2. 200040 上海,复旦大学附属华东医院骨质疏松科
2. Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
骨质疏松症(osteoporosis,OP)是一种骨密度(bone mineral density, BMD)降低,骨强度下降,骨折风险增加的全身性骨病,在老年人群中具有极高的发病率,病情严重时会导致疼痛、畸形、残疾和死亡[1]。糖尿病(diabetes mellitus,DM)是一种以高血糖为特点,具有极高发病率和病死率的慢性流行性代谢性疾病。2013年糖尿病联合会发布最新糖尿病数据显示,全球约有3.82亿成人患有糖尿病,据估计,到2035年,该病患者人数上升至5.92亿,以2型糖尿病(type 2 diabetes mellitus, T2DM)为主[2]。T2DM对骨代谢影响非常复杂,至今两者之间关系仍然不明确。早在1948年,就有研究者发现T2DM与骨量丢失、骨质疏松相关,并首次提出糖尿病骨量减少(diabetes osteopenia,DOP)的概念,DOP可引起髋部和其他部位骨折风险增加,尽管与患者容易跌倒有关,但是骨强度降低也是主要原因[3]。考虑到T2DM在世界范围内的患病率不断增加,加快机体的老化过程,包括肌功能和平衡功能的退变,将导致跌倒发生。T2DM患者跌倒和骨折的高危险性也许可能会成为未来重要的公共卫生问题,尤其是具有骨质疏松危险因素的患者。本研究探讨老年人T2DM对骨密度、下肢肌功能、跌倒及骨折的影响,试图揭示T2DM对老年人肌肉功能、跌倒和骨折的作用。
对象与方法 对象研究人群来自上海市5家社区卫生服务中心筛取的60岁以上人群18 270例,排除高血压、冠心病、心脑血管意外、肢体残疾、恶性肿瘤、胃肠手术、关节炎、1型糖尿病及其他特殊类型糖尿病等最终筛选得到研究对象9 584例,分为T2DM组(确诊1年及以上)1 201例,对照组8 383例;将1 201例T2DM患者分为骨折组184例与非骨折组1 017例。
方法人体参数测量:记录两组受试者对象的年龄、性别、身高及体质量,计算出体质量指数(body mass index, BMI),BMI=体质量(kg)/身高2(m2)。
检查指标:应用由美国Hologic公司生产的Sahara型骨超声骨密度仪(quantitative ultrasound system-bone mineral density, QUS-BMD), 测量时对受试者右侧跟骨超声BMD进行测量,测量时受检者取端坐位,清洁右足跟部后,用标准超声凝胶涂抹跟部,按检测要求放置并固定于仪器凹槽中,由研究人员记录测定结果,操作过程由专业医师进行规范操作,每日扫描前常规运行校正程序及体模扫描,保证设备的精确度为±1SD,所测结果的准确度为±1.0%,精密度为0.08%。以最大程度减少设备对检测结果的影响。被检测者均采取统一的体位完成QUS-BMD测定,以减少个体间体位差异对检测结果的影响。
起立行走计时测试(the timed up and go,TUG)是一种快速定量评定功能性步行能力的方法,评定时,患者着平时穿的鞋,坐在有扶手的靠背椅上(椅子高45 cm,扶手高20 cm),身体靠在椅背上,双手放在扶手上。在离座椅3 m远的地面上划一条可见的粗线或放一明显标志物。当受试者发出“开始”指令后,按照平时走路的步态,向前走3 m,过粗线或标志物后转身,然后走回到椅子前,再转身坐下,靠到椅背上,测试过程中不能给予任何躯体的帮助。记录患者背离开椅背到再次坐下所用的时间(s)以及在完成测试过程中出现可能会摔倒的危险性。
询问病史:由骨质疏松专科医师客观询问受试者发生骨折史,吸烟、饮酒情况(吸烟指日平均吸烟量超过7支,吸烟年限超过5年,无戒烟史;饮酒指每周>3次或平均每日摄入乙醇量30 mL(3个单位)或以上,饮酒年限在5年以上,无戒酒史),1年内跌倒及骨折情况。跌倒指无意中发生的,最终在地面上或者更低的平面上的非暴力事件。骨折指因跌倒发生所致,排除碰撞、暴力等因素引起[4]。父母发生髋部骨折史,记录数据,并对填写数据逐项检查,并双机同时录入。这里纳入的糖尿病指确诊T2DM 1年以上,并询问其T2DM病程,胰岛素使用或口服降糖药物情况。
评分:参照澳大利亚昆士兰大学研制的跌倒危险评估表(fall risk assessment tools, FRAT), 量表由10个条目构成,即年龄、跌倒史、平衡能力、精神状态、营养及睡眠、视力、表达能力、药物治疗、慢性病、尿失禁,每个条目采用Likert 4级评分法,对应分值为0~3分,分数越高,表明跌倒风险越高[5]。
统计学方法运用SPSS 17.0统计软件包进行数据分析,采用Kolmogorov法检验数据的正态分布计量资料以均数±标准差(x±s)表示;非正态分布计量资料以中位数(四分位间距)表示。正态分布资料多组间比较采用单因素方差分析,组间两两比较采用LSD法;非正态分布资料单因素分析采用卡方检验。以P<0.05为差异有统计学意义。
结果T2DM组与对照组的年龄、性别、体质量指数、饮酒、父母髋部骨折史、骨折史比较,差异无统计学意义(P>0.05)。T2DM组的吸烟率20.4%明显高于对照组17.8%(P=0.030),完成TUG所需中位数时间为10.75 s明显高于对照组10.12 s(P=0.000), BMD(0.920±0.040)g/cm2高于对照组(0.790±0.030)g/cm2(P=0.000),1年内跌倒发生率10.1%高于对照组7.1%(P=0.000),1年内骨折发生率15.3%高于对照组12.1%(P=0.080)(表 1)。
组别 | 对照组(n=8 383) | T2DM(n=1 201) | P |
女性 | 5 500(65.6) | 677(56.4) | 0.284 |
年龄(岁) | 75.3±6.8 | 76.4±6.6 | 0.689 |
体质量指数(kg/m2) | 22.9±3.1 | 23.3±3.3 | 0.065 |
吸烟 | 1 488(17.8) | 245(20.4) | 0.030 |
饮酒 | 1 465(17.5) | 207(17.2) | 0.389 |
父母髋部骨折 | 363(4.3) | 55(4.6) | 0.819 |
骨折史 | 221(2.6) | 46(3.8) | 0.636 |
跌倒风险评分 | 1.5±0.51 | 2.02±0.53 | 0.023 |
骨密度(g/cm2) | 0.790±0.030 | 0.920±0.040 | 0.000 |
TUG(s) | 10.12 | 10.75 | 0.000 |
1年内发生跌倒 | 593(7.1) | 122(10.1) | 0.000 |
1年内发生骨折 | 1 011(12.1) | 184(15.3) | 0.008 |
T2DM:2型糖尿病; TUG:起立行走计量测试 |
T2DM患者中,与非骨折组相比,骨折组女性的比例高(89.1% vs. 52.1%,P=0.000)、糖尿病病程长[(11.6±0.6)年vs. (9.6±0.2)年,P=0.000]、吸烟比率高(95.1% vs. 67.9%, P=0.000)、饮酒比率高(93.5% vs. 80.7%, P=0.000)、使用胰岛素比率高(23.9% vs. 14.9%, P=0.002)、父母髋部骨折史高(9.2% vs. 3.7%, P=0.001)、1年内发生跌倒率高(20.7% vs. 8.3%, P=0.000)、跌倒风险评分高(2.98±0.01 vs. 1.8±0.01, P=0.000)、TUG中位数时间高(10.92 s vs. 10.34 s,P=0.000)、BMD低[(0.635±0.026)g/cm2 vs. (0.780±0.030)g/cm2,P=0.000](表 2)。
组别 | 非骨折组(n=1 017) | 骨折组(n=184) | P |
女性 | 513(52.1) | 164(89.1) | 0.000 |
年龄(岁) | 72.2±0.2 | 72.3±0.4 | 0.930 |
糖尿病病程(年) | 9.6±0.2 | 11.6±0.6 | 0.001 |
体质量指数(kg/m2) | 24.7±0.1 | 24.4±0.2 | 0.251 |
服用降糖药 | 834(82) | 147(79.9) | 0.230 |
用胰岛素 | 152(14.9) | 44(23.9) | 0.002 |
吸烟 | 691(67.9) | 175(95.1) | 0.000 |
饮酒 | 821(80.7) | 172(93.5) | 0.000 |
父母髋部骨折 | 38(3.7) | 17(9.2) | 0.001 |
骨折史 | 12(1.2) | 34(18.5) | 0.000 |
1年内发生跌倒 | 84(8.3) | 38(20.7) | 0.000 |
跌倒风险评分 | 1.8±0.01 | 2.98±0.01 | 0.000 |
骨密度(g/m2) | 0.780±0.030 | 0.635±0.026 | 0.000 |
TUG(s) | 10.34 | 10.92 | 0.000 |
TUG:起立行走计时测试 |
Jalali等[6]对448名老年人进行了维持2年以上的研究得出,糖尿病、年龄、BMI将预示着跌倒风险,其中糖尿病是首要原因。本文排除年龄和BMI的影响,比较得出T2DM患者1年内跌倒和跌倒后骨折发生率明显高于对照组,从病理生理角度看,虽然T2DM和骨质疏松症似乎无关,但许多流行病学研究已经证明T2DM增加跌倒和骨折风险,并且许多机制证明T2DM患者是发生跌倒的高风险人群[7]。Giangregorio等[8]在加拿大Manitoba的大型研究队列中观察T2DM对骨折的预测价值,结果表明T2DM是未来10年主要骨质疏松性骨折的独立预测因素,也是髋部骨折的独立危险因素。
本研究表明老年人T2DM患者BMD值反而增高,这可能与肥胖以及超胰岛素血症, 雌激素水平的改变有关。正如De Ward等[9]研究指出,T2DM患者尽管骨量看上去正常或偏高,但由于骨结构和骨矿物质的微小改变,而引起骨质量和骨强度的下降。可能是因为T2DM抑制成骨细胞的表型表达及其分化和矿化,从而抑制I型胶原合成,引起胶原纤维之间的桥梁疲软,导致骨强度的减少和增加破骨细胞的骨吸收诱导[10]。Schwartz等[11]研究提示,尽管在T2DM患者中股骨颈BMD和骨折风险评估工具(fracture risk assessment tool, FRAX)均可预测老年患者的骨折,但该研究同时提示二者可能都会低估患者骨折的风险。因此,对T2DM患者除了进行BMD和FRAT骨折风险评估外,还建议采用其他方法,如骨超声检查、定量CT、高分辨外周定量计算机断层成像等方法分析骨骼的微结构和骨质量,以上可能是判断T2DM患者骨强度的有益补充[12]。
本研究还显示T2DM患者的TUG明显高于对照组。Chiba等[13]对护理院的老年T2DM患者的研究发现,步态和平衡是跌倒发生的独立预测因子,另外,跌倒风险指标提示,糖尿病患者在完成步态、起立测试时遇到显著的困难。TUG主要反映下肢肌功能,即肌力和下肢平衡功能。T2DM患者由于缺乏运动,脂肪沉积导致肌肉力量下降;另外,T2DM患者周围神经和血管病变引起下肢平衡功能障碍。而且,T2DM引起的高血糖、胰岛素抵抗、糖尿病周围神经和血管病变以及老化容易引起肌萎缩,加剧了肌力的丢失或者平衡失调[14]。T2DM患者由于平衡失调和肌萎缩会导致跌倒、骨折以及残疾的发生[15-17]。
为研究T2DM导致骨折高发生率的原因,本研究将T2DM患者分为骨折组与非骨折组。
首先,研究显示发生骨折组的女性比例偏高,性激素通过直接和间接的作用机制导致雌激素在绝经期突然失去作用。在一般的人群中,普遍存在的骨质疏松症及骨折的发病率,在女性明显高于男性。本研究还得出骨折组的糖尿病病程和胰岛素使用情况明显高于对照组。Strotmeyer等[18]将T2DM患者以每5~10年间隔分组,发现糖尿病持续时间和髋部BMD平均值逐渐减少相关。由于病程的延长,糖尿病周围神经病变,视网膜病变和白内障所致的视力减低、低血糖反应、肌肉性能下降、糖尿病足、减少反射、认知障碍等可能引起跌倒和骨折[19]。此外, 糖尿病延迟伤口愈合,减少骨愈伤组织细胞增生和胶原蛋白的含量[20]。胰岛素治疗通常是在T2DM患者病程更长, 且存在多个慢性并发症时使用[21]。胰岛素对骨的影响, 包括骨细胞增生的调控和胶原蛋白的合成[22]。低血糖反应是胰岛素治疗的主要并发症,预示着胰岛素治疗患者存在高跌倒发生率,Kennedy等[23]观察到胰岛素治疗患者比不用胰岛素治疗患者易发生跌倒和跌倒后骨折。因此,T2DM患者的病程、严重程度、代谢控制程度、并发症以及胰岛素使用等是发生骨折的重要危险因素[24]。
跌倒是老年人骨折和死亡的首要原因,因此被列为重要的公共健康问题[25]。跌倒对健康状态、老年人的生活质量以及家庭照顾产生重要影响[26]。1/3的65岁以上老年人和1/2的80岁以上老年人会发生跌倒[27],其中20%~30%的跌倒患者会导致严重的骨折,影响患者的生活自理能力,必要时需要住院治疗,甚至有死亡风险[28]。Iolascon等[29]描述,T2DM患者跌倒会导致髋部骨折,对于老年人而言,大部分跌倒导致的骨折是致命性的。而Tinnetti等[30]研究得出2/3的跌倒发生是可以预防的,因此,发现跌倒的原因是目前预防老年人骨折发生的最重要的环节[31]。本研究还表明吸烟、饮酒,父母髋部骨折史及跌倒风险评分增加了骨折的发生率。
总之,与非糖尿病老人相比,T2DM老人BMD较高,但是下肢肌功能、跌倒及骨折的发生率明显增高,提示T2DM降低了老年人肌肉功能,增加了跌倒和骨折的发生,且该作用独立于BMD以外,2型糖尿病提高了老人跌倒和骨折的发生率。
[1] | 中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊治指南(2011年)[J].中华骨质疏松和骨矿盐疾病杂志, 2011, 4:2-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=guss201101004&dbname=CJFD&dbcode=CJFQ |
[2] | Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus:possible cellular and molecular machanisms[J]. World J Diabetes, 2011, 2: 41–48. DOI:10.4239/wjd.v2.i3.41 |
[3] | Formiga F, Rodriguez Manäs I. Elderly patients with diabetes mellitus and frailty. Association always present?[J]. Rev Esp Geriatr Gerontol, 2014, 49: 253–254. DOI:10.1016/j.regg.2014.06.006 |
[4] | Buchner DM, Hornbrook MC. Development of the common data base for the FICSIT trials[J]. JAM Geriatr So, 1993, 41: 297–308. DOI:10.1111/jgs.1993.41.issue-3 |
[5] | Stephen D, Patricia S, Patricia M, et al. Diagnostic accuracy of fall risk assessment tools in people with diabetic peripheral neuropathy[J]. Phys Ther, 2012, 92: 1461–1470. DOI:10.2522/ptj.20120070 |
[6] | Jalali MM, Gerami H, Heidarzadeh A, et al. Balance performance in older adults and its relationship with falling[J]. Aging Clin Exp Res, 2015, 27: 287–296. DOI:10.1007/s40520-014-0273-4 |
[7] | Mayne D, Stout NR, Aspray TJ, et al. Diabetes, falls and fractures[J]. Age Ageing, 2010, 39: 522–525. DOI:10.1093/ageing/afq081 |
[8] | Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes[J]. J Bone Miner Res, 2012, 27: 301–308. DOI:10.1002/jbmr.556 |
[9] | De Ward EA, Van Geel TA, Savelberg HH, et al. Increased fracture risk in patients with type 2 diabetes mellitus:an overview of the underlying mechanisms and the usefulness of imaging modalities and fracture risk assessment tools[J]. Maturitas, 2014, 79: 265–274. DOI:10.1016/j.maturitas.2014.08.003 |
[10] | Viguet-Carrin S, Roux JP, Arlot ME, et al. Contribution of the advanced glycation end product pentosidine and of maturation of type Ⅰ collagen to compressive biomechanical properties of human lumbar vertebrae[J]. Bone, 39: 1073–2006. DOI:10.1016/j.bone.2006.05.013 |
[11] | Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes[J]. JAMA, 2011, 305: 2184–2192. DOI:10.1001/jama.2011.715 |
[12] | 夏维波. 应重视糖尿病性骨质疏松症[J]. 中华糖尿病杂志, 2016, 8: 1–4. |
[13] | Chiba Y, Kimbara Y, Kodera R, et al. Risk factors associated with falls in elderly patients with type 2 diabetes[J]. J Diabetes Complicat, 2015, 29: 898–902. DOI:10.1016/j.jdiacomp.2015.05.016 |
[14] | Andersen H, Nielsen S, Mogensen CE, et al. Muscle strength in type 2 diabetes[J]. Diabetes, 2004, 53: 1543–1548. DOI:10.2337/diabetes.53.6.1543 |
[15] | Wang CP, Hazuda HP. Better glycemic control is associated with maintenance of lower-extremity function over time in Mexican American and European American older adults with diabetes[J]. Diabetes Care, 2001, 34: 268–273. |
[16] | Wells JC. Sexual dimorphism of body composition[J]. Best Pract Res Clin Endocrinol Metab, 2007, 21: 415–430. DOI:10.1016/j.beem.2007.04.007 |
[17] | Hernlund E, Svedbom A, Ivergard M, et al. Osteoporosis in the European Union:medical management, epide miology and economic burden:a report prepared in collaboration with the International Osteoporosis Foundation(IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA)[J]. Arch Osteoporos, 2013, 8: 136–142. DOI:10.1007/s11657-013-0136-1 |
[18] | Strotmeyer ES, Cauley JA, Schwartz AV, et al. Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women:The Health, Aging, and Body Composition Study[J]. J Bone Miner Res, 2004, 19: 1084–1091. DOI:10.1359/JBMR.040311 |
[19] | Basile G, Crucitti A, Cucinotta MD, et al. Impact of diabetes on cognitive impairment and disability in elderly hospitalized patients with heart failure[J]. Geriatr Gerontol Int, 2013, 13: 1035–1042. DOI:10.1111/ggi.2013.13.issue-4 |
[20] | Altavilla D, Saitta A, Cucinotta D, et al. Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse[J]. Diabetes, 2001, 50: 667–6741. DOI:10.2337/diabetes.50.3.667 |
[21] | Cucinotta D, Russo GT. Biphasic insulin aspart in the treatment of type 2 diabetes mellitus[J]. Expert Opin Pharmacother, 2009, 10: 2905–2911. DOI:10.1517/14656560903391714 |
[22] | Thrailkill KM, Lumpkin CK Jr, Bunn RC, et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues[J]. Am J Physiol Endocrinol Metab, 2005, 289: 735–745. DOI:10.1152/ajpendo.00159.2005 |
[23] | Kennedy RL, Henry J, Chapman AJ, et al. Accidents in patients with insulin-treated diabetes:increased risk of low-impact falls but not motor vehicle crashes-a prospective register-based study[J]. J Trauma, 2002, 52: 660–666. |
[24] | Camevale V, Romagnoli E, Erasmo LD, et al. Bone damage in type 2 diabetes mellitus[J]. Nutr Metab Cardiovasc Dis, 2014, 24: 1151–1157. DOI:10.1016/j.numecd.2014.06.013 |
[25] | Tinetti ME. Clinical practice:preventing falls in elderly persons[J]. New Engl J Med, 2003, 348: 42–49. DOI:10.1056/NEJMcp020719 |
[26] | Owing TM, Pavol MJ, Foley KT, et al. Exercise:is it a solution to falls by older adults?[J]. J Appl Biomech, 1999, 15: 56–63. DOI:10.1123/jab.15.1.56 |
[27] | Tinetti ME. Clinical practice:preventing falls in elderly persons[J]. New Engl J Med, 2003, 348: 42–49. DOI:10.1056/NEJMcp020719 |
[28] | Inouye SK, Brown CJ, Tinetti ME, et al. Medicare nonpayment, hospital falls, and unintended consequences[J]. New Engl J Med, 2009, 360: 2390–2393. DOI:10.1056/NEJMp0900963 |
[29] | Iolascon G, Gravina P, Luciano F, et al. Characteristics and circumstances of falls in hip fractures[J]. Aging Clin Exp Res, 2013, 25: 133–135. DOI:10.1007/s40520-013-0115-9 |
[30] | Tinnetti ME, Speechley M. Prevention of falls among the elderly[J]. New Engl J Med, 1989, 320: 1055–1059. DOI:10.1056/NEJM198904203201606 |
[31] | Alexander BH, Rivara FP, Wolf ME, et al. The cost and frequency of hospitalization for fall-related injuries in older adults[J]. Am J Public Health, 1992, 82: 1020–1023. DOI:10.2105/AJPH.82.7.1020 |
(收稿日期:2017-04-18) |