研究提供了依据。

1 黑洞自旋及自旋能量的计算 1.1 黑洞自旋

计算黑洞自旋数据的方法与文[13]相同。在著名的BZ模型中电子束功率Lj的产生与自旋j的关系:

Lj=(j2B2p0r2Hc)/32≈2×1043 j2M28B24erg s-1 (1)
rH为黑洞视界半径(rH=2GM/c2);Bp0为黑洞视界磁场强度;j≡Sc/(GM2);M8为108M为单位的黑洞质量;B4为104G为单位的电磁场轴相分量强度。
jbBZ≈(BE,4M8)-15L44≈17.5Lj/LE (2)
bBZBp0/BE 为黑洞磁场强度;BE,4≈6M-1/28为爱丁顿磁场;LE≈1.26×1046M8 erg s-1 为黑洞爱丁顿光度。由Lj=k Lj(BZ)、jb=jbBZ/kk [jbBZ]2可得出如下关系式:
Lj(M)≈1044j2M28B24 erg s-1 . (3)

当黑洞喷流较强时用这种方法估算黑洞自旋比较准确[13]。这种方法是基于喷流较强时其自旋能量与旋转的黑洞周围区域的吸积物质有关的标准模型[14, 15, 16]。很多黑洞自旋与喷流电子束关系模型中http://arxiv.org/abs/1307.3246,磁场强度和黑洞质量通常被设定为常数[17, 18],它们有如下关系[19, 20]

Lj∝j2M2B2 (4)
Lj为黑洞喷流电束功率;M是黑洞质量;j为黑洞自旋量,j=a/m ,a=S/(Mc),m=GM/c2;S为黑洞自旋的角动量大小;c为光速;B为吸积盘和黑洞的电磁场轴相分量的强度[21]。由此算出黑洞自旋量j的值http://arxiv.org/abs/1312.6698:
j=k(L44)0.5B4-1M8-1 (5)
L44是以1044 erg/s为单位的喷流电子束功率;B4是以104G为单位的电磁场轴向量强度;M8以108M为单位的黑洞质量。比例常数k的数值根据不同的模型而变化,例如在文[10]的模型中k≈(1.05)-1/2,在文[11]的模型中k≈5。在对恒星质量黑洞的研究中,应用(4)式能很好地描述黑洞自旋与喷流电子束功率之间的关系[22],Narayan & McClintock独立研究估算出的5个恒星质量的黑洞自旋与喷流电子束功率所呈现的比列关系与(4)式所描述的相符合。数据结果是应用文[10]的模型的计算结果,也可应用其他模型计算。

1.2 自旋能量

在本文中运用文[1]的计算公式求出黑洞样本的自旋能量。用(5)计算出黑洞自旋j后,可以用其估算自旋能量ES[23]

ESMc2=1-(1+[1-j2]1/22)1/2 . (6)
得到的ESMc2要比其他数据小很多,因为rES(Mc2)是对自旋j的详细描绘,r总体来说是很小的。(6)式可以很好地描绘自旋j和自旋能量的关系。通过(6)式可以得到ESMc2的值,通过黑洞质量M的数据算出自旋能量ES的值。文[12, 13]的模型中在不同磁场下的自旋能量都与自旋大小有着紧密联系。在对黑洞自旋能量进行估算时,也考虑了3种不同的磁场条件。即考虑了爱丁顿磁场、静磁场和与自旋有关的磁场,这3种磁场分别与黑洞的参数有联系。爱丁顿极限下的磁场定义为爱丁顿磁场,爱丁顿磁场以104G为单位,BEDD≌6M8-1/2[24],这种磁场是基于爱丁顿光度的辐射源所检测出的http://arxiv.org/abs/0810.1055,文[21]认为很多AGN的辐射均在此光度下。为了比较爱丁顿磁场特性的影响,引入静磁场,其磁场强度以104G为单位,B4=1[23, 24, 25]。作为对比研究引入了自旋磁场,如果黑洞的自旋能量是连续的,FRII射电星系的磁场强度与自旋成比例关系以104G为单位,B4≌2.78j[24, 26, 27]。在文[10]的模型及文[27, 28]的经验推论中均表明磁场强度与自旋存在着某种联系(B∝j),与自旋有关的磁场做为参考项对自旋能量与红移的关系研究非常有用。

2 实验结果

根据文[1]及文[15]的黑洞样本[1, 15]收集扩充了Blazar源[14],用(5)、 (6)式计算了相关的量给出了表 1。本文着重讨论黑洞自旋能量与红移的相关性。计算过程这里不再复述。数据源按红移值由小到大排列。

表 1 黑洞红移质量自旋及自旋能量 Table 1 Data of redshift,mass,spin,and spin energy of our studied black holes
Source
(1)
Type
(2)
z
(3)
L44a
(4)
M8b
(5)
JM
(B=BEDD)
(6)
Es(B=BEDD)
Mc2
(7)
JM
(B=104)
(8)
Es(B=104)
Mc2
(9)
JM
(B∝j)
(10)
Es(B∝j)
Mc2
(11)
3C405RG0.05647250.230.006 7250.270.009 3280.310.012 393
3C244.1RG0.43149.50.20.005 0640.380.018 9330.370.017 902
3C172RG0.519317.80.330.014 1040.70.074 2180.50.034 074
3C330RG0.54980130.410.022 2260.680.069 0830.490.032 601
3C427.1RG0.57231140.250.007 97 0.380.018 9330.370.017 902
3C33RG0.059 52.43.70.130.002 1240.420.023 3930.390.019 996
3C192RG0.059 81.12.60.110.001 5180.40.021 0940.380.018 933
3C337RG0.63209.10.250.007 97 0.480.031 1690.410.022 226
3C35RG0.067 70.774.40.0680.000 5790.190.004 5640.260.008 635
3C34RG0.6965160.330.014 1040.480.031 1690.410.022 226
3C441RG0.70765180.320.013 2330.450.027 11 0.40.021 094
3C55RG0.72180140.580.047 4730.910.158 9860.570.045 63
3C247RG0.74935260.190.004 5640.220.006 1440.280.010 051
3C285RG0.079 41.13.40.0930.001 0840.30.011 5820.330.014 104
3C452RG0.081 14.25.10.150.002 8330.390.019 9960.370.017 902
3C326RG0.089 82.22.40.160.003 2260.60.051 3170.460.028 424
3C388RG0.090 82.66.90.10.001 2540.230.006 7250.290.010 802
3C321RG0.0961.76.10.0860.000 9270.210.005 59 0.270.009 328
3C289RG0.96785270.30.011 5820.340.015 0060.350.015 94
3C280RG0.99653270.230.006 7250.260.008 6350.310.012 393
3C236RG0.098 91.96.50.0880.000 97 0.210.005 59 0.270.009 328
3C433RG0.101 66.39.20.140.002 4650.270.009 3280.310.012 393
3C223RG0.136 83.530.180.004 0920.610.053 3210.470.029 777
4C12.03RG0.1563.37.10.110.001 5180.250.007 97 0.30.011 582
3C28RG0.195 27.67.50.160.003 2260.360.016 9050.360.016 905
3C349RG0.2056.73.60.220.006 1440.70.074 2180.50.034 074
3C132RG0.2147.35.50.190.004 5640.480.031 1690.420.023 393
3C436RG0.214 59.47.10.190.004 5640.420.023 3930.390.019 996
3C171RG0.238 4123.90.290.010 8020.870.135 9830.560.043 838
3C284RG0.239 487.80.170.003 6460.360.016 9050.360.016 905
3C79RG0.255 92160.30.011 5820.730.082 5450.510.035 59
3C300RG0.272143.60.330.014 10410.292 8930.610.053 321
3C153RG0.276 9138.60.20.005 0640.40.021 0940.380.018 933
3C438RG0.2936130.270.009 3280.450.027 11 0.40.021 094
3C14.27RG0.392205.40.310.012 3930.820.113 3310.540.040 4
3C42RG0.395218.80.250.007 97 0.510.035 59 0.430.024 595
3C16RG0.405224.60.350.015 94 10.292 8930.60.051 317
3C274.1RG0.422328.60.310.012 3930.640.059 6880.480.031 169
3C457RG0.428286.40.340.015 0060.810.109 3740.540.040 4
3C46RG0.437 325150.210.005 59 0.310.012 3930.340.015 006
3C341RG0.44825100.250.007 97 0.470.029 7770.410.022 226
3C200RG0.458278.80.290.010 8020.580.047 4730.460.028 424
3C295RG0.461 4130290.350.015 94 0.40.021 0940.380.018 933
3C192RG0.48229140.230.006 7250.370.017 9020.360.016 905
3C225BRG0.5876100.450.027 11 0.850.126 2770.550.042 095
3C49RG0.602 0742130.290.010 8020.490.032 6010.420.023 393
3C277.2RG0.76685110.450.027 11 0.830.117 4570.540.040 4
3C340RG0.775 465110.40.021 0940.720.079 6810.510.035 59
3C352RG0.80683160.370.017 9020.570.045 63 0.450.027 11
3C263.1RG0.824130190.430.024 5950.60.051 3170.460.028 424
3C175.1RG0.92110120.490.032 6010.850.126 2770.550.042 095
3C356RG1.079250280.50.034 0740.550.042 0950.440.025 834
3C252RG1.105170200.470.029 7770.630.057 5050.480.031 169
3C368RG1.132240280.480.031 1690.540.040 4 0.440.025 834
3C267RG1.144190240.470.029 7770.550.042 0950.440.025 834
3C324RG1.21150370.340.015 0060.330.014 1040.340.015 006
3C266RG1.272220230.50.034 0740.620.055 3830.470.029 777
3C13RG1.351260400.410.022 2260.390.019 9960.380.018 933
4C13.66RG1.45260160.660.064 2470.990.244 6630.60.051 317
3C68.2RG1.575210350.410.022 2260.410.022 2260.380.018 933
3C241RG1.617370370.510.035 59 0.50.034 0740.430.024 595
3C470RG1.653290280.530.038 7510.60.051 3170.470.029 777
3C322RG1.681510320.660.064 2470.680.069 0830.490.032 601
3C294RG1.786440290.640.059 6880.710.076 9070.510.035 59
3C239RG1.79480370.60.051 3170.580.047 4730.450.027 11
3C334RLQ0.55562500.190.004 5640.150.002 8330.230.006 725
3C254RLQ0.73463200.30.011 5820.390.019 9960.370.017 902
3C175.1RLQ0.768130790.210.005 59 0.140.002 4650.220.006 144
3C336RLQ0.927100160.410.045 63 0.630.211 6140.470.049 368
3C245RLQ1.029160250.410.022 2260.490.057 5050.420.029 777
3C212RLQ1.049190160.560.022 2260.840.032 6010.550.023 393
3C186RLQ1.063210320.410.043 8380.440.121 7670.40.042 095
3C208RLQ1.109230250.490.022 2260.590.025 8340.460.021 094
3C204RLQ1.112170320.380.032 6010.40.049 3680.380.028 424
4C16.49RLQ1.296220630.30.018 9330.230.021 0940.290.018 933
3C68.1RLQ1.238410790.380.018 9330.250.007 97 0.30.011 582
3C181RLQ1.382330400.470.011 5820.440.006 7250.40.010 802
3C268.4RLQ1.4830630.60.051 3170.450.027 11 0.40.021 094
3C191RLQ1.952 3600500.560.029 78 0.480.027 11 0.410.021 094
3C9RLQ2.012940630.630.043 8380.470.031 2 0.410.022 226
M87CD0.004 20.068.60.0140.000 01 0.0280.000 1 0.10.001 254
CentaurusCD0.0110.0748.60.0150.000 03 0.0310.000 1 0.10.001 254
HCG 62CD0.0140.0395.70.0140.000 03 0.0340.000 12 0.110.001 254
A262CD0.0160.0978.60.0180.000 02 0.0350.000 1450.110.001 518
PerseusCD0.0181.5170.0490.000 04 0.070.000 1530.160.001 518
PKS1404
-267
CD0.0220.25.70.0310.000 3 0.0760.000 6130.160.003 226
A2199CD0.032.7200.0610.000 12 0.080.000 7230.170.003 226
A2052CD0.0351.5170.0490.000 4660.070.000 8020.160.003 646
2A0335
+096
CD0.0350.24140.0220.000 3 0.0330.000 6130.110.003 226
MKW 3SCD0.0454.18.60.120.000 05 0.230.000 1360.290.001 518
A4059CD0.0480.96290.0310.001 8080.0330.006 7250.110.010 802
Hydra ACD0.0554.3110.10.000 12 0.180.000 1360.250.001 518
A85CD0.0550.37290.0190.001 2540.0210.004 0920.0860.007 97
Cygnus ACD0.05613290.110.000 0050.120.000 06 0.210.000 927
Sersic
159/03
CD0.0587.8170.110.001 5180.160.001 8080.40.005 59
A 133CD0.066.2200.0930.001 5180.120.003 2260.210.021 094
A1795CD0.0631.6230.0440.001 0840.0540.001 8080.140.005 59
A2029CD0.0770.87600.020.000 2420.0150.000 3650.0730.002 465
A478CD0.0811260.0330.000 05 0.0380.000 0030.120.000 667
A2597CD0.0850.678.60.0470.000 1360.0930.000 1810.180.001 808
3C388CD0.0922170.0570.000 2760.0810.001 0840.170.004 092
PKS0745
-191
CD0.10317310.120.000 4070.130.000 8220.210.003 646
Hercules
A
CD0.1543.1200.0660.001 8080.0860.002 1240.170.005 59
Zw2701CD0.21460170.310.000 5450.440.000 9270.40.003 646
MS0735.6
+7421
CD0.21669200.310.012 3930.410.025 8340.380.021 094
4C55.16CD0.2424.2140.090.012 3930.140.022 2260.220.018 933
A1835CD0.25318540.10.001 0150.0760.002 4650.160.006 144
Zw3146CD0.29158740.150.001 2540.10.000 7230.190.003 226
注:表中 (1) 源; (2) 类型; (3) 红移; (4) 喷流中电子束功率; (5) 黑洞质量部分来源于文[13]及文[14],其余均源于NED 网络数据库; (6) 爱丁顿磁场条件下的自旋; (7) 爱丁顿磁场条件下的自旋能量; (8) 静磁场条件下的自旋; (9) 静磁场条件下的自旋能量; (10) 与自旋有关的磁场条件下的自旋; (11) 与自旋有关的磁场条件下的自旋能量 (运用(6)式计算得出)
Notes: The meanings of the columns are as follows. Column (1): Source name. Column (2): AGN type. Column (3): Redshift value. Column (4): Power of the electron beam in the jet. Column (5): Mass value of the black hole. Column (6): Spin of the black hole with B=BEDD assumed. Column (7): Spin energy of the black hole with B=BEDD assumed. Column (8): Spin of the black hole with B=104G assumed. Column (9): Spin energy of the black hole with B=104G assumed. Column (10): Spin of the black hole with B∝jM assumed. Column (11): Spin energy of the black hole with B∝jM assumed.

在考虑黑洞质量的情况下,由图 123可以看出ES/Mc2与红移z分别在B=BEDDB=104G、B∝j 3种磁场情况下具有较高的相关性。说明黑洞的自旋能量和红移z都存在联系,红移z与黑洞自旋能量在总体上的关联紧密。自旋能量与红移的关系满足Blazar的一些基本观测特征。

图 1 ES/Mc2与红移z的相关性(B=BEDD) Fig. 1The correlation between redshifts and ES/Mc2

(with B=BEDD assumed) of the black holes
图 2 ES/Mc2与红移z的相关性(B=104G) Fig. 2The correlation between redshifts and ES/Mc2

(with B=104G assumed) of the black holes
图 3 ES/Mc2与红移z的相关性(B∝j) Fig. 3The correlation between redshifts and ES/Mc2 (with B∝jM assumed) of the black holes

图 4射电星系ES/Mc2与红移z在3种不同磁场下均存在一定相关性。在爱丁顿磁场(B=BEDD)条件下射电星系的ES/Mc2与红移z存在强相关性。但在B=104G与B∝j两种磁场条件下,射电星系ES/Mc2与红移z有弱相关性。但总体上射电星系ES/Mc2与红移z存在正比关系,说明黑洞的自旋能量随红移z的增大而增加。这与文[1]的研究结果相同。

图 4 RG类黑洞ES/Mc2与红移z的相关性 Fig. 4The correlation between redshifts and ES/Mc2 of the black holes in RG-type AGN

图 5射电噪类星体(RLQ)的ES/Mc2与红移z的相关性与射电星系(RG)相比较低,但数据整体趋势非常相似。射电噪类星体(RLQ)ES/Mc2与红移z在3种不同磁场下均存在一定相关性。在B=BEDD磁场条件下,射电噪类星体(RLQ)Es/Mc2与红移z存在强相关性。但在B=104G与B∝j两种磁场条件下,射电噪类星体ES/Mc2与红移z有弱相关性。但总体上射电星系(RG)的ES/Mc2与红移z存在正比关系,说明黑洞的自旋能量随红移z的增大而增加。这与文[1]的研究结果也是相同的。

图 5 RLQ类黑洞ES/Mc2与红移z的相关性 Fig. 5The correlation between redshifts and ES/Mc2 of the black holes in RLQ-type AGN

图 6,核占优星系(CD)的ES/Mc2与红移z在3种不同磁场的相关性均存在相关性。在B=BEDDB=104G,B∝j 3种磁场条件下,核占优星系(CD)的ES/Mc2与红移z均存在较明显的相关性。说明核占优星系(CD)的黑洞自旋能量在3种磁场条件下均与红移z存在较为直接的关联。

图 6 cD类黑洞ES/Mc2与红移z的相关性 Fig. 6 The correlation between redshifts and ES/Mc2 of the black holes in cD-type AGN

不同条件下黑洞自旋能量与红移的相关性的详细分析数据如表 2。总体上ES/Mc2均与红移z存在相关性。自旋能量随红移z的增大而增加,与文[1]的研究结论相同。

表 2 不同条件下黑洞自旋能量与红移的相关性数据 Table 2 Results of the correlations between spin energies and redshifts of the black holes in different types of AGN under different assumptions of B
XYNR ValueProb>FValue
(Intercept)
Value
(Slope)
Error
(Slope)

B

类型
ZES/Mc21120.8020-0.001 4 0.023 0.001 7B=BEDD
ZES/Mc21120.82700.000 20.025 0.002 8B=104G
ZES/Mc21120.82700.004 20.013 0.001 8B∝j
ZES/Mc2670.84 00.002 2-0.027

-0.000 3 B=BEDDRG
ZES/Mc2670.1420.2590.042 90.016 0.013 9B=104GRG
ZES/Mc2670.2430.0510.022 10.005 0.002 7B∝jRG
ZES/Mc2110.7120.003-0.004 8 0.023 0.006 4B=BEDDRLQ
ZES/Mc2110.2930.29 0.010 70.012 0.011 2B=104GRLQ
ZES/Mc2110.3960.1440.010 20.007 320.004 7B∝jRLQ
ZES/Mc2270.6010.0020.000 10.004 070.001 2B=BEDDCD
ZES/Mc2270.5290.0090.000 30.004 870.001 7B=104GCD
ZES/Mc2270.4920.0170.002 10.010 540.004 B∝jCD
注:表中类型“—”表示本文中RG,RLQ,cD 3种类型均考虑的总体情况
Notes: The sign‘—’means the results are for all AGN types (RG,RLQ,and cD) combined
3 结 论

由于射电噪类星体(RLQ)及核占优星系(CD)的样本数量较少,可能对黑洞自旋能量与红移的相关性分析产生一定的误差。要进一步详细探讨黑洞自旋能量与红移的相关性以及测定自旋能量与红移的关系公式,就需要更多的观测数据来验证本文的研究结果。

本文依据文[14]与文[1]的黑洞质量、中子束功率及磁场强度等运用(1)式(Blandford & Znajek[13] Blandford[28];Meier[12];Narayan[21])依次计算出3种磁场条件下的自旋j,后运用(3)式计算出对应的ES/Mc2(其中自旋、黑洞、磁场测量值均独立于红移),并依据文[2]和文[6]的模型,对黑洞自旋能量进行估算。最后对黑洞自旋能量与红移进行相关性分析。

本文结果表明Blazar的黑洞总体自旋能量与红移存在关系,尤其以在爱丁顿磁场条件下(B=BEDD)最为明显。黑洞自旋能量在3种不同类型的磁场条件下(B=BEDDB=104G,B∝j)的趋势均较为相似,呈现正比关系。实验结果与文[1]得出的结论相同。说明Blazar黑洞自旋能量与红移存在较直接的联系。这为依据红移与自旋能量的关系,估算Blazar自旋能量提供了依据。黑洞自旋和质量的变化在二元合并时是共同发生的,随着合并的发生其自旋速度降低。由于黑洞自旋能量与AGN红移的相关性,可推断黑洞自旋能量能如同红移一样可以对AGN黑洞的合并吸积历史进行一定的描绘。

参考文献
[1] Daly R A, Sprinkle T B. Black hole spin properties of 130 AGN[J]. Monthly Notices of the Royal Astronomical Society, 2014, 438(4): 3233-3242.
[2] Hughes S A, Blandford R D. Black hole mass and spin coevolution by mergers[J]. The Astrophysical Journal Letters, 2003, 585(2): L101-L104.
[3] Volonteri M, Rees M A. Rapid growth of high redshift black holes[J]. The Astrophysical Journal, 2005, 633(2): 624-629.
[4] King A R, Pringle J E. Fuelling active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 2007, 385(3): 1621-1627.
[5] Volonteri M, Sikora M, Lasota J P. Black-hole spin and galactic morphology[J]. The Astrophysical Journal, 2007, 667(2): 704-713.
[6] Berti E, Volonteri M. Cosmological black hole spin evolution by mergers and accretion[J]. The Astrophysical Journal, 2008, 684(2): 822-828.
[7] Zhang S N, Cui W, Chen W. Black hole spin in X-ray binaries: observational consequences[J]. The Astrophysical Journal, 1997, 482(2): L155-L158.
[8] McClintock J E, Narayan R, Steiner J F. Black hole spin via continuum fitting and the role of spin in powering transient jets[J]. Space Science Reviews, 2013, 2(1): 256-258.
[9] Steiner J F, McClintock J E. Measuring black-hole spin and modeling the jet dynamics in microquasar XTE J1550-564[J]. Monthly Notices of the Royal Astronomical Society, 2011, 416(1): 941-946.
[10] Richardson G A, Nishikawa K I. Simulations of relativistic jet formation[J]. The Astrophysical Journal, 1999, 35: 1333.
[11] Blandford R D. Spectrum of a radio pulse from an exploding black hole[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(2): 489-498.
[12] Schmoll S, Miller J M, Volonteri M, et al. Constraining the spin of the black hole in Fairall 9 with Suzaku[J]. The Astrophysical Journal, 2009, 703(2): 2171-2176.
[13] Daly R A. Estimates of black hole spin properties of 55 sources[J]. Monthly Notices of the Royal Astronomical Society, 2011, 414(2): 1253-1262.
[14] Reynolds C S, Garofalo D, Begelman M C. Trapping of magnetic flux by the plunge region of a black hole accretion disk[J]. The Astrophysical Journal, 2006, 651(2): 1023-1030.
[15] Tatum M M, Turner T J, Miller L, et al. The global implications of the hard X-ray excess in type 1 AGN[J]. The Astrophysical Journal, 2012, 762(2): 80-108.
[16] Tchekhovskoy A, Narayan R, McKinney J C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(1): L79-L83.
[17] Thorne K S, Price R H, MacDonald D A. Book-review-black-holes-the membrane paradigm[J]. The Astrophysical Journal, 1990, 311(2): 122.
[18] Nardini E, Fabian A C, Walton D J. Investigating the reflection contribution to the X-ray emission of Ton S180[J]. Monthly Notices of the Royal Astronomical Society, 2012, 423(4): 3299-3307.
[19] Zoghbi A, Fabian A C, Uttley P, et al. Broad iron L-line and X-ray reverberation in 1H0707-495[J]. Monthly Notices of the Royal Astronomical Society, 2010, 401(1): 2419-2432.
[20] Daly R A. Bounds on black hole spins[J]. The Astrophysical Journal Letters, 2009, 696(1): L32-L33.
[21] Narayan R, McClintock J E. Observational evidence for a correlation between jet power and black hole spin[J]. Monthly Notices of the Royal Astronomical Society, 2011, 419(1): L69-L73.
[22] Blandford R D, Netzer H, Woltjer L. Active galactic nuclei [M]. New York: Springer-Verlag, 1990.
[23] Punsly B, Coroniti F V. Relativistic winds from pulsar and black hole magnetospheres[J]. The Astrophysical Journal, 1990, 350(2): 518-535.
[24] Rees M J. Black hole models for active galactic nuclei[J]. Annual Review of Astronomy and Astrophysics, 1984, 22(1): 471-506.
[25] King A R. Black hole outflows[J]. Monthly Notices of the Royal Astronomical Society, 2010, 402(1): 1516-1522.
[26] Daly R A, Mory M P, Guerra E J. High-redshift radio galaxies as a cosmological tool: exploration of a key assumption and comparison with supernova results[C]//American Institute of Physics Conference Proceedings. 2002: 87-94.
[27] Allen S W, Dunn R J H, Fabian A C, et al. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2006, 372(1): 21-30.
[28] Merloni A, Heinz S. Measuring the kinetic power of active galactic nuclei in the radio mode[J]. Monthly Notices of the Royal Astronomical Society, 2007, 381(2): 589-601.
由中国科学院国家天文台主办。
0

文章信息

张旭, 张雄
Zhang Xu, Zhang Xiong
Blazar黑洞自旋能量与红移相关性研究
A Study of Correlations between Redshifts and Spin Energies of Black Holes in AGN
天文研究与技术, 2015, 12(3): 253-261.
ASTRONOMICAL RESEARCH & TECHNOLOGY, 2015, 12(3): 253-261.

文章历史

收稿日期:2014-10-12

工作空间