软骨细胞是构成关节软骨的唯一细胞成分,与Ⅱ、Ⅸ、Ⅺ型胶原蛋白以及蛋白聚糖一起构成软骨组织,如发生原发性或继发性疾病导致软骨细胞变性或凋亡,可引发软骨下骨质硬化及边缘骨赘形成,导致具有关节功能障碍表现的骨性关节炎(osteoarthritis,OA)[1]。微小RNA(miR,miRNA,microRNA)是一类广泛存在于动植物体内的非编码RNA,长度约20~22个核苷酸或21~25个核苷酸[2],可影响细胞增生、分化、凋亡及疾病进展。研究证明,许多miRNA在软骨代谢中起到了重要作用,本文就miRNA在软骨细胞以及OA研究进展作一综述。
MicroRNA产生途径及作用机制miRNA的产生主要有3个途径[2]:一是在细胞核内主要由RNA多聚酶2或者3转录产生Pre-miRNA,长度为几百到上千个核苷酸不等,通过加帽(Dicer)和poly-A尾部处理,被核糖核酸酶Ⅲ(Drosha)以及Dgcr8(Drosha的关键因子,miRNA加工蛋白)构成的复合物识别和分解,折叠形成一个发卡(hairpin)样结构,这一过程可被多个蛋白特异性调节,如hnRNPA1、p53、Smad以及Lin28;还有一种称为“mirtron”的途径,通过拼接方式产生发卡结构;第三种通过RNA聚合酶2直接转录而成,后两种方式产生的Pre-miRNA表达水平通常很低,其生物活性尚未完全明确。
miRNA通过一系列反应形成一种核糖核蛋白复合物称为RNA诱导的静默复合物(RNA-induced silencing complex, RISC),多数情况下与mRNA特异性序列结合构成GW小体,通过腺苷酸乙酰化或者直接抑制翻译来调节目标mRNA,较少的情况下,miRNA可以与目标mRNA序列完全配对,激活Ago2活性降解mRNA,通过相关转录因子以及信号通路来调节细胞增生、分化甚至死亡[3]。当miRNA-RISC与目标mRNA不完全配对时,可阻遏靶mRNA的翻译。一种miRNA可调控多种mRNA,多种miRNA也可以调控一种mRNA[4]。
促进软骨分化相关miRNA间充质干细胞(mesenchymal stem cells,MSC)能够分化成软骨细胞,很大程度上依赖于miRNA。在此过程中,Dicer、Ago蛋白和DGCR8是miRNA发挥作用的必需酶,骨骼肌肉系统的Dicer和Ago缺乏会导致细胞分化异常,软骨细胞数量下降且分化成熟加速[5] (表 1)。
| MicroRNA | 目标靶点 | 作用 |
| miR-140 miR-491 | SOX9, HDAC4,ADAMTS5 pthrp/HDAC4 | 促进软骨细胞增生分化,维持软骨基质代谢平衡 |
| miR-1 miR-98 | HDAC4 Bcl-2 | 诱导软骨细胞增生分化 抑制软骨细胞凋亡 |
| miR-133 | Runx2(-)*,BMP/Smad(-)* | 诱导软骨细胞增生分化 |
| miRNA-27a,miRNA-24-2 | SATB2(-)* | 抑制软骨骨化 |
| miR-125b | ADAMTS4(-)* | 抑制软骨骨化 |
| miR-203 | TRPV4,NO | 维持软骨细胞内环境稳态 |
| miR-206 | 未知 | 促进软骨膜发育 |
| miRNA-335-5p | 未知 | 促进颅面部软骨发育 |
| miR-222 | 未知 | 调节软骨机械传导通路 |
| miR-558 | MAPK,NF-κB,COX-2,COX2 | 维持软骨内环境平衡 |
| miR-130b,miR-152,miR-28,miR-26b,miR-193b | COL4A1,COL2A1,COL6A1 | 促进间充质细胞分化形成软骨细胞 |
| *(-)代表负向调控 | ||
miR-140表达于软骨细胞,位于WWP2序列,研究发现生成软骨的关键基因Y染色体性别决定结构域转录因子9(SRY-related high mobility group box gene 9,SOX9)能够调节WWP2表达[6-7],后者通过影响SOX9的转录活性来调节编码Ⅱ型胶原蛋白基因(collagen 2 alphal,COL2AL)的表达,在软骨细胞分化过程中发挥正向调节作用,SOX9及COL2AL在去分化软骨细胞中表达降低[8]。组蛋白去乙酰化酶4(histone deacetylase 4,HDAC4)基因只在骨、软骨等少数组织中表达,如缺失会导致小鼠软骨过度转化为骨质而死亡,RUNX2是HDAC4作用的靶点,也是控制骨质硬化的基因[9],miR-140可通过HDAC4抑制RUNX2表达,避免软骨骨化[10]。也有研究认为mi-140通过甲状腺激素相关蛋白(pthrp)/HDAC4通路确保HDAC4活性,促进软骨细胞分化[11]。
Li等[12]和Chen等[13]发现miR-1可以显著诱导软骨细胞增生分化,直接调控HDAC4,负向调节RUNX2,抑制软骨细胞骨化,如敲除miR-1基因,可导致HDAC4表达抑制,但是过表达的miR-1可以抑制COL2AL和刺猬蛋白(sonic hedgehog,SHH)表达,SHH基因在胚胎阶段调控多种组织器官发育,在软骨成骨方面发挥了重要作用。miR-133通过负向调节RUNX2表达以及BMP/Smad信号通路,与miR-1作用途径类似。miR-23a家族(包括miR-27a,miR-24-2)通过下调骨架相关的特异AT序列结合蛋白2(special AT-rich sequence binding protein 2,SATB2),抑制颗粒钙蛋白生成和软骨转化为骨[14]。miR-203和在大鼠下颌骨髁突软骨细胞(mandibular condylar chondrocytes,MCCs)中表达平稳,可调控瞬时感受器电位离子通道4(transi-ent receptor potential vanilloid 4,TRPV4)以及脂多糖(lipopolysaccharides,LPS)刺激MCCs产生的NO水平,维持软骨细胞内环境稳态[15]。miR-222在关节软骨承重区域的表达远高于非承重区域,推测其可能参与调节了软骨机械传导通路[16]。miR-206在E14.4小鼠软骨膜中高表达,在骨形成过程中表达逐渐降低,miRNA-335-5p在E13.5小鼠胚胎和颅面部软骨表达,均具有正向调节作用[17]。miR-558在OA软骨中显著下降,miR-558通过抑制软骨细胞中COX-2以及MMP-13、MMP-1表达,维持软骨内环境平衡,减轻IL-1β诱导的炎性反应,MAPK以及NF-κB信号通路参与了这一过程[18]。一些miRNA(miR-130b、miR-152、miR-28、miR-26b、miR-193b)作用于COL4A1,COL2A1和COL6A1等目标基因靶点,可促进间充质细胞分化形成软骨细胞[19]。在此过程中,生长因子受体(growth factor receptor,GFR)、血管生成素1(angiogenin,ANG1)、胰岛素样生长因子2(insulin like growth factor 2,IGF2)受体、转化生长因子受体β(transforming growth factor-β,TGF-β)、IL-6,成纤维生长因子受体(fibroblast growth factor,FGF)、血小板来源生长因子A(platelet derived growth factor,PGFA),信号转导因子Smad4,MAPK1,WNT以及基质金属蛋白酶(matrix metalloprotein,MMP)等均有参与,部分作用于Runx2的miRNA在软骨生成时高表达,随着向成骨细胞进一步分化,miRNA表达水平逐渐下降[20]。
抑制软骨分化相关miRNAmiR-199a通过直接作用于转录因子Smad1来抑制早期软骨细胞分化蛋白,调节软骨生成。miR-199a-3p通过下调Smad来抑制早期软骨细胞分化。miR-204, miR-185,miR-199a-2-5p以及miR-214等转录后分别抑制Ang1、VEGF和巨噬细胞集落刺激因子(M-CSF)的表达,进而抑制软骨细胞分化[21]。7类miRNA(23a、30c、34c、133a、135a、205、217)参与调节软骨基因GATA的转录因子TRPS1,抑制软骨细胞前体分化[22]。miR23a和miR34a还是骨架相关的AT结合蛋白SATB2的转录因子,具有上调Runx2表达的作用,可能控制骨软骨前体阶段[23]。Zhang等[24]发现内源性miR-21在OA患者软骨组织中表达升高,其过度表达会抑制软骨生成,这一过程是通过作用于生长分化因子5(growth differentiation factor 5,GDF5)实现的。miR-101通过Sox9上调细胞外基质IL-6,Adamts-1, Adamts-5等表达,同时IL-1α、IL-2、IL-13、MMP-2、TIMP-2、TIMP-3、TGF-β2、TGF-β3和VEGF等表达水平升高,而使用miR-101抑制剂能够逆转上述炎性因子的表达,发挥细胞保护作用[25]。过度表达miR-223导致人体关节软骨细胞的凋亡进而引起严重的关节损伤,miR-34a的上调能够激活Fas介导的终板软骨细胞凋亡,EphA5表达增加能够减少miR-34a在软骨细胞分化方面的抑制性作用,miR-145作用于ERG、CDK6、BMPR2等靶点,具有促进胚胎多能干细胞分化和抑制增生的作用;体外实验发现miR-145可下调软骨生成的关键因子SOX9,抑制软骨细胞增生分化[26]。miR-9和miR-181可下调MMP-13水平,诱导Ⅱ型胶原蛋白表达,有利于促进软骨细胞分化并维持软骨完整性。但过表达的miR-181可以显著加重软骨损伤,对软骨生成有负性调节作用[27]。
研究发现,体外培养软骨细胞存在去分化现象,细胞形态由多角形或圆形逐步向梭形转变[28],miRNA参与了去分化过程。miR-221和miR-222在软骨细胞去分化和再分化时均表达增加[29],miR-140在软骨细胞去分化时减少,miR-143和R-145也急剧减少,软骨细胞基因表达谱也发生变化,如Ⅱ型胶原、蛋白聚糖和Y染色体性别决定SOX9基因表达下降,Ⅰ型胶原表达增加,但使用TGF-β刺激可恢复miR-143和miR-145表达[8](表 2)。
| MicroRNA | 目标靶点 | 功能 |
| miR-199a | Smad1(-)* | 抑制软骨细胞分化和软骨形成 |
| miR-101 | Sox9 | 促进软骨细胞凋亡 |
| miR-30 | ERG | 促进软骨细胞凋亡 |
| miR-223 | PEX-16(-)* | 软骨细胞氧化损伤 |
| miR-34a | EphA5 | 抑制软骨细胞分化 |
| miRNA-199a-3p | Smad1(-)* | 抑制早期软骨细胞分化 |
| miR-204, miR-185,miR-199a-2-5p,miR-214 | M-CSF,Ang1,VEGF | 抑制软骨细胞分化 |
| miR-23a,miR-30c,miR-34c,miR-133a,miR-135a,miR-205,miR-217 | TRPS1 | 抑制软骨细胞前体分化 |
| miR23a,miR34a | Runx2 | 促进软骨骨化 |
| miR-21 | GDF5 | 抑制软骨生成 |
| miR-145 | ERG,CDK6,BMPR2,SOX9 | 抑制软骨细胞增生分化 |
| miR-9 | MMP-13(-)* | 具有双向调节功能,引起软骨损伤 |
| miR-181 | MMP-13(-)* | |
| miR-221,miR-222 | Sox9(-)* | 促进软骨细胞去分化 |
| *(-)代表负向调控 | ||
OA是软骨退化与修复之间的不平衡导致,基质金属蛋白酶家族ADAMTS5以及MMP-13是其中关键酶[30]。在OA软骨细胞中,少数miRNA下调,miR-140,miR-146及miR-491上调,多数miRNA没有变化[31]。下调的miR-27b直接调控MMP-13表达,miR-22水平与体质量指数(body mass index,BMI)有关,可引起炎性反应以及代谢变化,调节过氧化物酶体增生物激活受体ɑ(peroxisome proliferator-activated receptor α,PPARα)以及BMP-7的表达[32]。miR-608或者miR-602抑制SHH表达,是重要的SHH转录后调节因子,IL-1β抑制miR-608和miR-602会导致OA中SHH和MMP-13的表达增加[33]。醉茄素A可诱导兔关节软骨细胞COX-2剂量依赖性表达升高,伴有miR-25的过表达,抑制miR-25可以降低COX-2表达[34]。miR-127-5p可以抑制软骨细胞中IL-1β诱导的MMP-13和其他某些因子如INK、NF-κB、MMP-1和COX-2的表达,但在OA软骨组织中miR-127-5p表达水平显著降低[35]。关节炎患者关节软骨中miR-30b水平较正常人显著升高,使用miR-30b抑制剂能够提高聚集蛋白聚糖以及COL2A的表达水平,这一过程可能是通过转录因子ETS介导完成的[36]。miR-125b在正常软骨细胞中表达高于OA,其过表达可以抑制IL-1β诱导的基质金属蛋白酶4(a disintegrin and metalloproteinase with thrombospondin motifs 4,ADAMTS4)产生,如miR-125b与ADAMTS4的3′UTR结合位点发生变异,则抑制效应下降[37]。OA患者软骨细胞中miR-98的表达水平显著降低,过表达miR-98能够抑制软骨细胞的凋亡[38],可能是通过调节细胞和mRNA层次的bcl-2而实现的[39]。Iliopoulos等[40]发现miR-140在OA中表达水平显著降低,Miyaki等[41]发现miR-140敲除小鼠的胶原蛋白聚糖流失和关节软骨纤维化较正常小鼠更快,并对蛋白聚糖以及2型胶原蛋白具有一定的耐受性。转基因小鼠软骨细胞中大量表达miR-140,可耐受抗原诱导的关节炎,表明miR-140可以对抗OA,miR-140敲除小鼠胚胎时期的骨骼生长基本正常,但是出生后由于软骨细胞增生分化能力下降导致骨骼短小,颅面部发育异常[42]。Yang等[43]发现miR-145在OA软骨细胞和受到IL-1β刺激之后表达增加,通过Smad3引起下游目标基因表达异常,导致OA软骨细胞外基质(extracellular matrix,ECM)降解。miR-146a在OA早期软骨细胞中高表达,但在严重OA中低表达,具有负性调节炎性反应以及内源性免疫反应的能力,可抑制破骨细胞,有利于维护软骨细胞稳态[44]。miR-146与miR-140共同参与调节细胞因子信号通路,维持软骨合成与降解之间的平衡。miR-675与miR-140类似,在软骨细胞去分化过程中表达降低[45]。
展望随着对miRNA作用机制等相关研究的逐步深入,已经发现了一些在软骨分化过程中具有较强特异性的miRNA,可直接作用于Sox9、HDAC4、IGFBP5、COX2、COL2A1、Smad1、Runx2、GDF5等靶点调节软骨细胞增生分化,通过pthrp/HDAC4,BMP/Smad,MAPK,NF-κB等信号传导通路维持软骨细胞内环境的稳态,保持软骨基质合成与代谢之间的平衡。OA常伴随着合成代谢基因的变化(如COL2AI),基因多态性在此过程中也有所体现,如GDF5和SMAD3都是OA风险等位基因,也是miRNA参与调节的靶点基因,因此OA与miRNA表达水平关系密切。
miRNA由于数量庞大,相互作用错综复杂,目前在软骨细胞分化及相关信号通路中的研究还不够深入,有必要进行软骨细胞特异性miRNA的功能、调控机制、作用靶点、作用剂量、活性因素、表达时序性等方面的研究,可以更好的了解软骨相关疾病的发病机制,提出新的诊断依据和治疗手段,指导软骨组织工程及软骨修复研究,最终用于临床实践,使患者受益。
| [1] | Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis[J]. Trends Mol Med, 2012, 18: 109–118. DOI:10.1016/j.molmed.2011.11.005 |
| [2] | Yi R, Fuchs E. MicroRNAs and their roles in mammalian stem cells[J]. J Cell Sci, 2011, 124: 1775–1783. DOI:10.1242/jcs.069104 |
| [3] | Martinez NJ, Gregory RI. MicroRNA Gene Regulatory Pathways in the Establishment and Maintenance of ESC Identity[J]. Cell Stem Cell, 2010, 7: 31–35. DOI:10.1016/j.stem.2010.06.011 |
| [4] | Courts C, Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification[J]. J Forensic Sci, 2011, 56: 1464–1470. DOI:10.1111/jfo.2011.56.issue-6 |
| [5] | Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105: 1949–1954. DOI:10.1073/pnas.0707900105 |
| [6] | Lian JB, Stein GS, van Wijnen AJ, et al. MicroRNA control of bone formation and homeostasis[J]. Nat Rev Endocrinol, 2012, 8: 212–227. DOI:10.1038/nrendo.2011.234 |
| [7] | Duru N, Zhang Y, Gernapudi R, et al. Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages[J]. Sci Rep, 2016, 6: 39572. DOI:10.1038/srep39572 |
| [8] | Lee S, Yoon DS, Paik S, et al. microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J]. Stem Cells Dev, 2014, 23: 1798–1808. DOI:10.1089/scd.2013.0609 |
| [9] | Hassan MQ, Gordon JA, Beloti MM, et al. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program[J]. Proc Natl Acad Sci U S A, 2010, 107: 19879–19884. DOI:10.1073/pnas.1007698107 |
| [10] | Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS Lett, 2006, 580: 4214–4217. DOI:10.1016/j.febslet.2006.06.080 |
| [11] | Papaioannou G, Mirzamohammadi F, Lisse TS, et al. MicroRNA-140 provides robustness to the regulation of hypertrophic chondrocyte differentiation by the PTHrP-HDAC4 pathway[J]. J Bone Miner Res, 2015, 30: 1044–1052. DOI:10.1002/jbmr.2438 |
| [12] | Li P, Wei X, Guan Y, et al. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacety-lase 4 during growth plate development[J]. FASEB J, 2014, 28: 3930. DOI:10.1096/fj.13-249318 |
| [13] | Chen X, Shi J, Zhong J, et al. miR-1, regulated by LMP1, suppresses tumour growth and metastasis by targeting K-ras in nasopharyngeal carcinoma[J]. Int J Exp Pathol, 2015, 96: 427–432. DOI:10.1111/iep.2015.96.issue-6 |
| [14] | Nakamura Y, Yamamoto K, He XJ, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25[J]. Nat Communicat, 2011, 2: 251. |
| [15] | Hu F, Zhu W, Wang L. MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4[J]. Arch Oral Biol, 2013, 58: 192–199. DOI:10.1016/j.archoralbio.2012.08.013 |
| [16] | Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2[J]. Proc Natl Acad Sci USA, 2011, 108: 9863–9868. DOI:10.1073/pnas.1018493108 |
| [17] | Zhang J, Tu Q, Bonewald LF, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1[J]. J Bone Miner Res, 2011, 26: 1953–1963. DOI:10.1002/jbmr.377 |
| [18] | Park SJ, Cheon EJ, Kim HA. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1beta-induced catabolic effects in human articular chondrocytes[J]. Osteoarthrit Cartil, 2013, 21: 981–989. DOI:10.1016/j.joca.2013.04.012 |
| [19] | Han J, Yang T, Gao J, et al. Specific microRNA expression during chondrogenesis of human mesenchymal stem cells[J]. Int J Mol Med, 2010, 25: 377–384. |
| [20] | Yang B, Guo H, Zhang Y, et al. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9[J]. PLoS One, 2011, 6: e21679. DOI:10.1371/journal.pone.0021679 |
| [21] | Sorrentino A, Ferracin M, Castelli G, et al. Isolation and characterization of CD146+ multipotent mesen-chymal stromal cells[J]. Exp Hematol, 2008, 36: 1035–1046. DOI:10.1016/j.exphem.2008.03.004 |
| [22] | Zhang Y, Xie RL, Gordon J, et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2[J]. J Biol Chem, 2012, 287: 21926–21935. DOI:10.1074/jbc.M112.340398 |
| [23] | Wei J, Shi Y, Zheng L, et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2[J]. J Cell Biol, 2012, 197: 509–521. DOI:10.1083/jcb.201201057 |
| [24] | Zhang Y, Jia J, Yang S, et al. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes[J]. Exp Mol Med, 2014, 46: e79. DOI:10.1038/emm.2013.152 |
| [25] | Tsai CH, Yang DY, Lin CY, et al. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression[J]. Mol Oncol, 2017, 11: 1380–1398. DOI:10.1002/1878-0261.12106 |
| [26] | Laine SK, Hentunen T, Laitala-Leinonen T. Do microRNAs regulate bone marrow stem cell niche physiology?[J]. Gene, 2012, 497: 1–9. DOI:10.1016/j.gene.2012.01.045 |
| [27] | Song J, Lee M, Kim D, et al. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity[J]. Biochem Biophys Res Commun, 2013, 431: 210–214. DOI:10.1016/j.bbrc.2012.12.133 |
| [28] | Chen HY, Ghori-Javed FY, Rashid H, et al. Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation[J]. J Bone Mineral Res, 2014, 29: 2653–2665. DOI:10.1002/jbmr.2287 |
| [29] | Lin CS, Chen JJ, Huang YT, et al. Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families[J]. Plant Mol Biol, 2013, 82: 193–204. DOI:10.1007/s11103-013-0055-y |
| [30] | Gu J, Lu Y, Li F, et al. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation[J]. Cell Death Dise, 2014, 5: e1469. DOI:10.1038/cddis.2014.444 |
| [31] | Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes[J]. Arthritis Rheum, 2010, 62: 1361–1371. |
| [32] | Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8: 543–552. DOI:10.1038/nrrheum.2012.128 |
| [33] | Akhtar N, Makki MS, Haqqi TM. MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes[J]. Arthritis Rheumatol, 2014, 67: 423–434. |
| [34] | Kim JH, Kim SJ. Overexpression of microRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes[J]. J Pharmacol Sci, 2014, 125: 83–90. DOI:10.1254/jphs.13232FP |
| [35] | Park SJ, Cheon EJ, Lee MH, et al. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes[J]. Arthritis Rheum, 2013, 65: 3141–3152. DOI:10.1002/art.38188 |
| [36] | Li Q, Zhang X, Li N, et al. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer[J]. Biochem Biophys Res Commun, 2017, 485: 506–512. DOI:10.1016/j.bbrc.2017.02.016 |
| [37] | Matsukawa T, Sakai T, Yonezawa T, et al. Micro-RNA-125b regulates the expression of aggrecanase-1(ADAMTS-4) in human osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2013, 15: R28. DOI:10.1186/ar4164 |
| [38] | Wang GL, Wu YB, Liu JT, et al. Upregulation of miR-98 inhibits apoptosis in cartilage cells in osteoarthritis[J]. Genet Test Mol Biomarkers, 2016, 20: 645–653. DOI:10.1089/gtmb.2016.0011 |
| [39] | Wang J, Chen L, Jin S, et al. miR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis[J]. Acta Biochim Biophys Sin (Shanghai), 2016, 48: 923–929. DOI:10.1093/abbs/gmw084 |
| [40] | Iliopoulos D, Malizos KN, Oikonomou P, et al. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks[J]. PLoS One, 2008, 3. |
| [41] | Miyaki S, Sato T, Inoue A, et al. (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 24: 1173-1185. |
| [42] | Nakamura Y, Inloes JB, Katagiri T, et al. Chondro-cyte-specific microRNA-140 regulates endochondral bone development and targets dnpep To modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31: 3019–3028. DOI:10.1128/MCB.05178-11 |
| [43] | Yang B, Kang X, Xing Y, et al. Effect of microRNA-145 on IL-1beta-induced cartilage degradation in human chondrocytes[J]. FEBS Lett, 2014, 588: 2344–2352. DOI:10.1016/j.febslet.2014.05.033 |
| [44] | Li X, Gibson G, Kim JS, et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis[J]. Gene, 2011, 480: 34–41. DOI:10.1016/j.gene.2011.03.003 |
| [45] | Dudek KA, Lafont JE, Martinez-Sanchez A, et al. Type Ⅱ collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010, 285: 24381–24387. DOI:10.1074/jbc.M110.111328 |
| (收稿日期:2017-11-17) |

