文章快速检索  
  高级检索
长安金矿区碱性岩锆石U-Pb年代学、微量元素、Hf同位素特征及其地质意义
龙天祥1, 何小虎2, 刘飞1, 李宗勇1, 王玉朝2, 赵俊1, 李云飞1, 王长兵3, 曹原2     
1. 云南省地质调查院, 昆明 650216;
2. 云南大学资源环境与地球科学学院, 昆明 650091;
3. 云南省核工业二○九地质大队, 昆明 650032
摘要: 长安金矿是哀牢山成矿带南段典型的大型金矿床之一,矿区内发育大量的碱性岩脉。本文通过对矿区内碱性岩锆石U-Pb年代学、微量元素及Hf同位素的研究,限定碱性岩的形成时间、来源和成因,并进一步探讨该金矿床的成因。LA-ICP-MS锆石U-Pb年龄表明长安金矿区碱性岩主要形成于晚始新世(37.0~35.0 Ma)。碱性岩锆石微量元素、Hf同位素和结晶温度等表明其主要来自下地壳火成岩区,在形成过程中存在少量1 648.5~34.8 Ma不同时期的上地壳沉积岩物质的加入,碱性岩是哀牢山韧性剪切活动诱发基性-超基性熔体发生底侵作用,并加热下地壳发生部分熔融的产物。结合前人成矿流体稳定同位素研究结果,提出碱性岩的形成与金矿化是在印度-欧亚板块碰撞下,青藏高原物质东向逃逸诱发哀牢山韧性剪切活动构造背景下的独立产物,他们之间没有直接的成因联系,仅仅是同一构造-地质作用的不同表现形式。
关键词: 长安金矿    碱性岩    锆石年代学    微量元素    Hf同位素    
Zircon U-Pb Geochronology, Trace Element, Hf Isotope of Alkaline Rocks from Chang'an Gold Deposit and Its Geological Implication
Long Tianxiang1, He Xiaohu2, Liu Fei1, Li Zongyong1, Wang Yuchao2, Zhao Jun1, Li Yunfei1, Wang Changbing3, Cao Yuan2     
1. Geological Survey Institute of Yunnan Province, Kunming 650216, China;
2. School of Resource Environment and Earth Science, Yunnan University, Kunming 650091, China;
3. No. 209 Geological Party, Geological Bureau of Yunnan Nuclear Industry, Kuming 650032, China
Abstract: The Chang'an gold deposit, is one of the large classic gold deposits in the south Ailaoshan metallogenic belt, where many vein-type alkaline rocks appeared. In this paper, we present new data of the zircon U-Pb geochronology, trace element, and Hf isotope of these alkaline rocks from the Chang'an gold deposit to constrain their age and origin; furthermore, to discuss the formation mechanism of the gold deposit.The LA-ICP-MS zircon U-Pb isotope data show that these alkaline rocks formed in the Late Eocene(37.0-35.0 Ma).According to the chemistry of trace element, Hf isotope, and zircon saturation temperature, they were mainly derived from igneous zone in the lower crust, but a small amount of sediment material was formed during 1 648.5-34.8 Ma in the upper crust. Further, these alkaline rocks are the results of the partial melting of lower crust which were heated by the under-plated hot basic-ultrabasic melt induced by the ductile shear activity of Ailaoshan. Combined with the previous data of the stable isotopes of ore-forming fluid, we suggest that the forming of alkaline rocks and gold mineralization are independent events which occurred under the same geological setting, and the ductile shear activity of Ailaoshan was triggered by the southeastward escape of Tibetan Plateau during the collision of Indian plate and Euro-Asia plate.
Key words: Chang'an gold deposit    alkaline rocks    zircon geochronology    trace element    Hf isotope    

0 引言

哀牢山成矿带位于青藏高原东南缘,夹持于印支地块与扬子板块之间,是由不同时代地质单元组合构成的复合变质剪切构造带,是特提斯构造域演化的复杂部位。新生代以来,印度板块向欧亚板块的斜向俯冲碰撞导致了青藏高原的隆升,致使其东南缘块体发生挤出、旋转和逃逸[1-5]。伴随青藏高原的隆升,哀牢山成矿带发生大规模的壳幔相互作用、岩浆活动和深大剪切断裂活动等,为金属矿化提供了成矿背景,成为我国西南地区最为重要的多金属成矿带[6-7]。其中,金矿化是哀牢山成矿带重要特征之一,该带发育大量的金矿床(点),北段包括镇沅金矿田(含老王寨、冬瓜林、搭桥箐、浪泥塘和库独木矿段)和金厂金矿床,南段包括三家河、干冲沟、银厂坡、金平河和路坎脚等金矿点以及大坪、长安金矿床。金矿化与该带上发育的碱性岩在时空和成因上的联系引起了大量学者的关注[7-11]。经过近20年的研究,前人[12-21]对哀牢山成矿带的构造演化、岩浆作用、金矿成矿作用及成矿时代有了深入的认识。前人认为哀牢山成矿带经历了前特提斯、特提斯和新生代陆内构造演化3个阶段[19],碱性岩浆作用主要发生在38~33 Ma,并与该区大规模成矿时间一致[8]。然而,金矿成因与碱性岩体侵入关系仍存在较大争议。在热液金矿床中,由于各种成矿元素地球化学活动性不同,会导致矿化在空间上出现元素的分带性。但是,矿区内碱性岩脉到围岩未出现蚀变和矿化的分带性,张超等[18]认为矿区内这些碱性岩脉的侵位与金矿化没有成因联系;田广等[22]对长安金矿区内黄铁矿原位微量元素研究发现成矿元素含量随Co/Ni值的下降而上升,指示碱性岩浆为成矿提供了成矿物质和流体;李士辉等[23]通过对长安金矿区成矿流体包裹体及C-H-S同位素进行研究,认为成矿流体主要来自岩浆热液,存在海相碳酸盐地层的变质水参与成矿作用。长安金矿是哀牢山成矿带中较典型的大型金矿床,成矿复杂,因此对该矿区内碱性岩年代学和成因,以及与金矿化的关系进行研究非常有必要。

锆石是岩浆岩中常见的副矿物,由于其具有化学稳定性,具难溶解、难熔融、抗风化和耐高温等物理化学特征,在经历了复杂的地质作用事件后仍可以保持其初始化学组分的稳定性[24-26]。本文通过对矿区内碱性岩锆石U-Pb年代学、微量元素及Hf同位素的研究限定碱性岩的形成时间、来源和成因,探讨碱性岩的形成与金矿化之间的关系,以期为哀牢山成矿带南段成矿理论、找矿勘探提供新的思路和视角。

1 区域地质及矿床地质

哀牢山成矿带内发育了红河断裂、哀牢山断裂和九甲—安定断裂等3条主要断裂,带内出露地层由这3条深大断裂所挟持(图 1)。以哀牢山深大断裂为界,东部为古元古界哀牢山群深变质带,变质程度达角闪岩相;西部为古生界及上三叠统低绿片岩相浅变质带(局部为中生界未变质地层所覆盖),哀牢山群沿哀牢山断裂向南西推覆到上三叠统之上。断裂带内岩浆岩特别发育,岩浆具有多旋回、多样性的特点,沿断裂形成3个主要岩浆带,即哀牢山断裂两侧的超基性岩带、九甲—安定断裂东侧的基性岩带和哀牢山断裂两侧的富碱侵入岩带。

据文献[27]修编。 图 1 哀牢山南段区域构造地质图 Fig. 1 Regional tectonic and geological maps of the southern Ailaoshan

长安金矿位于哀牢山成矿带南段金平县内,产于呈楔形夹持于绿春推覆体和哀牢山推覆体之间的金平推覆体内,分别以藤条河断裂和哀牢山断裂为界,矿床位于北西向推覆构造的滑脱面内的脆性破碎带中(图 2)[28]。矿区出露地层为下奥陶统碎屑岩和中、上志留统碳酸盐岩。下奥陶统仅出露向阳组(O1x),自下而上划分为两段:下段以长石石英粉砂岩、细砂岩和粉砂岩为主,夹含砾长石石英粗砂岩、砾岩;上段主要为薄层—厚层状泥质板岩、粉砂质板岩,夹浅灰色透镜状变质粉砂岩、细砂岩。中、上志留统康廊组(S2-3k)主要为厚层状灰质白云岩、砂屑白云岩,夹薄层状白云质灰岩。向阳组和康廊组呈不整合接触关系,金矿体主要赋存在脆性破碎带向阳组炭质粉砂岩、石英砂岩、含砾粗砂岩及砾岩中,形成具有工业品位的矿体;而康廊组中仅断层泥、碎裂白云岩中存在微弱金矿化。

① 云南地矿资源股份有限公司.云南省金平县长安金矿详查地质报告.昆明:云南省地质矿产勘查开发局,2002.

图 2 哀牢山南段金矿区地质构造简图 Fig. 2 Geological and tectonic simply map of gold deposit district of the southern of Ailaoshan

区域构造受NW向的哀牢山断裂和藤条河断裂控制,矿区内的多数次级断裂呈NW向展布。甘河断裂是矿区内主要断裂,贯穿整个矿区,总体倾向南,倾角80°;该断裂破碎带宽度100~200 m,含约10 m厚的碎裂白云岩和灰质糜棱岩,部分地段具黄铁矿化和金矿化。藤条河断裂与甘河断裂平行,早期为压扭性断裂,后期为张性断裂,对长安金矿成矿起着重要作用,长安金矿最主要的矿体就产于藤条河断裂与不整合面共同控制的构造破碎带中。矿体在浅部品位高、厚度大且连续性好,深部则呈分支状、品位变贫和局部不连续。矿区内常见矿化有黄铁矿化、毒砂化、碳酸盐化、硅化和绢云母化等,其中黄铁矿化是最重要的矿化蚀变类型。

矿区内岩浆岩较发育,主要有煌斑岩、辉绿岩、正长岩、正长斑岩和正长花岗岩等出露,受区域构造控制,正长斑岩以岩株产出,其他岩浆岩以岩脉形式呈NW、NE和近EW向展布。前人对区内岩浆岩岩石学、岩石地球化学、年代学进行了大量研究[22, 29-32],其中张静等[31]对矿区内正长岩和正长斑岩进行了详细的岩石学、岩石地球化学工作,发现正长花岗岩均表现出高硅(w(SiO2)为68%~72%)、富碱(w(K2O+Na2O)为7.70 %~8.49 %)的特点。

2 样品采集及分析测试方法 2.1 样品采集和岩石学

本文研究的碱性岩体主要采于金平县长安金矿区矿坑内。碱性岩体主要为正长岩(岩脉)和正长花岗岩(岩株),以岩脉和岩株侵位于下奥陶统向阳组碎屑岩和中、上志留统康廊组碳酸盐岩(图 3a),其中正长花岗岩中可见大量的捕虏体(图 3b)。本文采集1个正长岩(CA-12)和2个正长花岗岩(CA-05,CA-15)样品进行锆石测年工作。正长岩呈块状构造,细晶等粒状结构;主要由正长石(35%)、微斜长石(20%)、环带斜长石(15%)、黑云母(13%)、角闪石(12%)及少量石英(5%)组成;副矿物为磷灰石、榍石、独居石、锆石和磷钇矿等。正长花岗岩具块状构造,斑状结构;主要由斜长石(35%)、钾长石(25%)、石英(15%)、白云母(20%)和少量黑云母(5%)组成;副矿物为磷灰石、榍石、独居石、锆石和磷钇矿等;斑晶由斜长石和钾长石组成;基质由斜长石、钾长石、石英、白云母、黑云母及磷灰石等副矿物组成。岩石中部分斜长石和钾长石具有绢云母化和高岭土化;石英呈细小颗粒状,白云母和黑云母呈片状分布。

图 3 长安金矿区地质图(a)、野外露头(b,c)及手标本(d,e)图 Fig. 3 Geological map(a), outcrop(b, c)and hand specimen(d, e) in Chang'an gold deposit
2.2 分析测试方法

锆石分选工作在河北省廊坊区域地质调查所完成。首先将样品机械破碎至60目,然后采用重液和磁选等分离技术分选出大颗粒锆石,并在双目镜下挑选出约250颗粒径较大的锆石粘到双面胶上,加注环氧树脂固化后,将其打磨抛光至锆石中心制成样品靶。在进行锆石U-Pb年龄和原位微量元素分析之前,通过透射光和阴极发光(CL)图像详细研究锆石内部结构特征,确定在锆石无包体、无裂隙的部位进行分析测试工作。锆石透射光和阴极发光照相在中国地质大学(武汉)地质过程与矿产资源重点实验室完成,阴极发光图像拍摄采用高真空扫描电子显微镜(JSM-IT100)(配备有GATAN MINICL系统)完成,工作电场电压为10.0~13.0 kV,钨灯丝电流为80~85 μA。LA-ICP-MS锆石U-Pb定年和微量元素分析在中国地质大学(武汉)地质过程与矿产资源重点实验室测试完成,采用安捷伦公司四级杆质谱为Agilent 7700e与193 nm的准分子激光剥蚀系统(GeolasPro)联用,激光斑束直径为32 μm,频率为5 Hz。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过1个T型接头混合,激光剥蚀系统配置有信号平滑装置。在U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正,29Si作内标进行微量元素浓度计算。每个时间分辨分析数据包括20~30 s空白信号和50 s样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMSDataCal完成[33-35]。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3完成[35]

锆石Hf同位素测试在中国地质大学(武汉)地质过程与矿产资源重点实验室Neptune Plus多接受电感耦合等离子质谱仪(MC-ICP-MS)和193 nm ArF准分子激光器系统上完成,分析时激光束斑直径为44 μm,频率为8 Hz,激光剥蚀时间约70 s。每次分析包含20 s背景采集和50 s激光剥蚀。测试过程中,每10个分析点之后测试1个91500和GJ-1。测试过程中,176Yb和176Lu对176Hf的干扰分别采用176Yb/173Yb=0.793 81[36]176Lu/175Lu=0.026 55[37]校正,Lu质量分馏采用Yb质量偏移(βYb)计算。详细的仪器设置和分析流程请见文献[34]和[38]。

3 结果 3.1 LA-ICP-MS锆石U-Pb定年结果

在阴极发光图像(图 4)上,长安碱性岩中锆石形态上呈长柱状,灰黑色或灰白色,具有典型的岩浆锆石环带结构。有些锆石颗粒核部和边部出现明显的不同颜色,表现出继承锆石的特点。Th/U值均大于0.1,为典型的岩浆成因锆石[39]

图 4 研究区碱性岩锆石CL图及U-Pb年龄图 Fig. 4 Zircon CL images and U-Pb concordia diagrams of alkaline rocks in the study area

CA-05样品共测点18个(表 1),锆石U质量分数为(964~2 200)×10-6,Th质量分数为(86~696)×10-6,Th/U值为0.09~0.42。锆石207Pb/235U年龄值变化不大,并给出了误差范围内较为一致的206Pb/238U年龄(38.9~34.8 Ma),加权平均年龄为(36.7±0.5)Ma,谐和年龄为(36.7±0.3)Ma,MWSD=0.009 4,(图 4a),2个年龄值在误差范围内一致。

表 1 长安金矿区碱性岩LA-ICP-MS锆石U-Pb测年结果 Table 1 LA-ICP-MS zircon U-Pb dating of alkaline rocks from Chang'an gold deposit
测点号 wB/10-6 Th/U 同位素比值 表面年龄/Ma
Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ
CA-05-01 18.90 696 2 045 0.34 0.049 1 0.003 2 0.036 7 0.002 3 0.005 5 0.000 2 36.6 2 35.2 1
CA-05-02 14.00 425 1 755 0.24 0.046 2 0.003 2 0.035 0 0.002 4 0.005 4 0.000 2 35.0 2 34.9 1
CA-05-03 11.10 364 1 149 0.32 0.049 4 0.003 9 0.038 3 0.002 8 0.005 7 0.000 2 38.1 3 36.8 1
CA-05-04 10.10 201 1 044 0.19 0.048 7 0.005 8 0.038 3 0.004 1 0.005 9 0.000 2 38.2 4 38.1 1
CA-05-05 6.60 86 1 003 0.09 0.060 5 0.006 1 0.045 4 0.003 7 0.005 6 0.000 2 45.0 4 36.3 1
CA-05-06 7.20 186 964 0.19 0.047 9 0.005 1 0.038 4 0.003 8 0.005 8 0.000 2 38.2 4 37.4 1
CA-05-07 9.40 267 1 206 0.22 0.048 7 0.003 6 0.037 4 0.002 6 0.005 5 0.000 2 37.2 3 35.5 1
CA-05-08 12.60 401 1 547 0.26 0.053 6 0.004 1 0.040 8 0.002 8 0.005 5 0.000 2 40.6 3 35.3 1
CA-05-09 13.70 516 1 231 0.42 0.046 1 0.003 5 0.034 6 0.002 4 0.005 4 0.000 2 34.6 2 34.8 1
CA-05-10 10.10 325 967 0.34 0.047 9 0.004 4 0.035 7 0.002 7 0.005 5 0.000 2 35.6 3 35.6 1
CA-05-11 14.80 453 1 682 0.27 0.047 2 0.003 2 0.037 2 0.002 4 0.005 7 0.000 2 37.1 2 36.6 1
CA-05-12 14.30 508 1 300 0.39 0.046 5 0.003 9 0.035 8 0.002 7 0.005 7 0.000 2 35.8 3 36.4 1
CA-05-13 14.50 537 1 347 0.40 0.051 1 0.003 9 0.038 1 0.002 7 0.005 4 0.000 2 38.0 3 34.9 1
CA-05-14 14.80 398 1 806 0.22 0.051 4 0.003 3 0.041 0 0.002 4 0.005 9 0.000 2 40.8 2 37.6 1
CA-05-15 13.40 406 1 181 0.34 0.046 2 0.003 6 0.038 7 0.002 9 0.006 0 0.000 2 38.6 3 38.9 1
CA-05-16 15.80 588 1 714 0.34 0.047 9 0.002 6 0.037 8 0.002 0 0.005 7 0.000 2 37.7 2 36.7 1
CA-05-17 20.50 681 2 200 0.31 0.048 9 0.002 4 0.040 9 0.002 0 0.006 0 0.000 2 40.7 2 38.8 1
CA-05-18 9.90 336 1 028 0.33 0.050 9 0.003 7 0.039 4 0.002 6 0.005 7 0.000 2 39.2 3 36.5 1
CA-12-01 8.70 405 588 0.69 0.054 0 0.005 7 0.038 0 0.003 0 0.005 4 0.000 2 37.9 3 34.9 1
CA-12-02 7.80 340 528 0.64 0.054 5 0.005 8 0.039 4 0.003 3 0.005 4 0.000 2 39.2 3 34.8 1
CA-12-03 11.40 480 642 0.75 0.051 9 0.006 4 0.037 4 0.004 1 0.005 5 0.000 2 37.3 4 35.3 1
CA-12-04 6.70 268 393 0.68 0.062 3 0.007 2 0.044 6 0.004 3 0.005 4 0.000 2 44.3 4 34.8 1
CA-12-05 49.20 101 88 1.15 0.089 2 0.005 5 1.641 5 0.101 0 0.135 5 0.004 8 986.3 39 819.3 27
CA-12-06 7.10 326 437 0.74 0.049 5 0.006 2 0.034 9 0.003 3 0.005 4 0.000 2 34.9 3 35.0 1
CA-12-07 8.90 371 642 0.58 0.047 2 0.004 3 0.035 2 0.002 7 0.005 6 0.000 2 35.2 3 35.9 1
CA-12-08 7.00 290 530 0.55 0.047 6 0.005 0 0.038 0 0.003 5 0.005 8 0.000 2 37.9 3 37.2 1
CA-12-09 10.20 247 431 0.57 0.065 4 0.006 6 0.073 9 0.007 5 0.008 2 0.000 5 72.4 7 52.6 3
CA-12-10 187.10 84 532 0.16 0.099 2 0.003 6 3.998 7 0.146 0 0.291 4 0.007 9 1 634.9 30 1 648.5 40
CA-12-11 7.80 342 496 0.69 0.049 5 0.006 9 0.036 3 0.004 4 0.005 7 0.000 2 36.2 4 36.8 1
CA-12-12 66.80 205 249 0.82 0.058 5 0.002 5 0.707 3 0.029 8 0.087 2 0.002 4 543.1 18 539.0 14
CA-12-13 7.40 317 518 0.61 0.049 9 0.005 5 0.035 2 0.003 4 0.005 4 0.000 2 35.1 3 34.9 1
CA-12-14 7.70 322 583 0.55 0.048 8 0.005 2 0.035 3 0.003 7 0.005 4 0.000 2 35.2 4 34.6 1
CA-12-15 7.70 319 516 0.62 0.047 7 0.004 3 0.037 1 0.003 0 0.005 7 0.000 2 37.0 3 36.7 1
CA-12-16 13.10 639 772 0.83 0.046 1 0.003 9 0.033 6 0.002 5 0.005 4 0.000 2 33.5 2 34.5 1
CA-12-17 6.00 244 449 0.54 0.047 4 0.004 1 0.036 1 0.002 7 0.005 6 0.000 2 36.0 3 36.1 1
CA-12-18 5.90 259 417 0.62 0.048 1 0.005 4 0.035 7 0.002 9 0.005 6 0.000 2 35.6 3 36.2 1
CA-12-19 11.10 368 493 0.75 0.075 4 0.007 6 0.066 8 0.007 5 0.006 0 0.000 2 65.6 7 38.6 1
CA-12-20 9.90 447 596 0.75 0.045 9 0.004 1 0.036 3 0.003 0 0.005 6 0.000 2 36.2 3 35.7 1
CA-15-01 13.90 494 1 821 0.27 0.047 4 0.002 7 0.035 7 0.001 9 0.005 5 0.000 2 35.6 2 35.1 1
CA-15-02 12.30 403 1 512 0.27 0.048 0 0.004 2 0.035 9 0.002 9 0.005 5 0.000 2 35.8 3 35.3 1
CA-15-03 19.90 902 1 456 0.62 0.046 4 0.003 9 0.035 7 0.002 7 0.005 6 0.000 2 35.6 3 35.8 1
CA-15-04 13.70 428 1 401 0.31 0.045 9 0.003 7 0.039 5 0.003 3 0.006 1 0.000 2 39.3 3 39.1 1
CA-15-05 13.20 334 1 487 0.22 0.047 0 0.003 7 0.038 3 0.002 8 0.006 0 0.000 2 38.2 3 38.3 1
CA-15-06 10.40 238 1 323 0.18 0.051 6 0.005 9 0.040 9 0.003 7 0.005 9 0.000 2 40.7 4 38.0 1
CA-15-07 11.70 362 1 045 0.35 0.050 5 0.005 1 0.039 6 0.003 0 0.006 0 0.000 2 39.5 3 38.7 1
CA-15-08 27.90 1 026 2 047 0.50 0.047 3 0.003 8 0.039 2 0.003 0 0.006 0 0.000 2 39.0 3 38.6 1
CA-15-09 15.60 455 1 634 0.28 0.048 0 0.004 3 0.038 6 0.003 0 0.005 9 0.000 2 38.4 3 38.2 1
CA-15-10 20.50 542 1 818 0.30 0.047 3 0.003 6 0.040 0 0.002 9 0.006 1 0.000 2 39.8 3 39.4 1
CA-15-11 21.50 402 1 466 0.27 0.044 5 0.005 2 0.042 1 0.005 9 0.006 6 0.000 2 41.9 6 42.5 2
CA-15-12 19.50 488 938 0.52 0.051 9 0.006 5 0.045 9 0.004 7 0.006 9 0.000 3 45.5 5 44.6 2
CA-15-13 13.40 189 1 334 0.14 0.063 7 0.014 2 0.039 8 0.005 6 0.005 9 0.000 3 39.6 5 38.0 2
CA-15-14 17.40 235 1 010 0.23 0.053 8 0.011 5 0.045 8 0.008 9 0.005 7 0.000 3 45.5 9 36.9 2
CA-15-15 11.40 333 1 445 0.23 0.047 5 0.003 1 0.035 4 0.002 1 0.005 5 0.000 2 35.4 2 35.3 1
CA-15-16 19.90 889 1 586 0.56 0.046 5 0.003 1 0.034 5 0.002 3 0.005 4 0.000 2 34.4 2 34.6 1
CA-15-17 10.00 306 1 267 0.24 0.047 9 0.004 6 0.039 6 0.003 5 0.006 1 0.000 2 39.5 3 39.0 1
CA-15-18 14.40 505 1 555 0.32 0.047 6 0.003 3 0.035 3 0.002 2 0.005 5 0.000 2 35.2 2 35.2 1
CA-15-19 13.40 448 1 691 0.27 0.047 8 0.003 0 0.035 3 0.002 1 0.005 4 0.000 2 35.3 2 35.0 1
CA-15-20 17.80 629 1 909 0.33 0.046 5 0.003 5 0.035 2 0.002 7 0.005 4 0.000 2 35.2 3 34.9 1
注:CA-12-04,CA-12-05,CA-12-09,CA-12-10,CA-12-12,CA-15-11和CA-15-12数据为继承锆石年龄数据。

CA-12样品共测点20个(表 1),除5个继承锆石测点外,其余锆石U质量分数为(417~772)×10-6,Th质量分数为(244~639)×10-6,Th/U值为0.54~0.83。除继承锆石外,207Pb/235U年龄值变化不大,并给出了误差范围内较为一致的206Pb/238U年龄(38.6~34.5 Ma),加权平均年龄为(35.8±1.8)Ma,谐和年龄为(36.2±0.3)Ma,MWSD=0.47(图 4b),2个年龄值在误差范围内一致。继承锆石的206Pb/238U年龄主要有34.8,52.6,539.0,819.3和1 648.5 Ma,可能暗示样品复杂多源的特点。

CA-15样品共测点20个(表 1),除2个继承锆石测点外,其余锆石U质量分数为(1 010~2 047)×10-6,Th质量分数为(189~1 026)×10-6,Th/U值为0.14~0.62。锆石207Pb/235U年龄值变化不大,并给出了误差范围内较为一致的206Pb/238U年龄(39.4~34.6Ma),加权平均年龄为(37.5±0.6)Ma,谐和年龄为(37.5±0.3)Ma,MWSD=0.091(图 4c),2个年龄值在误差范围内一致。继承锆石206Pb/238U年龄包含44.6和42.5 Ma。

3.2 锆石微量元素结果

本文对采自长安金矿区内碱性岩脉3个样品中的58个锆石进行了微量元素分析,每个锆石颗粒选择一个点进行分析,分析结果见表 2。球粒陨石标准化稀土元素配分图解见图 5。在球粒陨石标准化稀土元素(REE)配分图上,全部锆石均表现出重稀土元素(HREE)相对中稀土(MREE)和轻稀土元素(LREE)强烈富集的特征。稀土元素配分图显示Ce正异常、轻微的Eu负异常或者较强负异常,为典型未变质岩浆锆石的特征[24, 41-43]。锆石样品中高场强元素Nb、Ta、Ti质量分数大部分落在岩浆锆石范围内,Nb质量分数均≤62×10-6,Ti质量分数均≤75×10-6,Ta质量分数均≤4.5×10-6 [24]。锆石Ti地质温度计是约束锆石结晶温度非常有效的地球化学手段,根据文献[44]总结出的温度与锆石吸收Ti质量分数的线性方程(公式详细简化理论见文献[26])得出本文中3件样品所代表的的岩浆锆石结晶温度分别为559~716 ℃(CA-05)、654~994 ℃(CA-12)和546~714 ℃(CA-15),形成的温度集中在600~700 ℃之间,表明锆石结晶温度较低。

表 2 长安金矿区碱性花岗岩中锆石稀土元素和微量元素组成及锆石TZr温度 Table 2 Result of LA-ICP-MS zircon U-Pb dating and zircon saturation temperature of alkaline rocks from the Chang'an gold deposit
点号 P Ti Y Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er
CA-05-1 93.6 3.78 1 353 10.99 0.027 8 49.1 0.071 1.60 3.58 1.46 21.6 7.22 98.7 37.5 191.5
CA-05-2 72.6 2.44 733 4.87 0.003 5 23.1 0.013 0.47 2.06 1.25 12.0 4.58 54.4 20.6 99.8
CA-05-3 109.9 2.80 926 8.48 38.6 0.076 1.20 3.49 1.67 16.6 6.07 71.5 27.1 129.9
CA-05-4 71.2 2.30 666 5.12 18.1 0.015 0.43 1.36 1.01 11.7 3.84 48.4 18.1 92.6
CA-05-5 500.7 0.88 1 482 10.14 3.3 0.020 0.53 3.38 0.37 18.0 8.41 114.9 46.9 229.3
CA-05-6 77.6 1.61 738 4.76 15.8 0.020 0.60 1.49 0.83 13.0 4.42 56.8 21.0 104.4
CA-05-7 87.9 3.44 993 6.25 0.059 6 32.2 0.086 1.44 3.89 1.84 20.0 7.03 76.4 28.8 138.0
CA-05-8 80.7 3.55 691 4.88 0.020 4 22.2 0.048 0.97 1.65 1.23 11.8 4.05 52.8 20.3 94.7
CA-05-9 100.1 4.59 706 5.58 0.017 3 37.4 0.052 1.32 3.39 1.22 14.8 5.36 58.3 20.0 96.4
CA-05-10 123.0 4.47 908 7.97 0.008 2 41.6 0.075 1.18 3.86 1.58 16.5 5.61 69.1 25.4 124.6
CA-05-11 68.8 3.05 724 5.30 26.5 0.006 0.78 2.42 1.22 13.6 4.36 54.5 20.6 100.3
CA-05-12 83.6 7.23 1 029 7.73 0.007 8 50.9 0.052 1.87 4.37 1.88 19.0 6.45 81.0 28.8 138.7
CA-05-13 264.9 3.37 785 6.84 1.464 8 47.0 0.542 2.79 5.00 1.80 20.8 5.93 68.3 23.2 108.8
CA-05-14 72.4 2.69 707 5.54 0.006 1 22.4 0.027 0.49 1.72 1.18 13.3 4.81 54.9 20.3 97.5
CA-05-15 103.6 2.50 868 7.23 0.133 1 44.0 0.112 1.73 3.30 1.53 15.1 4.88 63.3 23.5 120.6
CA-05-16 87.3 3.83 994 7.42 0.112 0 38.6 0.076 1.70 3.65 1.62 19.8 6.77 77.7 28.5 137.8
CA-05-17 89.1 2.37 1 059 7.90 0.067 8 34.8 0.031 1.05 3.49 1.74 19.8 6.73 80.5 30.1 145.6
CA-05-18 80.5 4.52 772 6.01 0.004 1 34.1 0.047 1.24 2.57 1.18 13.8 4.84 57.9 21.7 110.4
CA-12-1 98.8 4.82 683 3.26 42.3 0.085 1.76 4.15 1.61 18.9 5.48 59.4 20.5 93.7
CA-12-2 120.9 5.86 711 3.28 0.092 6 45.5 0.073 1.56 3.89 1.69 17.0 5.84 62.7 21.9 94.6
CA-12-3 596.1 8.76 985 6.19 8.630 6 88.0 2.340 12.45 8.28 2.91 26.2 8.24 87.7 30.0 131.9
CA-12-4 98.5 7.71 507 2.11 0.057 1 41.6 0.085 1.89 3.20 1.32 14.7 4.29 43.1 15.5 67.7
CA-12-5 496.9 83.97 1 196 3.33 0.928 6 17.3 0.223 3.77 6.63 1.41 36.8 11.24 119.4 40.3 165.0
CA-12-6 104.2 6.58 632 2.64 0.048 6 53.6 0.168 2.51 3.54 2.08 16.9 5.25 56.1 19.7 86.1
CA-12-7 144.6 6.01 1 138 5.98 0.020 4 53.6 0.109 2.05 4.33 2.32 24.0 8.02 92.9 33.5 157.9
CA-12-8 682.1 3.40 952 4.85 12.579 2 71.1 2.836 14.74 6.37 2.46 21.4 6.87 76.0 28.3 127.6
CA-12-9 126.7 7.31 779 3.31 0.017 9 42.2 0.108 2.29 4.44 1.77 18.7 6.07 64.0 22.8 109.1
CA-12-10 665.1 13.16 740 1.06 0.054 9 6.2 0.043 0.38 1.29 0.33 7.9 4.28 60.8 24.0 125.6
CA-12-11 101.9 8.55 526 2.56 0.008 9 47.0 0.119 1.65 3.84 1.78 13.9 4.44 45.6 15.5 72.9
CA-12-12 184.1 15.15 878 2.24 0.006 1 18.4 0.159 3.16 7.32 0.71 29.9 8.67 94.4 30.3 122.7
CA-12-13 615.0 6.39 859 4.06 6.012 9 67.1 1.618 9.14 5.39 2.34 21.3 6.49 73.2 26.2 118.7
CA-12-14 122.2 7.00 1 194 6.58 0.002 4 52.0 0.104 2.57 5.22 2.22 23.7 8.08 96.0 36.0 169.3
CA-12-15 117.3 7.94 941 4.95 0.140 3 52.9 0.143 2.61 4.37 2.09 22.2 6.81 78.4 28.2 127.8
CA-12-16 131.0 4.79 784 3.77 0.048 6 58.2 0.111 2.70 4.98 2.55 20.6 6.59 70.0 23.9 104.7
CA-12-17 95.8 5.55 847 3.69 0.112 9 37.7 0.094 1.41 4.15 1.88 18.7 5.99 67.1 24.9 119.3
CA-12-18 99.4 6.41 816 3.25 0.065 4 46.4 0.154 2.97 5.46 2.38 21.4 6.24 69.0 24.5 114.5
CA-12-19 203.2 7.11 701 3.22 1.605 6 59.4 0.382 4.06 4.81 2.24 19.7 5.89 62.3 21.3 97.2
CA-12-20 241.6 7.62 857 4.14 0.013 7 55.0 0.113 2.17 5.11 2.14 21.4 6.70 76.6 26.8 117.9
CA-15-1 98.3 3.74 1 469 9.96 0.003 0 35.8 0.023 1.00 3.87 1.96 23.0 8.03 101.6 40.8 206.7
CA-15-2 108.3 3.00 1 162 8.21 0.009 6 29.5 0.045 0.91 2.63 1.49 16.8 6.09 77.3 31.6 164.5
CA-15-3 215.8 6.55 897 6.45 0.633 6 61.7 0.251 2.70 4.52 2.12 23.0 6.92 76.0 26.5 119.0
CA-15-4 104.3 0.72 953 8.01 0.039 4 31.2 0.066 0.89 2.17 1.28 13.5 5.26 63.7 26.4 129.7
CA-15-5 115.1 1.03 1 102 7.72 0.088 4 24.6 0.039 0.80 1.89 1.51 15.8 5.68 78.8 31.8 158.6
CA-15-6 112.3 6.56 908 6.11 0.025 4 15.8 0.025 0.31 1.62 0.75 12.2 4.16 60.9 24.8 129.6
CA-15-7 123.9 5.19 788 6.77 36.6 0.054 1.01 2.26 1.33 13.9 4.50 55.6 22.5 108.6
CA-15-8 78.0 4.82 1 043 9.03 52.6 0.100 1.28 4.98 1.73 18.2 6.31 76.7 29.1 137.4
CA-15-9 95.9 4.59 1 027 8.21 0.109 7 32.0 0.111 1.11 2.87 1.79 17.4 5.92 75.1 29.0 144.4
CA-15-10 109.3 1.84 990 8.82 0.014 2 32.8 0.028 0.53 3.25 1.33 15.1 5.44 71.6 27.3 137.5
CA-15-11 111.6 7.03 465 5.55 0.065 0 22.4 0.022 1.34 3.03 1.35 9.2 3.20 34.8 12.4 61.9
CA-15-12 160.5 4.04 523 5.00 50.8 0.054 1.50 3.08 1.54 15.5 4.41 44.8 15.2 65.9
CA-15-13 41.9 3.72 537 7.48 19.1 0.53 1.59 1.16 9.1 3.21 39.3 15.5 76.1
CA-15-14 163.1 344 5.38 22.6 0.41 1.79 1.05 6.3 2.02 25.5 9.9 43.7
CA-15-15 85.2 3.77 1 113 7.92 0.034 8 23.4 0.043 0.71 2.52 1.25 16.5 5.90 77.1 31.5 157.4
CA-15-16 216.2 2.91 879 6.91 1.905 4 54.5 0.475 4.24 4.00 1.85 19.2 6.14 70.9 25.5 117.0
CA-15-17 81.5 2.72 777 5.47 0.056 4 24.0 0.028 0.76 2.28 1.21 12.6 4.22 52.8 21.3 109.1
CA-15-18 72.5 1.64 771 4.77 0.072 3 26.5 0.048 1.08 3.22 1.20 15.3 4.93 59.1 21.6 105.3
CA-15-19 86.4 0.84 837 5.33 0.014 5 22.6 0.034 0.84 1.92 1.20 13.6 5.22 61.5 23.8 117.9
CA-15-20 115.0 1.91 1 045 6.63 0.129 1 41.6 0.170 1.52 4.70 2.02 23.2 7.21 81.8 30.3 143.9
点号 Tm Yb Lu Hf Ta Pb Th U ∑REE Tzr/℃ δEu δCe NbN PbN (Nb/Pb)N
CA-05-1 48.6 553 99.9 9 974 3.07 23.8 715.6 1 931 1 114 662 0.51 270.36 15.41 334.6 0.046
CA-05-2 26.5 306 55.0 10 705 2.15 19.0 439.3 1 778 606 628 0.77 827.25 6.83 267.3 0.026
CA-05-3 34.3 391 65.4 8 711 3.23 15.6 364.8 1 149 787 639 0.67 11.89 220.0 0.054
CA-05-4 24.6 285 51.5 7 978 1.61 14.6 201.0 1 046 557 624 0.78 7.18 206.2 0.035
CA-05-5 60.1 611 106.2 10 118 4.46 4.3 109.5 1 220 1 202 559 0.15 14.22 60.7 0.234
CA-05-6 26.9 309 52.1 9 223 1.73 9.1 176.9 965 606 599 0.58 6.68 127.8 0.052
CA-05-7 35.1 389 68.1 9 785 2.36 19.2 512.1 1 514 802 654 0.64 110.32 8.77 271.0 0.032
CA-05-8 24.4 275 48.8 9 845 2.04 15.5 409.6 1 522 558 657 0.85 174.44 6.84 218.5 0.031
CA-05-9 24.1 266 44.3 9 201 2.06 21.3 504.1 1 199 572 677 0.53 305.87 7.82 299.6 0.026
CA-05-10 32.5 366 62.4 8 419 2.61 14.7 306.8 932 751 675 0.60 410.76 11.18 207.1 0.054
CA-05-11 25.6 288 50.5 10 068 1.96 21.1 467.0 1 670 589 645 0.65 7.43 297.9 0.025
CA-05-12 36.0 411 69.4 8 954 2.74 23.5 510.3 1 312 849 716 0.63 617.21 10.84 331.0 0.033
CA-05-13 25.4 288 46.6 8 489 2.78 18.7 517.4 1 292 645 653 0.54 12.92 9.59 263.2 0.036
CA-05-14 25.1 292 48.3 9 910 2.25 18.3 441.8 1 988 582 636 0.75 425.49 7.76 258.1 0.030
CA-05-15 31.5 363 64.7 7 788 2.27 20.7 405.4 1 182 738 630 0.66 88.55 10.14 290.9 0.035
CA-05-16 35.9 413 68.8 10 164 2.52 19.9 538.0 1 684 834 663 0.58 102.27 10.40 280.1 0.037
CA-05-17 38.3 433 75.5 10 438 2.92 28.2 689.6 2 212 871 626 0.64 185.62 11.07 397.1 0.028
CA-05-18 29.3 342 60.3 9146 2.32 12.3 325.1 1 077 680 676 0.61 602.26 8.43 172.9 0.049
CA-12-1 21.2 221 36.5 9 327 1.36 15.0 416.4 595 526 682 0.56 4.58 210.9 0.022
CA-12-2 22.6 228 40.6 9 174 1.37 11.3 346.5 531 546 698 0.64 135.28 4.60 159.4 0.029
CA-12-3 31.2 319 51.5 8 388 1.78 17.5 504.9 704 809 733 0.60 4.80 8.68 246.1 0.035
CA-12-4 15.8 160 27.3 9 446 1.05 10.6 259.0 374 397 722 0.59 146.47 2.96 149.0 0.020
CA-12-5 33.1 296 47.5 9 531 0.86 54.9 93.8 80 780 994 0.28 9.30 4.68 773.2 0.006
CA-12-6 19.5 198 34.4 8 937 1.14 11.0 326.3 419 498 708 0.82 145.27 3.71 155.4 0.024
CA-12-7 38.6 401 69.7 9 208 2.16 15.2 371.5 643 888 700 0.69 278.58 8.39 214.0 0.039
CA-12-8 32.4 347 60.7 8 995 1.55 9.5 287.2 525 810 654 0.65 2.92 6.81 133.6 0.051
CA-12-9 26.6 282 48.9 9 069 1.41 12.4 247.9 430 629 717 0.59 235.33 4.64 174.5 0.027
CA-12-10 35.8 408 70.4 11 847 1.24 241.7 88.3 543 745 772 0.32 31.27 1.48 3404.6 0.000
CA-12-11 16.2 169 28.6 8 483 1.12 13.3 338.6 490 420 731 0.74 353.91 3.59 186.9 0.019
CA-12-12 25.5 234 35.8 9 832 1.31 102.5 205.4 249 611 786 0.15 144.44 3.14 1443.8 0.002
CA-12-13 28.9 305 50.3 8 666 1.38 12.5 318.9 492 722 705 0.67 5.28 5.69 176.7 0.032
CA-12-14 41.1 427 74.6 8 840 2.12 13.5 377.4 676 938 713 0.61 806.88 9.22 190.5 0.048
CA-12-15 32.2 340 56.7 8 476 1.66 12.5 320.6 522 755 725 0.65 91.43 6.95 176.5 0.039
CA-12-16 25.1 251 40.2 9 246 1.68 20.7 643.0 777 611 681 0.77 194.77 5.29 291.4 0.018
CA-12-17 29.2 311 53.3 9 311 1.76 9.7 243.8 450 675 693 0.65 89.89 5.18 136.1 0.038
CA-12-18 27.1 291 49.2 8 723 1.34 9.0 260.1 415 660 706 0.67 113.54 4.56 126.3 0.036
CA-12-19 23.4 227 39.3 9 039 1.35 9.2 352.6 467 569 715 0.70 18.62 4.52 129.6 0.035
CA-12-20 27.2 275 46.5 8 901 1.55 21.1 447.1 578 662 721 0.63 343.33 5.81 297.3 0.020
CA-15-1 53.7 577 115.2 11 322 3.27 23.1 559.0 1 919 1 169 661 0.63 1 047.41 13.98 324.9 0.043
CA-15-2 41.3 458 92.2 10 475 2.79 22.7 464.0 1 660 922 644 0.68 350.46 11.51 319.4 0.036
CA-15-3 27.6 284 52.5 9 985 2.38 32.2 1 025.1 1 466 688 707 0.63 37.90 9.04 454.0 0.020
CA-15-4 35.2 392 77.7 10 243 2.57 18.9 449.6 1 426 779 546 0.72 150.23 11.23 266.1 0.042
CA-15-5 39.4 426 81.0 10 152 2.50 20.2 333.6 1 488 866 569 0.84 102.12 10.83 284.9 0.038
CA-15-6 33.6 379 70.6 9 956 2.11 18.1 252.7 1 406 733 708 0.52 152.14 8.57 254.4 0.034
CA-15-7 26.5 308 59.5 8 178 2.19 19.9 362.6 1 045 640 688 0.72 9.49 280.2 0.034
CA-15-8 33.9 382 71.5 8 384 2.70 45.7 1 059.8 2 094 815 681 0.56 12.66 643.3 0.020
CA-15-9 36.6 407 76.4 9 412 2.33 22.3 454.9 1 636 830 677 0.78 70.95 11.52 314.0 0.037
CA-15-10 34.5 388 79.4 9 484 2.79 30.5 579.4 1 970 797 608 0.58 399.09 12.36 430.1 0.029
CA-15-11 14.3 172 33.1 7 021 1.56 18.8 399.3 1 483 369 714 0.78 146.40 7.79 264.8 0.029
CA-15-12 15.3 164 27.7 5 370 1.77 31.7 487.4 939 409 667 0.68 7.02 445.9 0.016
CA-15-13 19.0 233 35.3 4 565 2.23 22.7 187.5 1 328 453 661 0.93 10.49 319.2 0.033
CA-15-14 11.7 147 21.3 3 297 1.37 28.7 209.0 936 294 0.96 7.55 403.6 0.019
CA-15-15 41.3 466 87.9 11 128 2.69 18.0 312.3 1 416 912 662 0.59 148.71 11.11 253.3 0.044
CA-15-16 28.4 308 58.8 10 678 2.52 32.1 975.6 1 608 701 642 0.64 14.06 9.69 451.6 0.021
CA-15-17 28.4 329 64.2 10 151 2.13 11.7 308.6 1 221 649 637 0.69 147.28 7.67 165.4 0.046
CA-15-18 25.9 278 56.0 11 480 1.90 19.4 544.9 1 577 598 600 0.52 110.02 6.69 272.8 0.025
CA-15-19 28.6 314 62.1 12 002 2.42 19.9 466.9 1 664 653 556 0.72 251.13 7.47 280.3 0.027
CA-15-20 33.8 362 70.8 10 488 2.61 23.0 641.7 1 884 803 611 0.59 68.87 9.30 323.6 0.029
注:,其中Ce,La,Pr,Eu,Sm,Gd均表示球粒陨石标准化的值;TZr=(4800±86)/((5.711±0.072)-lg(Ti))-273.15[40],℃。
标准化数据来自文献[40]。 图 5 研究区碱性岩锆石球粒陨石标准化REE配分曲线图 Fig. 5 Chondrite-normalized REE patterns diagram of zircon from alkaline rocks in the study area
3.3 锆石Hf同位素结果

本次研究通过MC-ICP-MS获得锆石Hf同位素结果列于表 3,所选点位与锆石U-Pb测年分析点位基本一致,均在已做测年分析的锆石颗粒之上进行Hf同位素测定(图 3)。对CA-05正长花岗岩中的18粒锆石进行了Hf同位素分析测试,176Hf/177Hf值范围为0.282 616~0.282 767,计算的εHf(t)值范围为-4.75~0.60(计算方法参见[45-46]),TDMC模式年龄为1 412~1 072 Ma。对CA-12正长岩中的20粒锆石进行了Hf同位素分析测试,除5个继承锆石点(CA-12-04,05,09,10,12)外,其余点176Hf/177Hf值范围为0.282 590~0.282 744,计算的εHf(t)值范围为-5.67~ -0.22,TDMC模式年龄为1 470~1 124 Ma,继承锆石显示出较低的Hf同位素组成和较大的负εHf(t)值,εHf(t)范围为-61.24~-19.47,TDMC模式年龄为4 519~2 340 Ma。对CA-15正长花岗岩中的20粒锆石进行了Hf同位素分析测试,除2个继承锆石点(CA-15-11,12)外,其余点176Hf/177Hf值范围为0.282 614~0.282 746,计算的εHf(t)值范围为-11.52~ -0.12,TDMC模式年龄为1 840~1 118 Ma;CA-15-11,12继承锆石表面年龄分别为42.5和44.6 Ma,与成岩年龄接近,显示出较高的Hf同位素组成和负εHf值(-1.39和-0.54),TDMC模式年龄为1 199和1 145 Ma。

表 3 长安金矿区碱性岩锆石Hf同位素结果 Table 3 Result of zircon Hf isotope of alkaline rocks from the Chang'an gold deposit
测点号 年龄/
Ma
176Yb/
177Hf
2σ 176Lu/
177Hf
2σ 176Hf/
177Hf
2σ εHf(t) TDM/
Ma
TDMC/
Ma
fLu/Hf
CA-05-1 36.7 0.029 699 0.000 237 0.001 138 0.000 011 0.282 691 0.000 021 -2.10 798 1 244 -0.97
CA-05-2 36.7 0.018 173 0.000 069 0.000 725 0.000 001 0.282 709 0.000 017 -1.46 764 1 203 -0.98
CA-05-3 36.7 0.021 199 0.000 184 0.000 793 0.000 006 0.282 662 0.000 021 -3.10 831 1 307 -0.98
CA-05-4 36.7 0.021 602 0.000 254 0.000 838 0.000 008 0.282 761 0.000 020 0.39 693 1 086 -0.97
CA-05-5 36.7 0.044 766 0.000 570 0.001 646 0.000 015 0.282 616 0.000 019 -4.75 916 1 412 -0.95
CA-05-6 36.7 0.024 565 0.000 454 0.000 981 0.000 018 0.282 720 0.000 016 -1.04 753 1 177 -0.97
CA-05-7 36.7 0.026 523 0.000 543 0.001 044 0.000 019 0.282 678 0.000 020 -2.54 814 1 272 -0.97
CA-05-8 36.7 0.019 598 0.000 249 0.000 785 0.000 009 0.282 703 0.000 020 -1.64 773 1 215 -0.98
CA-05-9 36.7 0.015 617 0.000 092 0.000 611 0.000 002 0.282 739 0.000 022 -0.36 719 1 133 -0.98
CA-05-10 36.7 0.020 215 0.000 507 0.000 782 0.000 020 0.282 736 0.000 020 -0.50 727 1 142 -0.98
CA-05-11 36.7 0.020 608 0.000 069 0.000 803 0.000 003 0.282 733 0.000 021 -0.61 732 1 149 -0.98
CA-05-12 36.7 0.025 508 0.000 391 0.000 973 0.000 013 0.282 724 0.000 022 -0.91 747 1 168 -0.97
CA-05-13 36.7 0.022 605 0.000 091 0.000 849 0.000 005 0.282 740 0.000 019 -0.34 722 1 132 -0.97
CA-05-14 36.7 0.024 160 0.000 478 0.000 948 0.000 023 0.282 767 0.000 018 0.60 687 1 072 -0.97
CA-05-15 36.7 0.030 721 0.000 276 0.001 166 0.000 010 0.282 622 0.000 023 -4.54 896 1 398 -0.96
CA-05-16 36.7 0.028 213 0.000 252 0.001 107 0.000 006 0.282 707 0.000 021 -1.54 775 1 208 -0.97
CA-05-17 36.7 0.026 319 0.000 483 0.001 037 0.000 022 0.282 630 0.000 018 -4.24 881 1 379 -0.97
CA-05-18 36.7 0.018 026 0.000 531 0.000 740 0.000 020 0.282 693 0.000 020 -2.00 786 1 237 -0.98
CA-12-1 36.2 0.015 785 0.000 166 0.000 580 0.000 006 0.282 637 0.000 021 -4.01 862 1 365 -0.98
CA-12-2 36.2 0.023 221 0.000 371 0.000 824 0.000 014 0.282 716 0.000 022 -1.19 755 1 186 -0.98
CA-12-3 36.2 0.017 665 0.000 229 0.000 601 0.000 007 0.282 726 0.000 026 -0.83 737 1 163 -0.98
CA-12-4 36.2 0.017 397 0.000 074 0.000 641 0.000 002 0.281 749 0.000 024 -35.39 2 087 3 332 -0.98
CA-12-5 36.2 0.025 612 0.000 234 0.000 804 0.000 007 0.281 019 0.000 023 -61.24 3 088 4 519 -0.98
CA-12-6 36.2 0.019 547 0.000 133 0.000 678 0.000 003 0.282 691 0.000 026 -2.08 788 1 242 -0.98
CA-12-7 36.2 0.021 361 0.000 510 0.000 729 0.000 020 0.282 718 0.000 024 -1.13 751 1 182 -0.98
CA-12-8 36.2 0.018 641 0.000 417 0.000 649 0.000 017 0.282 687 0.000 027 -2.23 793 1 252 -0.98
CA-12-9 36.2 0.019 202 0.000 278 0.000 691 0.000 010 0.281 873 0.000 042 -31.00 1 920 3 059 -0.98
CA-12-10 36.2 0.037 056 0.000 490 0.001 432 0.000 021 0.281 545 0.000 020 -42.65 2 416 3 779 -0.96
CA-12-11 36.2 0.024 365 0.000 956 0.000 832 0.000 030 0.282 743 0.000 025 -0.26 718 1 126 -0.97
CA-12-12 36.2 0.017 287 0.000 480 0.000 610 0.000 020 0.282 199 0.000022 -19.47 1 469 2 340 -0.98
CA-12-13 36.2 0.016 930 0.000 076 0.000 604 0.000 003 0.282 697 0.000 027 -1.86 777 1 228 -0.98
CA-12-14 36.2 0.026 810 0.000 626 0.000 967 0.000 023 0.282 686 0.000 026 -2.26 800 1 253 -0.97
CA-12-15 36.2 0.018 664 0.000 095 0.000 690 0.000 003 0.282 744 0.000 028 -0.22 714 1 124 -0.98
CA-12-16 36.2 0.024 125 0.000 281 0.000 872 0.000 014 0.282 682 0.000 025 -2.42 805 1 264 -0.97
CA-12-17 36.2 0.014 604 0.000 371 0.000 560 0.000 011 0.282 590 0.000 034 -5.67 927 1 470 -0.98
CA-12-18 36.2 0.015 467 0.000 296 0.000 565 0.000 009 0.282 656 0.000 025 -3.32 834 1 321 -0.98
CA-12-19 36.2 0.012 844 0.000 225 0.000 477 0.000 006 0.282 661 0.000 022 -3.15 826 1 310 -0.99
CA-12-20 36.2 0.018 159 0.000 066 0.000 665 0.000 001 0.282 661 0.000 023 -3.16 830 1 311 -0.98
CA-15-1 37.5 0.029 328 0.000 424 0.001 176 0.000 020 0.282 614 0.000 020 -4.80 908 1 416 -0.96
CA-15-2 37.5 0.020 075 0.000 240 0.000 786 0.000 011 0.282 728 0.000 020 -0.77 739 1 160 -0.98
CA-15-3 37.5 0.027 278 0.000 586 0.001 015 0.000 025 0.282 736 0.000 020 -0.48 732 1 142 -0.97
CA-15-4 37.5 0.021 075 0.000 641 0.000 845 0.000 028 0.282 657 0.000 020 -3.25 839 1 318 -0.97
CA-15-5 37.5 0.030 826 0.000 403 0.001 183 0.000 016 0.282 730 0.000 023 -0.69 743 1 155 -0.96
CA-15-6 37.5 0.027 998 0.000 316 0.001 089 0.000 012 0.282 746 0.000 025 -0.12 718 1 118 -0.97
CA-15-7 37.5 0.020 833 0.001 193 0.000 829 0.000 047 0.282 669 0.000 033 -2.84 822 1 291 -0.98
CA-15-8 37.5 0.025 822 0.000 483 0.000 974 0.000 019 0.282 671 0.000 026 -2.77 822 1 287 -0.97
CA-15-9 37.5 0.024 150 0.000 229 0.000 953 0.000 007 0.282 673 0.000 028 -2.69 819 1 282 -0.97
CA-15-10 37.5 0.029 279 0.000 348 0.001 181 0.000 017 0.282 738 0.000 026 -0.41 732 1 137 -0.96
CA-15-11 37.5 0.025 118 0.000 242 0.001 019 0.000 012 0.282 710 0.000 024 -1.39 768 1 199 -0.97
CA-15-12 37.5 0.032 646 0.000 365 0.001 278 0.000 013 0.282 734 0.000 029 -0.54 739 1 145 -0.96
CA-15-13 37.5 0.026 134 0.000 768 0.001 016 0.000 025 0.282 694 0.000 024 -1.96 791 1 235 -0.97
CA-15-14 37.5 0.025 290 0.000 319 0.001 005 0.000 012 0.282 648 0.000 028 -3.58 855 1 338 -0.97
CA-15-15 37.5 0.027 503 0.000 331 0.001 069 0.000 011 0.282 424 0.000 054 -11.52 1 172 1 840 -0.97
CA-15-16 37.5 0.023 665 0.000 238 0.000 876 0.000 007 0.282 690 0.000 026 -2.10 793 1 244 -0.97
CA-15-17 37.5 0.018 511 0.000 265 0.000 762 0.000 009 0.282 722 0.000 022 -0.97 746 1 173 -0.98
CA-15-18 37.5 0.022 244 0.000 098 0.000 925 0.000 004 0.282 745 0.000 024 -0.16 717 1 121 -0.97
CA-15-19 37.5 0.016 293 0.000 021 0.000 675 0.000 001 0.282 681 0.000 018 -2.40 801 1 264 -0.98
CA-15-20 37.5 0.019 876 0.000 198 0.000 825 0.000 009 0.282 683 0.000 022 -2.33 802 1 259 -0.98
注:CA-12-04,CA-12-05,CA-12-09,CA-12-10,CA-12-12,CA-15-11和CA-15-12为继承锆石Hf同位素数据。
4 讨论 4.1 碱性岩形成时代

本文选取长安金矿区内正长岩(岩脉,CA-12)和正长花岗岩(岩株(CA-05,CA-15)进行锆石定年,获得LA-ICP-MS年龄分别为(35.8±1.8)Ma、(36.7±0.5)Ma和(37.5±0.6)Ma,这些年龄代表了正长岩和正长花岗岩的侵位时间。我们获得年龄与前人获得的该区内正长岩年龄稍有差异,田广等[22]对区内正长岩和正长斑岩进行锆石U-Pb测年显示成岩年龄分别为(32.5±0.1)Ma和(33.0±0.1)Ma,本次获得年龄老于田广等[22]获得的正长岩和正长斑岩的年龄。可能由于样品的差异等原因,暂不对田广等[22]的年龄予以置评。本文获得的年龄与王勇[47]测得的矿区煌斑岩中黑云母39Ar-40Ar年龄坪年龄((35.27±0.74)Ma)和黄波等[48]测得的金平铜厂含矿花岗斑岩年龄((35.1±0.3)Ma)在误差范围内一致。前人对长安金矿区附近相关矿床的成矿年龄进行测定,发现成矿年龄略小于成岩年龄。例如,王登红等[49]测得铜厂辉钼矿Re-Os等时线年龄为(34.4±0.5)Ma,胥磊落等[50]测得长安冲辉钼矿等时线年龄为(34.5±0.7)Ma,与邓军等[8]总结的哀牢山成矿带主要成矿期为(34±2)Ma相一致。一般地,与岩浆作用有关的矿床,其成矿时代一般晚于成岩时代。而该区域内与岩体相关的成矿年龄晚于成岩年龄(37.0~35.0 Ma),表明本文对长安金矿区内正长岩和正长花岗岩测定的成岩年龄数据较为可靠。LA-ICP-MS锆石U-Pb年龄显示本区碱性岩主要形成于晚始新世(37.0~35.0 Ma)。

4.2 锆石微量元素、Hf同位素对碱性岩成因的约束

由于矿区内碱性岩蚀变严重,烧失量大(2.32%~8.55%,未发表),故利用岩体主量和微量元素地球化学特征对其成因及构造背景进行约束可能存在误差。前人对各种不同成因的锆石(包括岩浆锆石、变质锆石和热液锆石)进行了详细的研究,发现不同成因锆石微量元素组成不同,可以通过锆石稀土及微量元素反演其成因和母岩浆的源区、演化历史和分离结晶温度等信息[24-25, 39, 51]。碱性岩中锆石由于性质稳定,不易受蚀变影响,可以用来讨论寄主岩体的成因并可能约束其形成构造背景。本文3件碱性岩样品锆石U-Pb年龄显示主要形成时间为新生代始新世晚期,与前人研究的哀牢山成矿带富碱斑岩的成岩年龄(37.9~31.3 Ma[52])相吻合。锆石测定点的原位Th/U值变化分别为CA-05在0.09~0.42之间、CA-12在0.54~0.83之间、CA-15在0.14~0.62之间(表 1),均大于典型岩浆锆石的Th/U值(一般地,岩浆锆石Th/U>0.1)。在CL图像(图 4)中,除继承锆石外,其余锆石颗粒存在明显的生长环带结构,在δCe-(Sm/La)N锆石判别图(图 6a)中,投点大部分落在岩浆锆石区域,表明这些锆石属于岩浆成因锆石。

a.底图据文献[53];b,c.底图据文献[54];d.底图据文献[51]。 图 6 研究区碱性岩锆石微量元素判别图解 Fig. 6 Discriminant diagrams of zircon trace element from alkaline rocks in the study area

碱性岩中锆石(除继承锆石外)具有较高的U/Yb值以及相似的Hf、Y质量分数,表现出强烈的陆壳源区特征(图 6bc),暗示长安金矿区碱性岩主要来源于陆壳。根据Wang等[51]对成因明确的187颗锆石微量元素的总结,可以通过(Nb/Pb)N-δEu谐变图(图 6d)来判断其寄主岩石成因类型。在(Nb/Pb)N-δEu图解中,投点落在在Ⅰ型花岗岩区域,少量投点落在S型花岗岩区域,表明长安金矿区碱性岩主要为火成岩,在形成过程中可能存在少量沉积岩的加入。除继承锆石外,长安金矿区碱性岩锆石Hf同位素表现出相近的成岩时代和176Hf/177Hf值范围,εHf(t)和TDMC模式年龄也基本一致,表明他们具有相同的源区。TDMC模式年龄变化范围为1 840~1 072 Ma,主要集中在1.3~1.1 Ga之间(图 7a),显示具有较老的二阶段模式年龄,暗示碱性岩源区物质主要来源于中元古代;εHf(t)变化于-5.67~0.60之间,主要集中在-5~0之间(图 7b),整体出现亏损特征;在εHf(t)-t图解(图 7c)上,投点分布在亏损地幔和下地壳之间的区域,且靠近下地壳,说明其成岩物质来源于下地壳。继承锆石εHf(t)值变化范围较大,变化于-61.24~ -0.54之间,二阶段地壳模式年龄为4 519~1 145 Ma,在εHf(t)-t图解(图 7c)上主要分布于上地壳附近,暗示继承锆石来自古老上地壳。Li等[55]指出来源小于35 km深度的岩浆具有明显的Eu负异常,而大于35 km深度的岩浆有弱的Eu负异常或者没有Eu负异常。3个碱性花岗岩样品中除了继承锆石外,均具有弱的Eu负异常(图 5),表明其来源深度大于35 km,继承锆石存在较强的Eu负异常,表明其来源深度小于35 km。显示碱性岩主要来自下地壳,继承锆石可能是古老上地壳的产物。

图 7 研究区碱性岩锆石Hf同位素地壳模式年龄TDMC(a)、εHf(t)值(b)直方图及εHf(t)-年龄图 Fig. 7 Histograms of zircon TDMC(a), εHf(t) (b)and age vs. εHf(t) diagram (c)of alkaline rocks in the study area

锆石Ti地质温度计是约束锆石结晶温度非常有效的地球化学示踪器,根据Ferry等[44]的锆石温度计计算公式获得碱性岩锆石(除继承锆石外)结晶温度分别为:CA-05在559~716 ℃之间,CA-12在654~994 ℃之间,CA-15在546~714 ℃之间,结晶温度较低。较低的结晶温度和继承锆石的存在,表明长安金矿区内碱性岩形成温度较低,为“冷”花岗岩,其形成可能与流体注入或者基性—超基性熔体的底侵加热有关[56]。野外地质调查发现,矿区内发育大量同时代的煌斑岩和辉绿岩等基性岩脉,表明碱性岩的形成可能与基性—超基性熔体的底侵加热有关。

4.3 长安金矿区碱性岩浆作用与金矿化的关系

新生代始新世晚期,青藏高原受晚碰撞阶段的陆内造山与地壳变形作用的控制,导致其东南缘哀牢山成矿带发生了大规模的左行剪切走滑运动和碱性岩浆活动[3, 5, 13, 21, 57-60]。长安金矿区内发育的糜棱岩、破碎角砾岩即是哀牢山断裂带左行剪切走滑活动在浅部地壳的直接表现。区内碱性岩脉未见变形变质,表明碱性岩浆活动可能与剪切作用同时发生,剪切走滑活动形成深大断裂引发基性—超基性熔体发生底侵作用, 并加热下地壳部分熔融导致了碱性岩浆的形成。前人[26, 61-65]对长安金矿区成矿流体C、H、O、S等稳定同位素组成研究表明,成矿流体主要为沉积围岩的变质流体,另存在少量浅部雨水的参与,岩浆流体对成矿流体的贡献较少。李士辉等[64]对长安金矿区各地质体黄铁矿S同位素(峰值集中在1‰~ 3‰)进行研究发现,成矿流体主要来自地层围岩,可能混染了部分喜马拉雅期岩浆热液硫,Pb同位素(208Pb/204Pb = 38.722~40.649,207Pb/204Pb = 15.604~15.813,206Pb/204Pb=18.788~19.761)显示成矿流体来源赋矿围岩,与岩浆岩相关性较小。表明由于哀牢山韧性剪切活动导致区域地层的变形变质,产生变质流体,变质流体萃取地层中成矿金属元素物质[61],在浅部地壳中与雨水等混合形成成矿流体,成矿流体沿断裂通道搬运迁移,在合适的物理化学条件下,即在脆性构造部位发生成矿物质的沉淀形成金矿床,同时成矿流体与围岩发生化学反应导致围岩的矿化蚀变。

由此可见,长安金矿区碱性岩的形成与金矿化是在印度-欧亚板块碰撞下青藏高原物质东向逃逸诱发哀牢山韧性剪切走滑活动这一大构造背景下的产物,成矿流体来源表明碱性岩的形成不对金矿化提供成矿物质,他们之间没有直接的成因联系,仅仅是同一构造-地质作用在地表的不同表现形式。即二者表现为“兄弟”之间的关系,而非“母子”之间的成因联系。但是碱性岩出露的区域,暗示在该构造背景下存在金矿化的可能,可以作为哀牢山成矿带南部寻找金矿化的标志之一。

5 结论

1) LA-ICP-MS锆石U-Pb年龄表明长安金矿区碱性岩主要形成于晚始新世(37.0~35.0 Ma)。

2) 结合长安矿区碱性花岗岩岩浆锆石微量元素球粒陨石标准化图解、锆石来源判别和结晶温度等证据,可以确定长安金矿区碱性岩可能主要来自下地壳火成岩区,在形成过程中存在少量1 648.5~34.8 Ma不同时期的上地壳沉积岩物质的加入。

3) 哀牢山韧性剪切活动诱发基性—超基性熔体发生底侵作用,并加热下地壳发生部分熔融形成碱性岩浆。

4) 长安金矿区碱性岩的形成与金矿化是在印度-欧亚板块碰撞下青藏高原物质东向逃逸诱发哀牢山韧性剪切活动这一大构造背景下的产物,他们之间可能没有直接的成因联系,仅仅是同一构造-地质作用的不同表现形式。

参考文献
[1]
钟大赉, Tapponnier P, 吴海威. 大型走滑断裂:碰撞后陆内变形的重要形式[J]. 科学通报, 1989, 34(7): 525-529.
Zhong Dalai, Tapponnier P, Wu Haiwei. Large Strike Slip Fault:An Important Pattern of Intracontinental Deformation After Collision[J]. Chinese Science Bulletin, 1989, 34(7): 525-529.
[2]
Leloup P H, Kienast J R. High Temperature Metamorphism in a Major Strike-Slip Shear Zone:The Ailao Shan-Red River(P.R.C.)[J]. Earth and Planetary Science Letters, 1993, 118(1/2/3/4): 213-234.
[3]
Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River Shear Zone (Yunnan, China):Tertiary Transform Boundary of Indochina[J]. Tectonophysics, 1995, 251(1/2/3/4): 3-84.
[4]
Hou Z Q, Zaw K, Pan G T, et al. The Sanjiang Tethyan Metallogenesis in SW China:Tectonic Setting, Metallogenic Epoch and Deposit Type[J]. Ore Geology Reviews, 2007, 31(1/2/3/4): 48-87.
[5]
莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 17(3): 351-367.
Mo Xuanxue. Magmatism and Evolution of the Tibetan Plateau[J]. Geological Journal of China University, 2011, 17(3): 351-367. DOI:10.3969/j.issn.1006-7493.2011.03.001
[6]
Deng J, Wang Q F, Li G J, et al. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. DOI:10.1016/j.earscirev.2014.05.015
[7]
毛景文, 李晓峰, 李厚民, 等. 中国造山带内生金属矿床类型、特点和成矿过程探讨[J]. 地质学报, 2005, 79(3): 342-367.
Mao Jingwen, Li Xiaofeng, Li Houmin, et al. Types and Characteristics of Endogenetic Metallic Deposits in Organic Belts in China and Their Metallogenic Processes[J]. Acta Geologica Sinica, 2005, 79(3): 342-367. DOI:10.3321/j.issn:0001-5717.2005.03.008
[8]
邓军, 侯增谦, 莫宣学, 等. 三江特提斯复合造山与成矿作用[J]. 矿床地质, 2010, 29(1): 37-42.
Deng Jun, Hou Zengqian, Mo Xuanxue, et al. Superimposed Orogenesis and Metallogenesis in Sanjiang Tethys[J]. Mineral Deposits, 2010, 29(1): 37-42. DOI:10.3969/j.issn.0258-7106.2010.01.005
[9]
Deng J, Wang Q F, Li G J, et al. Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437. DOI:10.1016/j.gr.2013.08.002
[10]
Tran M D, Liu J L, Nguyen Q L, et al. Cenozoic High-K Alkaline Magmatism and Associated Cu-Mo-Au Mineralization in the Jinping-Fan Si Pan Region, Southeastern Ailao Shan-Red River Shear Zone, Southweatern China-Northeweatern Vietnam[J]. Journal of Asian Earth Sciences, 2014, 79(2): 858-872.
[11]
Mao J W, Pirajno F, Lehmann B, et al. Distribution of Porphyry Deposits in the Eurasian Continent and Their Corresponding Tectonic Setting[J]. Journal of Asian Earth Sciences, 2013, 79(B5): 576-584.
[12]
Schärer U, Tapponnier P, Lacassin R, et al. Intraplate Tectonics in Asia:A Precise Age for Large-Scale Miocene Movement Along the Ailao Shan-Red River Shear Zone, China[J]. Earth and Planetary Science Letters, 1990, 97(1): 65-77.
[13]
Schärer U, Zhang L S, Tapponnier P. Duration of Strike-Slip Movements in Large Shear Zones:The Red River Belt, China[J]. Earth and Planet Science Letters, 1994, 126(4): 379-397. DOI:10.1016/0012-821X(94)90119-8
[14]
Chung S L, Lee T Y, Lo C H, et al. Intraplate Extension Prior to Continental Extrusion Along the Ailao Shan-Red River Shear Zone[J]. Geology, 1997, 25(4): 311-314. DOI:10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
[15]
Liang H Y, Campbell I H, Allen C M, et al. The Age of the Potassic Alkaline Igneous Rocks Along the Ailao Shan-Red River Shear Zone:Implications for the Onset Age of Left-Lateral Shearing[J]. The Journal of Geology, 2007, 115(2): 231-242. DOI:10.1086/510801
[16]
杨立强, 刘江涛, 张闯, 等. 哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探[J]. 岩石学报, 2010, 26(6): 1723-1739.
Yang Liqiang, Liu Jiangtao, Zhang Chuang, et al. Superimposed Orogenesis and Metallognesis:An Example from the Orogenic Gold Deposits in Ailaoshan Gold Belt, Southwest China[J]. Acta Petrologica Sinica, 2010, 26(6): 1723-1739.
[17]
杨立强, 邓军, 赵凯, 等. 哀牢山造山带金矿成矿时序及其动力学背景探讨[J]. 岩石学报, 2011, 27(9): 2519-2532.
Yang Liqiang, Deng Jun, Zhao Kai, et al. Tectono-Thermochronology and Gold Mineralization Events of Orogenic Gold Deposits in Ailaoshan Orogenic Belt, Southwest China:Geochronological Constraints[J]. Acta Petrologica Sinica, 2011, 27(9): 2519-2532.
[18]
张超, 戚学祥, 唐贯宗, 等. 滇西哀牢山构造带长安铜钼金矿集区碱性斑岩岩石地球化学、锆石U-Pb定年及其对成矿作用的约束[J]. 岩石学报, 2014, 30(8): 2204-2216.
Zhang Chao, Qi Xuexiang, Tang Guanzong, et al. Geochemistry and Zircon U-Pb Dating for the Alkaline Porphyries and Its Constraint on the Mineralization in Chang'an Cu-Mo-Au Ore Concentration Region, Ailaoshan Orogenic Belt, Western Yunnan[J]. Acta Petrologica Sinica, 2014, 30(8): 2204-2216.
[19]
刘俊来, 唐渊, 宋志杰, 等. 滇西哀牢山构造带:结构和演化[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1285-1303.
Liu Junlai, Tang Yuan, Song Zhijie, et al. The Ailaoshan Belt in Western Yunnan:Tectonic Framework and Tectonic Evolution[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1285-1303.
[20]
张进江, 钟大赉, 桑海清, 等. 哀牢山—红河构造带古新世以来多期活动的构造和年代学证据[J]. 地质科学, 2006, 41(2): 291-310.
Zhang Jinjiang, Zhong Dalai, Sang Haiqing, et al. Structural and Geochronological Evidence for Multiple Episodes of Deformation Since Paleocene Along the Ailaoshan-Red River Shear Zone, Southeastern Asia[J]. Chinese Journal of Geology, 2006, 41(2): 291-310. DOI:10.3321/j.issn:0563-5020.2006.02.011
[21]
曹淑云, 刘俊来, Leiss B, 等. 哀牢山—红河剪切带左行走滑作用起始时间约束:点苍山高温糜棱岩的显微构造与热年代学证据[J]. 地质学报, 2009, 83(10): 1388-1400.
Cao Shuyun, Liu Junlai, Leiss B, et al. Timing of Initiation of Left-Lateral Slip Along the Ailao Shan-Red River Shear Zone:Microstructural, Texture and Thermochronological Evidence from High Temperature Mylonites in Diancang Shan, SW China[J]. Acta Geological Sinica, 2009, 83(10): 1388-1400. DOI:10.3321/j.issn:0001-5717.2009.10.003
[22]
田广, 张长青, 彭惠娟, 等. 哀牢山长安金矿成因机制及动力学背景初探:来自LA-ICP-MS锆石U-Pb定年和黄铁矿原位微量元素测定的证据[J]. 岩石学报, 2014, 30(1): 125-138.
Tian Guang, Zhang Changqing, Peng Huijuan, et al. Petrogenesis and Geodynamic Setting of the Chang'an Gold Deposit in Southern Ailaoshan Metallogenic Belt[J]. Acta Petrologica Sinica, 2014, 30(1): 125-138.
[23]
李士辉, 张静, 邓军, 等. 哀牢山南段长安金矿床成矿流体特征及成因类型探讨[J]. 岩石学报, 2011, 27(12): 3777-3786.
Li Sihui, Zhang Jing, Deng Jun, et al. The Characteristics of Ore-Forming Fluid and Genetic Type of the Chang'an Gold Deposit in Southern Ailaoshan Metallogenic Belt[J]. Acta Petrologica Sinica, 2011, 27(12): 3777-3786.
[24]
Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineraloyg and Geochemistry, 2000, 53(1): 27-62.
[25]
雷玮琰.不同成因锆石的微量元素特征研究: 以缅甸硬玉岩、山西金红石矿等中锆石为例[D].北京: 中国地质大学(北京), 2013: 1-109.
Lei Weiyan.Trace Element Composition of Zircon from Myanmar Jadeitie, the Daixian Rutile Deposit and the Huangbaikeng Rhyolite Porphyry[D].Beijing: China University of Geosciences (Beijing), 2013: 1-109.
[26]
周敖日格勒, 戴紧根, 李亚林, 等. 东昆仑山脉晚志留世—早侏罗世花岗岩类岩石中锆石微量元素地球化学特征及地质意义[J]. 岩石学报, 2017, 33(1): 173-190.
Zhou Aorigele, Dai Jingen, Li Yalin, et al. Zircon Trace Element Geochemical Characteristics of Late Silurian-Early Jurassic Granitoids from East Kunlun Range and Its Geological Significance[J]. Acta Petrologica Sinica, 2017, 33(1): 173-190.
[27]
刘汇川, 王岳军, 范蔚茗, 等. 滇西哀牢山地区晚三叠世高εNd(t)-εHf(t)花岗岩的构造指示[J]. 中国科学:地球科学, 2014, 57(11): 2373-2388.
Liu Huichuan, Wang Yuejun, Fan Weiming, et al. Petrogenesis and Tectonic Implications of Late-Triassic High εNd(t)-εHf(t) Granites in the Ailaoshan Tectonic Zone (SW China)[J]. Science China:Earth Sciences, 2014, 57(9): 2181-2194.
[28]
李定谋, 曹志敏, 覃功炯, 等. 哀牢山蛇绿混杂岩带金矿床[M]. 北京: 地质出版社, 1998: 1-137.
Li Dingmou, Cao Zhimin, Qin Gongjiong, et al. The Gold Deposits in the Ailaoshan Ophiolite Mélange Belt[M]. Beijing: Geological Publishing House, 1998: 1-137.
[29]
梁华英, Campbell Ian H, 谢应雯, 等. 金平铜厂钼铜矿床赋矿岩体锆石ELA-ICP-MS定年[J]. 矿床地质, 2002, 21(增刊): 421-422.
Liang Huaying, Campbell Ian H, Xie Yingwen, et al. Zircon Age Dated by ELA-ICP-MS for Ore-Bearing Porphyry in Jinping Tongchang[J]. Mineral Deposits, 2002, 21(Sup.): 421-422.
[30]
刘邦.云南哀牢山金矿带长安金矿床地球化学特征及其成因模式[D].广州: 中山大学, 2009: 1-108.
Liu Bang.Geochemical Characteristics and Metallogenic Model of Chang'an Gold Deposit in Ailaoshan Gold Belt[D].Guangzhou: Sun Yat-Sen University, 2009: 1-108.
[31]
张静, 邓军, 李士辉, 等. 哀牢山南段长安金矿床岩浆岩的岩石学特征及其与成矿关系探讨[J]. 岩石学报, 2010, 26(6): 1740-1750.
Zhang Jing, Deng Jun, Li Shihui, et al. Petrological Characteristics of Magmatites and Their Relationship with Gold Mineralization in the Chang'an Gold Deposit in Southern Ailaoshan Metallogenic Belt[J]. Acta Petrologica Sinica, 2010, 26(6): 1740-1750.
[32]
付宇, 孙晓明, 刘邦. 云南金平长安金矿床正长岩锆石的U-Pb年龄和微量元素特征及其与成矿关系探讨[J]. 矿物学报, 2013, 33(增刊): 311-312.
Fu Yu, Sun Xiaoming, Liu Bang. The Trace Element Characteristics and Zircon U-Pb Dating of Synite from Chang'an Gold Deposit and Its Relationship with Mineralization, Jinping, Yunnan[J]. Acta Mineralogica Sinica, 2013, 33(Sup.): 311-312.
[33]
Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1): 34-43.
[34]
Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[35]
Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center, 2003.
[36]
Segal I, Halicz L, Platzner I T. Accurate Isotope Ratio Measurements of Ytterbium by Multiple Collection Inductively Coupled Plasma Mass Spectrometry Applying Erbium and Hafnium in an Improved Double External Normalization Procedure[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(10): 1217-1223. DOI:10.1039/b307016f
[37]
Blichert-Toft J, Albarede F. The Lu-Hf Geochemistry of Chondrites and the Evolution of the Mantle-Crust System[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.
[38]
Hu Z, Liu Y, Gao S, et al. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. DOI:10.1039/c2ja30078h
[39]
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
Wu Yuanbao, Zheng Yongfei. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569.
[40]
McDonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[41]
Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. DOI:10.1007/s00410-002-0364-7
[42]
鲁倩, 孙景贵, 安久海, 等. 吉林敦化松江河地区中生代似斑状花岗岩成因和形成环境:元素、Hf同位素和锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2019, 49(3): 673-689.
Lu Qian, Sun Jinggui, An Jiuhai, et al. Petrogenesis and Forming Environment of Mesozoic Porphyritic Granite in Songjianghe Region of Dunhua, Jilin Province:Evidences from Element Geochemistry, Hf Isotope and U-Pb[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 673-689.
[43]
Hoskin P W O, Ireland T R. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator[J]. Geology, 2000, 28(7): 627-630. DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
[44]
Ferry J M, Watson E B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437. DOI:10.1007/s00410-007-0201-0
[45]
Söerlund U, Patchett P J, Vervoort J D, et al. The 176Lu, Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.
[46]
王挽琼, 刘正宏, 徐仲元, 等. 内蒙古乌拉特中旗色尔腾山岩群东五分子岩组锆石SHRIMP定年及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1053-1062.
Wang Wanqiong, Liu Zhenghong, Xu Zhongyuan, et al. Zircon SHRIMP Dating and Its Geological Significance of Dongwufenzi Formation of Sertengshan Group in Urad Zhongqi, Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1053-1062.
[47]
王勇.云南省金平县长安金矿地质特征及成矿模式[R].北京:中国地质科学院, 2008:1-78.
Wang Yong.The Ore-Forming Model and Geological Characteristics of Chang'an Gold Deposit in Jinping, Yunnan[R].Beijing:Chinese Academy of Geological Sciences, 2008:1-78.
[48]
黄波, 梁华英, 莫济海, 等. 金平铜厂铜钼矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄及意义[J]. 大地构造与成矿学, 2009, 33(4): 598-602.
Huang Bo, Liang Huaying, Mo Jihai, et al. Zircon LA-ICP-MS U-Pb Age of the Jinping-Tongchang Porphyry Associated with Cu-Mo Mineralization and Its Geological Implication[J]. Geotectonica et Metallogenia, 2009, 33(4): 598-602. DOI:10.3969/j.issn.1001-1552.2009.04.014
[49]
王登红, 屈文俊, 李志伟, 等. 金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年[J]. 中国科学:D辑, 2004, 34(4): 345-349.
Wang Denghong, Qu Wenjun, Li Zhiwei, et al. Ore-Forming Period of Porphyry Cu-Mo Deposits from Jinshajiang-Honghe Mineralization Belt:Evidence from Re-Os Isotopic Dating[J]. Science China:Series D, 2004, 34(4): 345-349.
[50]
胥磊落, 毕献武, 唐永永. 金沙江-红河成矿带南段斑岩铜钼矿成矿年代学特征及地质意义[J]. 矿床地质, 2010, 29(增刊): 525-526.
Xu Leiluo, Bi Xianwu, Tang Yongyong. Geological Implication and the Characteristics of Ore-Forming Age of Porphyry Cu-Mo Deposits from the South of Jinshajiang-Honghe Belt[J]. Mineral Deposits, 2010, 29(Sup.): 525-526.
[51]
Wang Q, Zhu D C, Zhao Z D, et al. Magmatic Zircons From I-, S-and A-Type Granitoids in Tibet:Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66. DOI:10.1016/j.jseaes.2011.07.027
[52]
李勇, 莫宣学, 喻学惠, 等. 金沙江—哀牢山断裂带几个富碱斑岩体的锆石U-Pb定年及地质意义[J]. 现代地质, 2011, 25(2): 189-200.
Li Yong, Mo Xuanxue, Yu Xuehui, et al. Zircon U-Pb Dating of Several Selected Alkali-Rich Porphyries from the Jinshajiang-Ailaoshan Fault Zone and Geological Significance[J]. Geoscience, 2011, 25(2): 189-200. DOI:10.3969/j.issn.1000-8527.2011.02.001
[53]
Hoskin P W O. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. DOI:10.1016/j.gca.2004.07.006
[54]
Grimes C B, John B E, Kelemen P B, et al. Trace Element Chemistry of Zircons from Oceanic Crust:A Method for Distinguishing Detrital Zircon Provenance[J]. Geology, 2007, 35(7): 643-646. DOI:10.1130/G23603A.1
[55]
Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS Zircon U-Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China:Implications for Mesozoic Tectono-Magmatic Evolution[J]. Lithos, 2012, 142/143(6): 34-47.
[56]
Miller C F, McDowell S M, Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance[J]. Geology, 2003, 31(6): 529-532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[57]
Leloup P H, Arnaud N, Lacassin R, et al. New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia[J]. Journal of Geophysical Research, 2001, 106: 6683-6732. DOI:10.1029/2000JB900322
[58]
Harrison T M, Leloup P H, Ryerson F J, et al.Diachronous Initiation of Transtension Along the Ailao Shan-Red River Shear Zone, Yunnan and Vietnam[C]//Yin A, Harrison T M.The Tectonic Evolution of Asia.New York: Cambridge University Press, 1996: 208-226.
[59]
Gilley L D, Harrison T M, Leloup P H, et al. Direct Dating of Left-Lateral Deformation Along the Red River Shear Zone, China and Vietnam[J]. Journal of Geophysical Research, 2003, 108(B2): 2127.
[60]
侯增谦, 潘桂棠, 王安建, 等. 青藏高原碰撞造山带:Ⅱ:晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5): 521-544.
Hou Zengqian, Pan Guitang, Wang Anjian, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ: Mieralization in Late-Collisional Transformation Setting[J]. Mineral Deposits, 2006, 25(5): 521-544. DOI:10.3969/j.issn.0258-7106.2006.05.001
[61]
和中华, 王勇, 莫宣学, 等. 云南金平长安金矿成矿物质来源:来自矿石及地层、岩浆岩的成矿元素含量证据[J]. 东华理工大学学报(自然科学版), 2008, 31(3): 207-212.
He Zhonghua, Wang Yong, Mo Xuanxue, et al. Sources of Ore-Forming Materials in the Chang'an Gold Deposit, Yunnan Province:Evidence from the Contents of Ore-Forming Elements in Ore, Strata and Magma from Ore District[J]. Journal of East China Institute of Technology(Natural Science), 2008, 31(3): 207-212. DOI:10.3969/j.issn.1674-3504.2008.03.002
[62]
Chen Y, Liu J L, Tran M D, et al. Regional Metallogenesis of the Chang'an Gold Ore Deposit in Western Yunnan:Evidences from Fluid Inclusions and Stable Isotopes[J]. Acta Geologica Sinica, 2010, 84(6): 1401-1414. DOI:10.1111/j.1755-6724.2010.00336.x
[63]
石贵勇, 孙晓明, 张燕, 等. 云南哀牢山大坪金矿床成矿流体H-O-C-S同位素组成及其成矿意义[J]. 岩石学报, 2010, 26(6): 1751-1759.
Shi Guiyong, Sun Xiaoming, Zhang Yan, et al. H-O-C-S Isotopic Compositions of Ore Forming Fluids in Daping Gold Deposit in Ailaoshan Gold Belt, Yunnan Province, China[J]. Acta Petrologica Sinica, 2010, 26(6): 1751-1759.
[64]
李士辉, 张静, 杨立强, 等. 长安金矿床成矿物质来源:来自S、Pb同位素的证据[J]. 现代地质, 2013, 27(4): 879-887.
Li Shihui, Zhang Jing, Yang Liqiang, et al. Origin of Metallogenic Materials of the Chang'an Gold Deposit in the Southern Ailaoshan Belt:Evidence from Sulfur and Lead Isotopic Composition[J]. Geoscience, 2013, 27(4): 879-887. DOI:10.3969/j.issn.1000-8527.2013.04.014
[65]
Zhang J, Deng J, Chen H Y, et al. LA-ICP-MS Trace Element Analysis of Pyrite from the Chang'an Gold Deposit, Sanjiang Region, China:Implication for Ore-Forming Process[J]. Gondwana Research, 2014, 26(2): 557-575. DOI:10.1016/j.gr.2013.11.003
http://dx.doi.org/10.13278/j.cnki.jjuese.20180276
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

龙天祥, 何小虎, 刘飞, 李宗勇, 王玉朝, 赵俊, 李云飞, 王长兵, 曹原
Long Tianxiang, He Xiaohu, Liu Fei, Li Zongyong, Wang Yuchao, Zhao Jun, Li Yunfei, Wang Changbing, Cao Yuan
长安金矿区碱性岩锆石U-Pb年代学、微量元素、Hf同位素特征及其地质意义
Zircon U-Pb Geochronology, Trace Element, Hf Isotope of Alkaline Rocks from Chang'an Gold Deposit and Its Geological Implication
吉林大学学报(地球科学版), 2019, 49(6): 1607-1627
Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1607-1627.
http://dx.doi.org/10.13278/j.cnki.jjuese.20180276

文章历史

收稿日期: 2018-10-29

相关文章

工作空间