2. 210029 南京,南京医科大学第一附属医院老年医学科
2. Department of Gerontology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
随着人们生活方式的改变和寿命的延长,肥胖和骨质疏松症的发病率及致死率逐年升高,已经成为危害人类健康的两大社会问题[1]。事实上,两者之间存在重要联系。既往研究认为,肥胖对骨代谢有利,肥胖能够降低骨折风险[2]。但近期有研究却发现,肥胖人群骨折风险增加,肥胖人群的骨折风险存在部位特异性,并受年龄、性别、种族等影响[1, 3]。目前,肥胖尤其是腹型肥胖对骨代谢(包括骨量、尤其是骨质量)的影响尚存在争议,且缺乏在中国人群的大样本研究。本研究旨在运用骨小梁分数(trabecular bone score,TBS)技术评价中老年男性及绝经后女性的骨质量变化,分析腹型肥胖对骨质量、骨量的影响,进一步探讨腹型肥胖与骨质疏松的关系。
对象和方法 对象选取2013年7月至2016年4月,在江苏省人民医院老年内分泌科进行双能X线骨密度(bone mineral density,BMD)检查的年龄≥40岁的中老年男性及绝经后女性,18.5≤体质量指数(body mass index, BMI)<35 kg/m2,女性自然绝经且绝经年龄≥40岁,无其他影响骨代谢的疾病(如糖尿病,甲状腺功能异常,甲状旁腺功能异常,垂体及肾上腺疾病,性腺功能异常,风湿免疫性疾病,严重肝肾疾病,严重胃肠道疾病,肿瘤等),无影响骨代谢的药物使用史(如激素,精神调节剂,抗凝药,质子泵抑制剂,袢利尿剂,双膦酸盐,降钙素等),无腰椎骨折或腰椎手术史。
根据2007年《中国成人血脂异常防治指南》制定的中国人群腹型肥胖标准:男性腰围≥90 cm、女性腰围≥85 cm,符合以上标准入选为腹型肥胖组,其余为对照组,对照组BMI<28 kg/m2,均为非肥胖人群。男性腹型肥胖组共136名,年龄41~89岁;选取年龄相当的男性对照组共129名;女性腹型肥胖组共95名,年龄48~87岁;选取女性年龄、绝经年龄、绝经年限相当的对照组共106人。
方法一般临床资料的收集和测量:详细记录研究对象的临床资料,准确测量身高、体质量、腰围及臀围,计算腰臀比(waist-to-hip ratio, WHR)=腰围(cm)/臀围(cm), BMI=体质量(kg)/身高2(m2)。
BMD测定:双能X线吸收检测法(dual energy X-ray absorptiometry,DXA)检测BMD(Hologic, Inc, 35 Crosby Drive, Bedford, MA 01730 USA),对所有研究对象进行股骨颈、全髋、腰椎3个部位的BMD测定,所有扫描使用相同的软件(Hologic Discovery W)处理和自动分析,并由专人分析报告,该方法测定人体BMD的精确度变异系数<0.5%。
TBS测定:骨小梁分数(trabecular bone score,TBS)采用从法国引进的TBS iNsight软件技术(Version 2.0.0.1, Med-Imaps, Bordeaux, France),对DXA获得的腰椎BMD图像,进行灰度变异水平分析,对骨小梁数量、间隙大小等骨微结构进行评分,腰椎TBS是L1-4椎骨测量值的平均值。TBS可评价骨质量、评估骨折风险(图 1)。
|
| 图 1 腰椎BMD图像及TBS分析 Figure 1 Analysis of lumbar spine BMD and TBS |
所有结果均采用SPSS19.0软件进行分析,计量资料用均数±标准差(x±s)表示,两组间比较采用独立样本t检验,以P<0.05为差异有统计学意义。
结果 中老年男性腹型肥胖组与对照组临床资料、TBS以及BMD比较中老年男性腹型肥胖组与对照组相比,年龄差异无统计学意义(P>0.05),腰围、臀围、WHR、BMI均高于对照组(P<0.001)。与对照组相比,中老年男性腹型肥胖组的股骨颈及全髋均升高(P<0.05),腰椎BMD无变化,而腰椎TBS下降了0.06(P<0.001)(表 1)。
| 例数 | 年龄(岁) | 腰围(cm) | 臀围(cm) | WHR | BMI (kg/m2) | BMD(g/cm2) | 腰椎TBS | |||
| 股骨颈 | 全髋 | 腰椎 | ||||||||
| 对照组 | 129 | 57.16±10.41 | 83.83±4.41 | 94.66±3.75 | 0.89±0.05 | 23.18±1.87 | 0.76±0.12 | 0.90±0.12 | 0.97±0.14 | 1.33±0.07 |
| 腹型肥胖组 | 136 | 58.46±11.24 | 95.14±4.78 | 100.26±4.80 | 0.95±0.04 | 25.78±2.37 | 0.79±0.11 | 0.94±0.14 | 0.98±0.14 | 1.27±0.09 |
| t | - | -0.976 | -20.002 | -10.614 | -11.655 | -9.915 | -2.021 | -2.087 | -0.703 | 5.675 |
| P | - | 0.330 | <0.001 | <0.001 | <0.001 | <0.001 | 0.044 | 0.038 | 0.483 | <0.001 |
| TBS:骨小梁分数;BMD:骨密度;WHR:腰臀比;BMI:体质量指数 | ||||||||||
绝经后女性腹型肥胖组与对照组相比,年龄、绝经年龄、绝经年限差异均无统计学意义(P>0.05),腰围、臀围、WHR、BMI均高于对照组(P<0.001)。与对照组相比,绝经后女性腹型肥胖组股骨颈、全髋及腰椎BMD均无明显变化,而腰椎TBS下降(P<0.001)(表 2)。
| 例数 | 年龄(岁) | 绝经年龄(岁) | 绝经年限(年) | 腰围(cm) | 臀围(cm) | WHR | BMI(kg/m2) | BMD(g/cm2) | 腰椎TBS | |||
| 股骨颈 | 全髋 | 腰椎 | ||||||||||
| 对照组 | 106 | 63.07±9.29 | 50.00±3.29 | 13.07±10.37 | 77.71±4.70 | 93.33±4.98 | 0.83±0.04 | 22.23±1.80 | 0.66±0.11 | 0.80±0.11 | 0.85±0.13 | 1.27±0.09 |
| 腹型肥胖组 | 95 | 63.86±8.79 | 50.40±3.00 | 13.47±8.62 | 90.17±4.62 | 99.72±4.64 | 0.91±0.04 | 25.67±2.26 | 0.68±0.11 | 0.82±0.12 | 0.86±0.13 | 1.22±0.09 |
| t | - | -0.623 | -0.897 | -0.296 | -18.919 | -9.376 | -11.977 | -11.863 | -1.209 | -1.367 | -0.550 | 4.154 |
| P | - | 0.534 | 0.371 | 0.768 | <0.001 | <0.001 | <0.001 | <0.001 | 0.228 | 0.173 | 0.583 | <0.001 |
| TBS:腰椎骨小梁分数;BMD:骨密度;WHR:腰臀比;BMI:体质量指数 | ||||||||||||
随着人们膳食结构和生活方式的改变,肥胖的发病率及致死率日趋严重[1]。依据脂肪积聚部位可将肥胖分为腹型肥胖(又称内脏型肥胖、中心性肥胖)和全身性肥胖(又称皮下脂肪型肥胖、周围性肥胖、均匀性肥胖),值得关注的是不同类型的肥胖对机体的影响不同,发生心血管疾病的危险性亦不相同,以腰围增加为特点的腹型肥胖的危害更大[4-6]。腹型肥胖时,腹部内脏脂肪大量堆积,分泌众多炎性反应介质、细胞和脂肪因子,促进高血压、高血糖、脂代谢紊乱的发生,加速动脉硬化的形成,导致严重的心血管事件,是心脏病和脑卒中最重要的危险因素。
骨质疏松症是一种以骨量减少、骨质量下降尤其是骨微结构破坏,导致骨强度下降、骨脆性增加,易发生骨折为特征的全身性骨病。目前,骨骨质疏松症的发病率逐年上升,且日趋年轻化[7]。骨质疏松性骨折,不但发病率高,骨折后病死率也高,危害极大[8]。骨质疏松性骨折的发生与骨强度下降有关。骨强度是由骨量和骨质量所决定。目前临床上通过DXA检测BMD评价骨量、预测骨折风险,但研究发现,临床上约50%的女性骨折发生在BMD T值>-2.5的人群,即根据BMD诊断的“非骨质疏松”人群[9]。甚至在2型糖尿病患者中,BMD往往高于正常人,但骨折风险却增加,这主要是由于骨质量下降、尤其是骨微结构破坏所导致的[10]。DXA只能评价骨量,不能反映骨微结构的变化、评价骨质量,所以在诊断骨质疏松、评估骨折风险上存在局限性。
长期以来,临床上缺乏评价骨质量的理想方法。骨质量能通过离体骨组织的microCT及病理学检查进行测定,新发展的高分辨CT及高分辨MR虽能用于活体人群,却存在设备要求高、费用昂贵、分析复杂、辐射剂量大、检查时间长等不足。
TBS是国外近年来发展的一种新型反映骨小梁微结构的指标,通过计算机软件(TBS iNsight软件)分析腰椎BMD图像的灰度变异水平,对骨小梁数量、间隙大小等骨微结构进行评分,能独立于BMD之外预测骨折风险,且不受腰椎骨性关节炎的影响[11-14]。低TBS值提示骨微结构不完整,骨小梁的连接性差且间距大,预示骨折风险增加。大量研究已经证实,腰椎TBS不仅能评价腰椎骨质量,也能评价股骨颈及髋部骨质量,是评价骨质量、预测骨折风险的有力工具,尤其对于存在腰椎骨性关节炎的老年人、BMD T值>-2.5而发生脆性骨折的人群、2型糖尿病患者、糖皮质激素性骨质疏松患者等,TBS预测骨折风险的价值优于BMD[9-19]。
肥胖与骨质疏松之间存在重要联系。既往研究认为,肥胖对骨代谢有利,肥胖能够降低骨折风险,而低BMI是髋部骨折的危险因子[2, 20-21]。但近期这一结论却受到质疑,研究已发现,肥胖人群骨折风险增加[22-23]。肥胖人群的骨折风险受年龄、性别、种族等影响,并存在部位特异性[1, 3]。近期挪威的一项大型前瞻性研究,纳入43 000名60~79岁的老年男性及女性,发现随腰围增加,女性髋部骨折风险增加86%,男性髋部骨折增加100%[24]。这一结果与韩国的一项研究一致,该研究发现以腰围增加为特征的腹型肥胖与骨量呈负相关,且不依赖于全身脂肪[25]。而关于腹型肥胖对骨质量的影响研究甚少,2016年Romagnoli等[26]研究发现,在超重及肥胖男性,腹部脂肪蓄积可能对TBS产生不利影响,且不依赖于腰椎BMD。本课题组前期的研究亦发现,男性腹部脂肪与TBS呈负相关[27]。
目前腹型肥胖对骨代谢(包括骨量、尤其是骨质量)的影响尚存在争议,受年龄、性别、种族等影响,且存在部位特异性,对不同部位的骨代谢影响不同。同时腹型肥胖对骨代谢的影响缺乏在中国人群尤其是女性的大样本研究。本研究运用DXA及TBS Insight®软件技术,评估腹型肥胖对中老年男性及绝经后女性骨量、骨质量的影响。本研究纳入男性腹型肥胖组136名,年龄相当的男性对照组129名;女性腹型肥胖组95名,年龄、绝经年龄、绝经年限相当的女性对照组106名。研究发现,中老年男性腹型肥胖组股骨颈及全髋BMD均高于对照组,腰椎无变化,而腰椎TBS低于对照组。绝经后女性腹型肥胖组的股骨颈、全髋及腰椎BMD与对照组相比均无变化,而腰椎TBS下降。结果提示,腹型肥胖对骨量的影响存在性别、部位差异,腹型肥胖中老年男性,股骨颈及全髋骨量增加,而腰椎骨量无变化;而对于绝经后女性,腹型肥胖对股骨颈、全髋、腰椎3个部位的骨量均无影响。而腹型肥胖对骨质量的影响则不存在性别差异,不论男性还是女性,腹型肥胖对骨质量均产生不利影响。由此推论,腹型肥胖导致TBS降低,骨微结构破坏,骨质量下降,可能是骨质疏松的危险因素。
本研究尚存在一些不足,如研究人群的样本量还不够大,存在区域局限性,具体机制尚不清楚,需要进一步深入的研究。
综上,本研究结果发现,腹型肥胖对中老年男性及绝经后女性骨量的影响存在性别、部位的差异,但对骨质量均产生不利影响。
| [1] | Caffarelli C, Alessi C, Nuti R, et al. Divergent effects of obesity on fragility fractures[J]. Clin Interv Aging, 2014, 9: 1629–1636. |
| [2] | Reid IR. Fat and bone[J]. Arch Biochem Biophys, 2010, 503: 20–27. DOI:10.1016/j.abb.2010.06.027 |
| [3] | Gonnelli S, Caffarelli C, Nuti R. Obesity and fracture risk[J]. Clin Cases Miner Bone Metab, 2014, 11: 9–14. |
| [4] | Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments:association with metabolic risk factors in the Framingham Heart Study[J]. Circulation, 2007, 116: 39–48. DOI:10.1161/CIRCULATIONAHA.106.675355 |
| [5] | Liu JK, Fox CS, Hickson DA, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors:the Jackson Heart Study[J]. J Clin Endocrinol Metab, 2010, 95: 5419–5426. DOI:10.1210/jc.2010-1378 |
| [6] | Carmienke S, Freitag MH, Pischon T, et al. General and abdominal obesity parameters and their combination in relation to mortality:a systematic review and meta-regression analysis[J]. Eur J Clin Nutr, 2013, 67: 573–85. DOI:10.1038/ejcn.2013.61 |
| [7] | Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union:medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA)[J]. Arch Osteoporos, 2013, 8: 136–256. DOI:10.1007/s11657-013-0136-1 |
| [8] | Curtis JR, Arora T, Matthews RS, et al. Is withholding osteoporosis medication after fracture sometimes rational? A comparison of the risk for second fracture versus death[J]. J Am Med Dir Assoc, 2010, 11: 584–591. DOI:10.1016/j.jamda.2009.12.004 |
| [9] | Boutroy S, Hans D, Sornay-Rendu E, et al. Trabecular bone score improves fracture risk prediction in non-osteoporotic women:the OFELY study[J]. Osteoporos Int, 2013, 24: 77–85. DOI:10.1007/s00198-012-2188-2 |
| [10] | Leslie WD, Aubry-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk[J]. J Clin Endocrinol Metab, 2013, 98: 602–609. DOI:10.1210/jc.2012-3118 |
| [11] | Dhaliwal R, Cibula D, Ghosh C, et al. Bone quality assessment in type 2 diabetes mellitus[J]. Osteoporos Int, 2014, 25: 1969–1973. DOI:10.1007/s00198-014-2704-7 |
| [12] | Del Rio LM, Winzenrieth R, Cormier C, et al. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study[J]. Osteoporos Int, 2013, 24: 991–998. DOI:10.1007/s00198-012-2008-8 |
| [13] | Chuang MH, Chuang TL, Koo M, et al. Trabecular bone score reflects trabecular microarchitecture deterioration and fragility fracture in female adult patients receiving glucocorticoid therapy:a pre-post controlled study[J]. Biomed Res Int, 2017, 2017: 210217. |
| [14] | Baldini M, Ulivieri FM, Forti S, et al. Spine bone texture assessed by trabecular bone score (TBS) to evaluate bone health in thalassemia major[J]. Calcif Tissue Int, 2014, 95: 540–546. DOI:10.1007/s00223-014-9919-7 |
| [15] | Eller-Vainicher C, Filopanti M, Palmieri S, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism[J]. Eur J Endocrinol, 2013, 169: 155–162. DOI:10.1530/EJE-13-0305 |
| [16] | Silva BC, Broy SB, Boutroy S, et al. Fracture risk prediction by non-BMD DXA measures:the 2015 ISCD official positions Part 2:Trabecular Bone Score[J]. J Clin Densitom, 2015, 18: 309–330. DOI:10.1016/j.jocd.2015.06.008 |
| [17] | Silva BC, Leslie WD, Resch H, et al. Trabecular bone score:a noninvasive analytical method based upon the DXA image[J]. J Bone Miner Res, 2014, 29: 518–530. DOI:10.1002/jbmr.v29.3 |
| [18] | Kolta S, Briot K, Fechtenbaum J, et al. TBS result is not affected by lumbar spine osteoarthritis[J]. Osteoporos Int, 2014, 25: 1759–1764. DOI:10.1007/s00198-014-2685-6 |
| [19] | Harvey NC, Glüer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice[J]. Bone, 2015, 78: 216–224. DOI:10.1016/j.bone.2015.05.016 |
| [20] | Cao JJ. Effects of obesity on bone metabolism[J]. J Orthop Surg Res, 2011, 6: 30. DOI:10.1186/1749-799X-6-30 |
| [21] | Tang X, Liu G, Kang J, et al. Obesity and risk of hip fracture in adults:a meta-analysis of prospective cohort studies[J]. PLoS One, 2013, 8: e55077. DOI:10.1371/journal.pone.0055077 |
| [22] | Yang S, Nguyen ND, Center JR, et al. Association between abdominal obesity and fracture risk:a prospective study[J]. J Clin Endocrinol Metab, 2013, 98: 2478–2483. DOI:10.1210/jc.2012-2958 |
| [23] | Meyer HE, Willett WC, Flint AJ, et al. Abdominal obesity and hip fracture:results from the Nurses' Health Study and the Health Professionals Follow-up Study[J]. Osteoporos Int, 2016, 27: 2127–2136. DOI:10.1007/s00198-016-3508-8 |
| [24] | Søgaard AJ, Holvik K, Omsland TK, et al. Abdominal obesity increases the risk of hip fracture. A population-based study of 43000 women and men aged 60-79 years followed for 8 years. Cohort of Norway[J]. J Intern Med, 2015, 277: 306–317. DOI:10.1111/joim.2015.277.issue-3 |
| [25] | Kim JH, Choi HJ, Kim MJ, et al. Fat mass is negatively associated with bone mineral content in Koreans[J]. Osteoporos Int, 2012, 23: 2009–2016. DOI:10.1007/s00198-011-1808-6 |
| [26] | Romagnoli E, Lubrano C, Carnevale V, et al. Assessment of trabecular bone score (TBS) in overweight/obese men:effect of metabolic and anthropometric factors[J]. Endocrine, 2016. |
| [27] | Lv S, Zhang AS, Di Wj, et al. Assessment of fat distribution and bone quality with trabecular bone score (TBS) in healthy Chinese Men[J]. Sci Rep, 2016, 6: 24935. DOI:10.1038/srep24935 |
| (收稿日期:2017-01-20) |

