50岁以上男性体质量指数、体质成分、骨密度的变化特征及其相关性分析
江颖1, 裴育2 , 苗新宇1, 金萌萌1, 谷昭艳3, 李剑1, 李春霖1, 田慧1    
1. 100853 北京, 解放军总医院南楼内分泌科;
2. 100853 北京, 解放军总医院内分泌科;
3. 572000 三亚, 解放军总医院海南分院保健科
摘要目的 探讨50岁以上老年男性随增龄,体质成分(body composition)、体质量指数(body mass index,BMI)和骨密度 (bone mineral density,BMD) 的变化趋势及其相互关系。方法 分析中国人民解放军总医院2009-2011年度门诊358例50岁以上老年男性患者的体质成分及BMD测定资料,根据年龄和BMI分组,比较各年龄组间体质成分的差别,分析体质成分的变化对BMD的影响。结果 (1)该人群身高、体质量随增龄而降低(P=0.000),但BMI各组间差异无统计学意义(P>0.05);瘦体质量指数(lean mass index,LMI)及非脂肪体质量指数(fat free mass index,FFMI)随增龄而下降(P均=0.000),而脂肪体质量指数 (fat mass index,FMI) 随增龄而增加(P=0.015);骨矿含量(bone mass content,BMC)及瘦体质量(lean mass,LM)的绝对值随增龄而降低(P=0.003,P=0.000),而脂肪含量(fat mass,FM)各年龄组间差异无统计学意义(P>0.05);从体质成分比例上看,随增龄%FM升高,而%LM降低(P均=0.000)。(2)随增龄股骨颈(femoral neck,FN)和全髋骨(total hip,TH)BMD降低(P=0.000,P=0.003),而腰椎1-4(L1-4)BMD无明显变化。(3)按BMI分组,随着BMI增加,各部位BMD增高(P均<0.01),而骨质疏松症及骨量减少的检出率相应减少(P均<0.01)。(4)将20≤BMI<24 kg/m2设为1,以骨质疏松症检出率为结局,采用回归分析,提示BMI降低是骨量减少及骨质疏松症的独立危险因素,BMI增加是BMD的保护因素。(5)分别以FMI、LMI和FFMI四分位统计,随FMI增高,L1-4部位BMD增高(P=0.000),而FN和HP的BMD则随着LMI和FFMI的增加而增加(P均=0.000)。结论 50岁以上老年男性,BMI过低更易患骨质疏松症,而体质成分中FMI是腰椎的保护因素,LMI和FFMI是髋部BMD的保护因素。
关键词老年男性    体质成分    体质量指数    骨密度    
Relationship among aging,body composition, body mass index, and bone mass density in elderly men over 50-year-old
JIANG Ying1, PEI Yu2 , MIAO Xin-yu1, JIN Meng-meng1, GU Zhao-yan3, LI Jian1, LI Chun-lin1, TIAN Hui1    
1. Department of Geriatric Endocrinology, PLA General Hospital, Beijing 100853, China;
2. Department of Endocrinology, PLA General Hospital, Beijing 100853, China;
3. Department of Hainan Branch Health Care, PLA General Hospital, Sanya 572000, Hainan, China
Abstract: Objective To investigate the aged-related changes in body composition, body mass index (BMI), and bone mineral density (BMD), and to analyze the relationship between body composition and BMD in elderly men over 50-year-old. Methods The present study was a retrospective analysis of the body composition, BMI, and BMD of 358 Chinese male outpatients over 50 years of age who were recruited from our hospital between 2009 and 2011. Qualified subjects were stratified according to age and BMI. To compare the differences of body composition among different groups, and to analyze the impact of BMD according to the changes of body composition. Results Although there were no significant differences in BMI among the age groups, there was a significant decline in height and weight according to age (both P=0.000). The LMI (Lean mass index) and FFMI (Fat free mass index) also declined with age (both P=0.000) whereas the FMI increased (P=0.015). Although the absolute values of BMC and LM declined with age (P=0.003 and P=0.000, respectively), there was no significant difference in FM. There was an increase in %FM (P=0.000) and a decrease in %LM (P=0.000) with age. The femoral neck (FN) and total hip (TH) BMD significantly declined with age (P=0.000 and P=0.003, respectively). BMD increased at all sites (all P<0.01) as BMI increased but there were declines in the detection rates of osteoporosis and osteopenia (both P=0.000). Logistic regression revealed that a decline in BMI was an independent risk factor of osteoporosis or osteopenia, while an increase in BMI was a protective factor for BMD. At the same time, BMD in L1-4 exhibited a significant positive correlation with FMI (P=0.000) and the femoral neck and total hip BMDs had significant positive correlation with FFMI and LMI, respectively (both P=0.000). Conclusion These data indicated that in elderly males older than 50 years, an increased BMI was protective for BMD while FMI were protective for BMD in L1-4, LMI and FFMI were protective for BMD in the femoral neck and total hip.
Key words: elderly male    body composition    body mass index    bone mineral density    

随着人口老龄化,骨质疏松症(osteoporosis,OP)的患病率迅猛增加,成为危害国人健康的重大公共卫生问题。骨密度下降可以导致骨质疏松性骨折,它在危害老年人健康的同时也造成了沉重的社会经济负担[1]。近年来越来越多的证据表明生物力学因素在保持骨的结构与强度以及导致骨质疏松症的机制中占有重要地位[2],研究表明骨量与体质成分之间存在内在的相互关系,但在体质成分中肌肉和脂肪等重要组成部分对骨密度的影响众说不一。本文目的在于了解老年男性随增龄,体质成分、BMI和BMD的变化趋势及其关系,以阐明肌肉、脂肪含量对老年男性患者骨量的影响。

对象与方法 对象

选取2009-2011年度在解放军总医院常规查体的50岁以上老年男性392例,排除下述疾病者:(1) 有严重肝、肾疾病或慢性阻塞性肺疾病等;(2) 原发或继发性腺功能减退及甲状腺功能亢进患者;(3) 曾服用过或正在服用糖皮质激素者;(4) 过度饮酒或吸烟;(5) 近期持续卧床达3个月以上。经筛选,入选合格研究对象358人。所有患者均签署知情同意书。

方法

骨密度和体质成分测定:采用双能X线吸收检测法(dual energy x-ray absorptiometry,DXA)测定受试者腰椎1-4(L1-4)、股骨颈(femoral neck,FN)及全髋骨(total hip,TH)的BMD(GE公司,CV<0.1%,并用该仪器检测全身体质成分,包括骨矿含量(bone mass content,BMC)、瘦体质量(lean mass,LM)、脂肪量(fat mass,FM)、非脂肪体质量指数(fat free mass index,FFMI)。根据公式计算出FMI(FM/身高2)、LMI(LM/身高2)、FFMI(FFM/身高2)、%BMC(BMC/[BMC+FM+LM]×100%)、%FM(FM/[BMC+FM+LM]×100%)、%LM (LM/(BMC+FM+LM)×100%)。

诊断标准:按照WHO推荐的标准,受检者BMD与参考数据库比较:BMD值不低于同性别峰值BMD平均值的1个标准(SD),即T值≥-1.0 SD为正常;BMD值介于同性别峰值BMD平均值-1.0 SD~-2.5 SD,即-2.5SD<T值<-1.0 SD为骨量减少;BMD值低于同性别峰值BMD平均值2.5 SD,即T值≤-2.5 SD为骨质疏松症[3]

按照BMI分组:分别记录受检者的身高和体质量,并计算体质量指数(body mass index,BMI),BMI=体质量(kg)/身高2(m2),按照相关标准BMI分为:正常体质量(18.5≤BMI<24 kg/m2),超重(24≤BMI<28 kg/m2),和肥胖(BMI≥28 kg/m2)[4, 5, 6]。根据原始数据,所有受试者BMI均>18.5 kg/m2。国外研究有将BMI分组为≥25 kg/m2和<20 kg/m2[7],据此我们将受试者BMI分为低体质量(BMI<20 kg/m2n=21),中等体质量(20≤BMI<24 kg/ m2n=118),超重(24≤BMI<28 kg/ m2n=178)和肥胖(BMI≥28 kg/ m2n=41)[8]

按年龄分组:以10岁为等级分组,分为50~59岁组 (n=35),60~69岁组 (n=123),70~79岁组(n=93)和80~89岁组 (n=107)。

统计学方法

采用SPSS19.0统计软件,计量资料用均数±标准差(x±s)表示,组间比较采用方差分析;计数资料用百分数表示,采用卡方检验;线性相关行Pearson相关分析;多元统计分析采用Logistic多元逐步回归分析,以P<0.05为差异有统计学意义。

结果 不同年龄体质成分及骨密度变化(表 1)
表 1 不同年龄体质成分及骨密度变化 Table 1 Trend of body composition and BMD during aging
    分组(岁)例数年龄(岁)身高(cm)体质量(kg)BMI(kg/m2)LMI(kg/m2)
BMI:体质量指数;LMI:瘦体质量指数:FMI:脂肪体质量指数;FFMI:非脂肪体质量指数;BMC:骨矿含量;FM:脂肪含量:LM:瘦体质量;BMC:骨矿含量;BMD:骨密度;L1-4:腰椎1-4;FN:股骨颈;TH:全髋骨; 与50~59岁组相比,$P<0.05;与60~69岁组相比,*P<0.05;与70~79岁组相比,#P<0.05;与80~89岁组相比,&P<0.05
50~593556.99±2.12*#&173.17±5.40*#&76.68±9.29*#&25.56±2.7917.83±1.55*#&
60~6912365.82±2.90$#&171.3±4.78$#&73.30±8.97$#&24.96±2.6317.20±1.27$#&
70~799374.72±2.82$*&169.7±5.01$*70.26±9.35$*24.34±2.8316.74±1.19$*&
80~8910784.32±2.63$*#168.9±4.94$*69.86±8.44$*24.45±2.6415.89±1.23$*#
合计 (最小值~最大值)35872.80±9.46170.40±5.1171.82±9.18224.71±2.7216.75±1.41
(51.80~89.60)(156.00~186.00)(49.00~108.00)(16.54~34.84)(13.29~21.09)
P0.0000.0000.00020.0680.000
    分组(岁)FMI(kg/m2)FFMI(kg/m2)BMC(g)FM(g)LM(g)
50~596.83±1.7218.82±1.61*#&2 990.21±420.64*#&20 484.06±5217.3453 475.68±5 348.96*#&
60~69 6.73±1.78&18.16±1.32$#&2 796.89±361.10$&19 765.66±5523.0550 513.94±4 630.97$#&
70~79 6.75±2.22&17.69±1.22$*&2 742.82±348.44$19 501.84±6569.7948 268.25±4 356.19$*&
80~89 7.50±2.06*#16.82±1.27$*#2 669.05±438.68$*21 439.01±6 149.4945 376.11±4 018.53$*#
合计(最小值~最大值) 6.97±2.0017.70±1.462 763.53±397.5520 267.49±6 001.9648 684.51±5 144.72
(1.21~14.04)(14.05~22.09)(1 490.51~4 010.02)(3 412.34~41 224.32)(35 427.33~64 000.20)
P0.0150.0000.0030.0700.000
    分组(岁)%BMC%FM%LMBMD(g/cm2)
L1-4FNTH
50~593.84±0.37 26.67±4.76& 69.49±4.66&1.19±0.16 0.91±0.12$& 1.00±0.12&
60~693.90±0.45 26.30±4.96& 69.80±4.81&1.17±0.19 0.97±0.14*#& 1.04±0.16&
70~793.92±0.46 27.02±6.50& 69.06±6.31&1.25±0.20 0.89±0.12$& 0.99±0.12&
80~893.85±0.53 30.35±5.89$*# 65.79±5.78$*#1.24±0.23 0.83±0.15$*# 0.94±0.17$*#
合计(最小值~最大值)3.87±0.45 27.83±5.83 68.30±5.701.22±0.20 0.88±0.14 0.99±0.14
(2.62~5.95)(6.41~44.25)(52.01~88.69)(0.81~2.12)(0.54~1.45)(0.58~1.47)
P0.5450.0000.0000.0940.0000.003

50岁以上男性人群身高、体质量随增龄而降低(P均=0.000),但BMI在各组间未见统计学差异;LMI及FFMI随增龄而下降(P均=0.000),但FMI在80岁组有显著上升(P=0.015);BMC及LM的绝对值随增龄而降低(P=0.003,P=0.000),而FM各组间差异无统计学意义(P=0.070);从百分比上看,%BMC各组间差异无统计学意义(P>0.05),而随增龄,%FM逐渐升高(P=0.000),%LM逐渐降低(P=0.000)。随增龄L1-4部位BMD差异无统计学意义(P>0.05),而FN和TH部位BMD逐渐降低(P=0.000,P=0.003)(表 1)。

不同BMI状态下不同部位骨密度绝对值的变化情况

将BMI按照低体质量、中等体质量、超重及肥胖分组,比较不同BMI状态下不同部位骨密度绝对值及骨质疏松症检出率。随着BMI增加,各部位BMD逐渐增高(P均<0.01),而骨质疏松症及骨量减少的检出率逐渐下降(P均=0.000)(表 23)。

表 2 不同BMI状态下不同部位骨密度绝对值的变化(g/cm2x±s) Table 2 Change of absolute value in BMD at different site among different BMI level(g/cm2, x±s)
    分组(kg/m2)NL1-4FNTH
N:例数;BMI:体质量指数;L1-4:腰椎1-4;FN:股骨颈;TH:全髋骨; 与BMI<20相比,$P<0.05;与20≤BMI<24组相比,*P<0.05;与24≤BMI<28组相比,#P<0.05;与BMI≥28组相比,&P<0.05
BMI<2021 1.09±0.21*#&0.80±0.17*#& 0.86±0.17*#&
20≤BMI<24118 1.20±0.19$#0.87±0.13$& 0.96±0.14$#&
24≤BMI<28178 1.24±0.20$*0.89±0.13$ 1.00±0.13$*&
BMI≥2841 1.25±0.17$0.94±0.14$* 1.05±0.14$*#
    P0.00380.0011<0.001
表 3 不同BMI状态下骨质疏松症及骨量减少检出率比较[n(%)] Table 3 Detection rate of osteoporosis or osteopenia among different BMI level[n(%)]
分组(kg/m2)NL1-4FN
正常低骨量骨质疏松正常低骨量骨质疏松
BMI:体质量指数; L1-4:腰椎1-4; FN:股骨颈; TH:全髋骨
BMI<202112(57.14)9(42.86)08(38.10)9(42.86)4(19.05)
20≤BMI<24118106(89.83)12(10.17)062(52.54)51(43.22)5(4.24)
24≤BMI<28178166(93.26)12(6.74)0121(67.98)50(28.09)7(3.93)
BMI≥284140(97.56)1(2.44)029(70.73)11(26.83)1(2.44)
P0.0000.001
    分组(kg/m2)TH总体
正常低骨量骨质疏松正常低骨量骨质疏松
BMI<2012(57.14)7(33.33)2(9.52) 6(28.57)11(52.38)4(19.05)
20≤BMI<2492(77.97)24(20.34)2(1.69)60(50.85)53(44.92)5(4.24)
24≤BMI<28153(85.96)23(12.92)2(1.12)120(67.42)52(29.21)6(3.37)
BMI≥2837(92.50)4(9.76)0(0)30(73.17)10(25.00)1(2.50)
P0.0030.000
不同BMI状态下骨量减少及骨质疏松症的风险比较

将BMI正常组(20≤BMI<24 kg/m2)设为1,以骨质疏松症检出率为结局,采用Logistic回归分析,得到骨量减少及骨质疏松症的OR值及校正了年龄的OR值,提示BMI降低是骨量减少及骨质疏松症的独立危险因素,而BMI增加是BMD的保护因素,在校正了年龄之后,此关系依然存在(表 4)。

表 4 不同BMI状态下骨量减少及骨质疏松的风险比较 Table 4 Comparison of the detection rate of osteopenia or osteoporosis among different BMI group
    分组(kg/m2)未校正-OR校正后-OR
OR(95% CI)POR(95% CI)P
CI:置信区间;OR:比值比;BMI:体质量指数
BMI<203.105(1.233~7.818)0.0162.688(1.057~6.833)0.038
20≤BMI<2411
24≤BMI<280.513(0.320~0.823)0.0060.461(0.283~0.751)0.002
BMI≥280.405(0.186~0.879)0.0220.445(0.201~0.986)0.046
以FMI、LMI和FFMI四分位不同部位骨密度的变化情况

分别以FMI、LMI和FFMI四分位,比较不同部位骨密度的变化,随FMI增高,L1-4部位BMD逐渐增高(P=0.000),而FN及TH部位BMD则随着LMI和FFMI的增加而增加(P=0.000)。提示FMI是L1-4部位BMD的保护因素,而LMI和FFMI是FN及TH部位BMD的保护因素(表 5)。

表 5 FMI、LMI和FFMI四分位不同部位骨密度的变化(g/cm2, x±s) Table 5 Comparison the change of BMD at different site based on the quartile of FMI,LMI, and FFMI(g/cm2, x±s)
分组FMI
L1-4FNTH
x±s中位数(Q1~Q4)x±s中位数(Q1~Q4)x±s中位数(Q1~Q4)
BMD:骨密度;LMI:瘦体质量指数:FMI:脂肪体质量指数;FFMI:非脂肪体质量指数;L1-4:腰椎1-4;FN:股骨颈;TH:全髋;与Q1相比,$P<0.05;与Q2相比,*P<0.05;与Q3相比,#P<0.05;与Q4相比,&P<0.05
Q1(n=89)1.16±0.20#&1.10(1.02~1.28)0.88±0.150.88(0.79~0.96)0.97±0.15&0.97(0.87~1.06)
Q2(n=90)1.20±0.17&1.19(1.07~1.34)0.87±0.120.86(0.80~0.93)0.96±0.13&0.97(0.89~1.04)
Q3(n=89)1.25±0.20$1.22(1.11~1.37)0.89±0.150.90(0.80~0.97)0.99±0.151.01(0.90~1.09)
Q4(n=90)1.27±0.20$*1.26(1.14~1.34)0.90±0.130.90(0.82~0.98)1.02±0.13$*1.03(0.93~1.09)
P0.0000.3980.025
分组LMI
L1-4FNTH
x±s中位数(Q1~Q4)x±s中位数(Q1~Q4)x±s中位数(Q1~Q4)
Q1(n=89)1.22±0.221.20(1.06~1.35)0.84±0.15#&0.83(0.74~0.93)0.93±0.15#&0.95(0.84~1.03)
Q2(n=90)1.21±0.211.20(1.06~1.33)0.86±0.12#&0.86(0.77~0.95)0.96±0.13#&0.96(0.87~1.03)
Q3(n=89)1.24±0.191.21(1.08~1.36)0.91±0.13$*0.91(0.82~1.00)1.01±0.13$*1.02(0.92~1.10)
Q4(n=90)1.21±0.161.21(1.09~1.32)0.93±0.13$*0.91(0.85~0.98)1.04±0.13$*1.02(0.96~1.11)
P0.8280.0000.000
分组FFMI
L1-4FNTH
x±s中位数(Q1~Q4)x±s中位数(Q1~Q4)x±s中位数(Q1~Q4)
Q1(n=89)1.21±0.221.19(1.06~1.34)0.84±0.15#&0.83(0.73~0.93) 0.93±0.16#&0.93(0.83~1.03)
Q2(n=90)1.22±0.201.20(1.07~1.32)0.86±0.12#&0.86(0.78~0.94) 0.96±0.13#&0.97(0.88~1.03)
Q3(n=89)1.23±0.201.20(1.07~1.35)0.90±0.13$*0.90(0.81~0.99) 1.01±0.13$*1.01(0.91~1.09)
Q4(n=90)1.23±0.161.22(1.11~1.33)0.94±0.13$*0.92(0.86~1.00) 1.04±0.12$*1.04(0.97~1.12)
P0.7500.0000.000
讨论

骨质疏松症(osteoporosis,OP)是以BMD下降、骨折风险增加为特征的常见代谢性骨病。BMD测量是明确OP诊断、估计OP程度和评价疗效的基本手段。双能X线吸收检测仪已被普遍应用于BMD测量,成为诊断OP的定量标准[9];而近年来又逐渐成为人体脂肪、瘦体质等体质成分测定的标准方法之一[10]

增龄与体质成分的变化存在争议。一些研究显示男性人群FM在74岁时开始上升,LM自60岁开始下降,并与体质量呈正相关关系[11, 12]。欧洲一项研究显示在两性人群中FM随增龄而增加,LM随增龄而下降[13]。但韩国的研究显示FM并不随着增龄而发生改变[14]。本研究显示50岁以上老年男性,LM、LMI、%LM和BMC随增龄而下降,FM则在80~89岁年龄段上出现增加趋势,FMI和%FM在80~89岁年龄段达到最高峰。提示体质成分随增龄的变化可能存在种族和文化的差异。

体质量、BMI和体质成分均是影响骨矿含量及OP发生的重要决定因素[15, 16, 17, 18]。多数研究认为BMD与BMI呈负相关关系,肥胖可以降低骨质疏松症风险[19]。De Laet等[7]的研究显示BMI降低者臀部骨折风险增加。但一项关于老年男性骨质疏松症风险的研究显示,肥胖者更易患骨质疏松症。因此,脂肪组织是否对BMD起到积极的作用尚不确定;而将体质量细化为体质成分,评估体质成分中各个要素对不同部位BMD的影响对治疗骨质疏松症的方案制定显得尤为必要。本研究发现,FMI对L1-4部位的BMD起到积极的作用,然而LMI 和FFMI对股骨颈和全髋骨BMD起到积极的作用。然而,股骨颈和全髋骨BMD随增龄而发生变化,但是腰椎部位BMD没有变化。因此,就老年男性人群的BMD而言,LMI 和FFMI较FMI更具影响力。

作为体质量的重要组成部分,骨骼肌对LM和FFM的作用更加重要。作为独立的运动单元,骨和骨骼肌紧密相连。肌肉收缩是增加骨量的重要因素,它可以制造机械压力,刺激骨骼细胞增加骨形成。LM和FFM的含量越少,说明机体缺乏足够的锻炼及肌肉量,事实上缺乏运动与低骨量确实密切相关,因此老年人群采取健康的生活方式,包括增加运动和锻炼来增加瘦体质量,可能是降低骨质疏松症风险的重要手段。

综上所述,本研究显示在老年男性人群中,随增龄股骨颈和全髋骨BMD下降,LM和FFM是髋部BMD的重要保护因素。增加运动,提高LM和FFM可能是防治骨质疏松症的有力手段。本研究不足之处:首先,作为横断面研究本身就存在一定缺陷。其次,BMD并不能代表骨质量的全部,因此需要进一步开展体质成分和骨折风险的相关研究。第三,尽管DXA测量体质成分具有经济、放射性低等优势,但DXA并不是测量体质成分的金标准。最后,研究人群存在地域和种族的限制。

参考文献
[1] Edelstein SL,Barrett-Connor E. Relation between body size and bone mineral density in elderly men and women [J]. Am J Epidemiol,1993,138:160-169.
[2] 于爱红,陈祥述,孙伟杰,等. 体质量、身高及体质量指数与双能X线骨密度仪和定量CT测量腰椎骨密度的关系[J].中国医学影像学杂志,2011,19:909-911.
[3] 李少林,王荣福. 核医学[M]. 7 版. 北京:人民卫生出版社,2008:164-166.
[4] Chen CM. Overview of obesity in mainland China [J]. Obes Rev,2008,9:14-21.
[5] Wang Y,Mi J,Shan XY,et al. Is China facing an obesity epidemic and the conseque-nces? The trends in obesity and chronic disease in China [J]. Int J Obes,2007,31: 177-188.
[6] Zhou BF. Cooperative Meta-analysis Group of the working group on obesity in China predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults-study on optimal cut-off points of body mass index and waist circumference in Chinese adults[J]. Biomed Environ Sci,2002,15:83-96.
[7] De Laet C,Kanis JA,Odén A,et al. Body mass index as a predictor of fracture risk:A Meta-analysis[J]. Osteoporos Int,2005,16:1330-1338.
[8] Baumgartner RN,Koehler KM,Gallagher D,et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. Am J Epidemiol,1998,147:755-763.
[9] Bolonchuk WW. Validation of tetrapolar bioelectrical impedance method to assess human body composition[J]. J Appl Physiol,1986,60:1327-1332.
[10] Mazess RB,Peppler WW,Chestut CH Ⅲ,et al. Total body bone mineral and lean body mass by dual-photon absorptiometry,Ⅱ:Comparison with total body calcium by neutron activisceral adipose tissueion analysis[J]. Calcif Tiss Intl,1981,33:361-363.
[11] Chumlea WC,Guo SS,Zeller CM,et al. Total body water data for white adults 18 to 64 years of age:the Fels Longitudinal Study[J]. Kidney Int,1999,56:244-252.
[12] Mazariegos M,Wang ZM,Gallagher D,et al. Differences between young and old females in the five levels of body composition and their relevance to the two-compartment chemical model[J]. J Gerontol,1994,49:201-208.
[13] Kyle UG,Genton L,Slosman DO,et al. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years[J]. Nutrition,2001,17:534-541.
[14] Soo L,Hyojee J,Chan SS. Body composition changes with age have gender-specific impacts on bone mineral density[J]. Bone,2004,35:792-798.
[15] Reid IR,Ames R,Evans MC,et al. Determinants of total body and regional bone mineral density in normal postmenopausal women-a key role for fat mass[J]. J Clin Endocrinol Metab,1992,75:45-51.
[16] Felson DT,Zhang Y,Hannan MT,et al. Effects of weight and body mass index on bone mineral density in men and women:the Framingham study[J]. J Bone Miner Res,1993,8:567-573.
[17] Reid IR. Relationships among body mass,its components,and bone[J]. Bone:NY,2002,31:547-555.
[18] Skrzek A,Kozie S,Ignasiak Z. The optimal value of BMI for the lowest risk of osteoporosis in postmenopausal women aged 40-88 years[J]. HOMO,2014,65: 232-239.
[19] Salamat MR,Salamat AH,Abedi I,et al. Relationship between weight,body mass index,and bone mineral density in men referred for dual-energy X-Ray absorptiometry scan in Isfahan,Iran[J]. J Osteoporosis,2013,2013:205963.
(收稿日期:2015-12-02)