微小RNA对软骨代谢的影响
程强, 刘刚     
210046 南京,南京大学医学院附属金陵医院骨科
摘要:微小RNA(microRNA)是一类非蛋白质类的新型基因表达调控因子。研究发现,miRNA在软骨代谢性疾病发展过程中发挥了重要作用。本文就miRNA生物特性及作用机制,软骨相关miRNA以及骨关节炎相关miRNA的研究进展做一综述。miRNA在软骨发育以及骨关节炎发生、发展过程中参与调节细胞内多种信号通路与炎性因子的表达,部分具有特异性,因此,某些特异性miRNA可以作为疾病的诊断标志物以及治疗靶点应用于临床中。
关键词微小RNA     软骨代谢     细胞分化     信号通路    
Effect of microRNA on metabolism of cartilage
CHENG Qiang, LIU Gang     
Department of Orthopedics, Hospital of Jinling, Medical School of Nanjing University, Nanjing 210002, China
Abstract: MicroRNA is a novel type of non-protein gene modulator, and miRNA palys an important role in the regulation of cartilage-associated metabolic diseases through mRNA-associated target genes and signal pathways. This paper reviews the progress of the biological features and mechanisms of miRNA, as well as the miRNAs associated with cartilage and osteoarthritis. Some miRNAs express specifically in cartilage and modulate expression of several signal pathways and inflammatory factors. Several miRNA could be applied as the marker and therapeutic targets in clinic.
Key words: microRNA     cartilage metabolism     cell differentiation     signal pathways    

软骨细胞是构成关节软骨的唯一细胞成分,与Ⅱ、Ⅸ、Ⅺ型胶原蛋白以及蛋白聚糖一起构成软骨组织,如发生原发性或继发性疾病导致软骨细胞变性或凋亡,可引发软骨下骨质硬化及边缘骨赘形成,导致具有关节功能障碍表现的骨性关节炎(osteoarthritis,OA)[1]。微小RNA(miR,miRNA,microRNA)是一类广泛存在于动植物体内的非编码RNA,长度约20~22个核苷酸或21~25个核苷酸[2],可影响细胞增生、分化、凋亡及疾病进展。研究证明,许多miRNA在软骨代谢中起到了重要作用,本文就miRNA在软骨细胞以及OA研究进展作一综述。

MicroRNA产生途径及作用机制

miRNA的产生主要有3个途径[2]:一是在细胞核内主要由RNA多聚酶2或者3转录产生Pre-miRNA,长度为几百到上千个核苷酸不等,通过加帽(Dicer)和poly-A尾部处理,被核糖核酸酶Ⅲ(Drosha)以及Dgcr8(Drosha的关键因子,miRNA加工蛋白)构成的复合物识别和分解,折叠形成一个发卡(hairpin)样结构,这一过程可被多个蛋白特异性调节,如hnRNPA1、p53、Smad以及Lin28;还有一种称为“mirtron”的途径,通过拼接方式产生发卡结构;第三种通过RNA聚合酶2直接转录而成,后两种方式产生的Pre-miRNA表达水平通常很低,其生物活性尚未完全明确。

miRNA通过一系列反应形成一种核糖核蛋白复合物称为RNA诱导的静默复合物(RNA-induced silencing complex, RISC),多数情况下与mRNA特异性序列结合构成GW小体,通过腺苷酸乙酰化或者直接抑制翻译来调节目标mRNA,较少的情况下,miRNA可以与目标mRNA序列完全配对,激活Ago2活性降解mRNA,通过相关转录因子以及信号通路来调节细胞增生、分化甚至死亡[3]。当miRNA-RISC与目标mRNA不完全配对时,可阻遏靶mRNA的翻译。一种miRNA可调控多种mRNA,多种miRNA也可以调控一种mRNA[4]

促进软骨分化相关miRNA

间充质干细胞(mesenchymal stem cells,MSC)能够分化成软骨细胞,很大程度上依赖于miRNA。在此过程中,Dicer、Ago蛋白和DGCR8是miRNA发挥作用的必需酶,骨骼肌肉系统的Dicer和Ago缺乏会导致细胞分化异常,软骨细胞数量下降且分化成熟加速[5] (表 1)。

表 1 正向调节作用的miRNA Table 1 Positive regulatory role of miRNAs
MicroRNA目标靶点作用
miR-140
miR-491
SOX9, HDAC4,ADAMTS5
pthrp/HDAC4
促进软骨细胞增生分化,维持软骨基质代谢平衡
miR-1
miR-98
HDAC4
Bcl-2
诱导软骨细胞增生分化
抑制软骨细胞凋亡
miR-133Runx2(-)*,BMP/Smad(-)*诱导软骨细胞增生分化
miRNA-27a,miRNA-24-2SATB2(-)*抑制软骨骨化
miR-125bADAMTS4(-)*抑制软骨骨化
miR-203TRPV4,NO维持软骨细胞内环境稳态
miR-206未知促进软骨膜发育
miRNA-335-5p未知促进颅面部软骨发育
miR-222未知调节软骨机械传导通路
miR-558MAPK,NF-κB,COX-2,COX2维持软骨内环境平衡
miR-130b,miR-152,miR-28,miR-26b,miR-193bCOL4A1,COL2A1,COL6A1
促进间充质细胞分化形成软骨细胞
*(-)代表负向调控

miR-140表达于软骨细胞,位于WWP2序列,研究发现生成软骨的关键基因Y染色体性别决定结构域转录因子9(SRY-related high mobility group box gene 9,SOX9)能够调节WWP2表达[6-7],后者通过影响SOX9的转录活性来调节编码Ⅱ型胶原蛋白基因(collagen 2 alphal,COL2AL)的表达,在软骨细胞分化过程中发挥正向调节作用,SOX9及COL2AL在去分化软骨细胞中表达降低[8]。组蛋白去乙酰化酶4(histone deacetylase 4,HDAC4)基因只在骨、软骨等少数组织中表达,如缺失会导致小鼠软骨过度转化为骨质而死亡,RUNX2是HDAC4作用的靶点,也是控制骨质硬化的基因[9],miR-140可通过HDAC4抑制RUNX2表达,避免软骨骨化[10]。也有研究认为mi-140通过甲状腺激素相关蛋白(pthrp)/HDAC4通路确保HDAC4活性,促进软骨细胞分化[11]

Li等[12]和Chen等[13]发现miR-1可以显著诱导软骨细胞增生分化,直接调控HDAC4,负向调节RUNX2,抑制软骨细胞骨化,如敲除miR-1基因,可导致HDAC4表达抑制,但是过表达的miR-1可以抑制COL2AL和刺猬蛋白(sonic hedgehog,SHH)表达,SHH基因在胚胎阶段调控多种组织器官发育,在软骨成骨方面发挥了重要作用。miR-133通过负向调节RUNX2表达以及BMP/Smad信号通路,与miR-1作用途径类似。miR-23a家族(包括miR-27a,miR-24-2)通过下调骨架相关的特异AT序列结合蛋白2(special AT-rich sequence binding protein 2,SATB2),抑制颗粒钙蛋白生成和软骨转化为骨[14]。miR-203和在大鼠下颌骨髁突软骨细胞(mandibular condylar chondrocytes,MCCs)中表达平稳,可调控瞬时感受器电位离子通道4(transi-ent receptor potential vanilloid 4,TRPV4)以及脂多糖(lipopolysaccharides,LPS)刺激MCCs产生的NO水平,维持软骨细胞内环境稳态[15]。miR-222在关节软骨承重区域的表达远高于非承重区域,推测其可能参与调节了软骨机械传导通路[16]。miR-206在E14.4小鼠软骨膜中高表达,在骨形成过程中表达逐渐降低,miRNA-335-5p在E13.5小鼠胚胎和颅面部软骨表达,均具有正向调节作用[17]。miR-558在OA软骨中显著下降,miR-558通过抑制软骨细胞中COX-2以及MMP-13、MMP-1表达,维持软骨内环境平衡,减轻IL-1β诱导的炎性反应,MAPK以及NF-κB信号通路参与了这一过程[18]。一些miRNA(miR-130b、miR-152、miR-28、miR-26b、miR-193b)作用于COL4A1,COL2A1和COL6A1等目标基因靶点,可促进间充质细胞分化形成软骨细胞[19]。在此过程中,生长因子受体(growth factor receptor,GFR)、血管生成素1(angiogenin,ANG1)、胰岛素样生长因子2(insulin like growth factor 2,IGF2)受体、转化生长因子受体β(transforming growth factor-β,TGF-β)、IL-6,成纤维生长因子受体(fibroblast growth factor,FGF)、血小板来源生长因子A(platelet derived growth factor,PGFA),信号转导因子Smad4,MAPK1,WNT以及基质金属蛋白酶(matrix metalloprotein,MMP)等均有参与,部分作用于Runx2的miRNA在软骨生成时高表达,随着向成骨细胞进一步分化,miRNA表达水平逐渐下降[20]

抑制软骨分化相关miRNA

miR-199a通过直接作用于转录因子Smad1来抑制早期软骨细胞分化蛋白,调节软骨生成。miR-199a-3p通过下调Smad来抑制早期软骨细胞分化。miR-204, miR-185,miR-199a-2-5p以及miR-214等转录后分别抑制Ang1、VEGF和巨噬细胞集落刺激因子(M-CSF)的表达,进而抑制软骨细胞分化[21]。7类miRNA(23a、30c、34c、133a、135a、205、217)参与调节软骨基因GATA的转录因子TRPS1,抑制软骨细胞前体分化[22]。miR23a和miR34a还是骨架相关的AT结合蛋白SATB2的转录因子,具有上调Runx2表达的作用,可能控制骨软骨前体阶段[23]。Zhang等[24]发现内源性miR-21在OA患者软骨组织中表达升高,其过度表达会抑制软骨生成,这一过程是通过作用于生长分化因子5(growth differentiation factor 5,GDF5)实现的。miR-101通过Sox9上调细胞外基质IL-6,Adamts-1, Adamts-5等表达,同时IL-1α、IL-2、IL-13、MMP-2、TIMP-2、TIMP-3、TGF-β2、TGF-β3和VEGF等表达水平升高,而使用miR-101抑制剂能够逆转上述炎性因子的表达,发挥细胞保护作用[25]。过度表达miR-223导致人体关节软骨细胞的凋亡进而引起严重的关节损伤,miR-34a的上调能够激活Fas介导的终板软骨细胞凋亡,EphA5表达增加能够减少miR-34a在软骨细胞分化方面的抑制性作用,miR-145作用于ERG、CDK6、BMPR2等靶点,具有促进胚胎多能干细胞分化和抑制增生的作用;体外实验发现miR-145可下调软骨生成的关键因子SOX9,抑制软骨细胞增生分化[26]。miR-9和miR-181可下调MMP-13水平,诱导Ⅱ型胶原蛋白表达,有利于促进软骨细胞分化并维持软骨完整性。但过表达的miR-181可以显著加重软骨损伤,对软骨生成有负性调节作用[27]

研究发现,体外培养软骨细胞存在去分化现象,细胞形态由多角形或圆形逐步向梭形转变[28],miRNA参与了去分化过程。miR-221和miR-222在软骨细胞去分化和再分化时均表达增加[29],miR-140在软骨细胞去分化时减少,miR-143和R-145也急剧减少,软骨细胞基因表达谱也发生变化,如Ⅱ型胶原、蛋白聚糖和Y染色体性别决定SOX9基因表达下降,Ⅰ型胶原表达增加,但使用TGF-β刺激可恢复miR-143和miR-145表达[8](表 2)。

表 2 负向调节作用的miRNA Table 2 Negative regulatory role of miRNAs
MicroRNA目标靶点功能
miR-199aSmad1(-)*抑制软骨细胞分化和软骨形成
miR-101Sox9促进软骨细胞凋亡
miR-30ERG促进软骨细胞凋亡
miR-223PEX-16(-)*软骨细胞氧化损伤
miR-34aEphA5抑制软骨细胞分化
miRNA-199a-3pSmad1(-)*抑制早期软骨细胞分化
miR-204, miR-185,miR-199a-2-5p,miR-214M-CSF,Ang1,VEGF抑制软骨细胞分化
miR-23a,miR-30c,miR-34c,miR-133a,miR-135a,miR-205,miR-217TRPS1
抑制软骨细胞前体分化
miR23a,miR34aRunx2促进软骨骨化
miR-21GDF5抑制软骨生成
miR-145ERG,CDK6,BMPR2,SOX9抑制软骨细胞增生分化
miR-9MMP-13(-)*具有双向调节功能,引起软骨损伤
miR-181MMP-13(-)*
miR-221,miR-222Sox9(-)*促进软骨细胞去分化
*(-)代表负向调控
与OA相关miRNA

OA是软骨退化与修复之间的不平衡导致,基质金属蛋白酶家族ADAMTS5以及MMP-13是其中关键酶[30]。在OA软骨细胞中,少数miRNA下调,miR-140,miR-146及miR-491上调,多数miRNA没有变化[31]。下调的miR-27b直接调控MMP-13表达,miR-22水平与体质量指数(body mass index,BMI)有关,可引起炎性反应以及代谢变化,调节过氧化物酶体增生物激活受体ɑ(peroxisome proliferator-activated receptor α,PPARα)以及BMP-7的表达[32]。miR-608或者miR-602抑制SHH表达,是重要的SHH转录后调节因子,IL-1β抑制miR-608和miR-602会导致OA中SHH和MMP-13的表达增加[33]。醉茄素A可诱导兔关节软骨细胞COX-2剂量依赖性表达升高,伴有miR-25的过表达,抑制miR-25可以降低COX-2表达[34]。miR-127-5p可以抑制软骨细胞中IL-1β诱导的MMP-13和其他某些因子如INK、NF-κB、MMP-1和COX-2的表达,但在OA软骨组织中miR-127-5p表达水平显著降低[35]。关节炎患者关节软骨中miR-30b水平较正常人显著升高,使用miR-30b抑制剂能够提高聚集蛋白聚糖以及COL2A的表达水平,这一过程可能是通过转录因子ETS介导完成的[36]。miR-125b在正常软骨细胞中表达高于OA,其过表达可以抑制IL-1β诱导的基质金属蛋白酶4(a disintegrin and metalloproteinase with thrombospondin motifs 4,ADAMTS4)产生,如miR-125b与ADAMTS4的3′UTR结合位点发生变异,则抑制效应下降[37]。OA患者软骨细胞中miR-98的表达水平显著降低,过表达miR-98能够抑制软骨细胞的凋亡[38],可能是通过调节细胞和mRNA层次的bcl-2而实现的[39]。Iliopoulos等[40]发现miR-140在OA中表达水平显著降低,Miyaki等[41]发现miR-140敲除小鼠的胶原蛋白聚糖流失和关节软骨纤维化较正常小鼠更快,并对蛋白聚糖以及2型胶原蛋白具有一定的耐受性。转基因小鼠软骨细胞中大量表达miR-140,可耐受抗原诱导的关节炎,表明miR-140可以对抗OA,miR-140敲除小鼠胚胎时期的骨骼生长基本正常,但是出生后由于软骨细胞增生分化能力下降导致骨骼短小,颅面部发育异常[42]。Yang等[43]发现miR-145在OA软骨细胞和受到IL-1β刺激之后表达增加,通过Smad3引起下游目标基因表达异常,导致OA软骨细胞外基质(extracellular matrix,ECM)降解。miR-146a在OA早期软骨细胞中高表达,但在严重OA中低表达,具有负性调节炎性反应以及内源性免疫反应的能力,可抑制破骨细胞,有利于维护软骨细胞稳态[44]。miR-146与miR-140共同参与调节细胞因子信号通路,维持软骨合成与降解之间的平衡。miR-675与miR-140类似,在软骨细胞去分化过程中表达降低[45]

展望

随着对miRNA作用机制等相关研究的逐步深入,已经发现了一些在软骨分化过程中具有较强特异性的miRNA,可直接作用于Sox9、HDAC4、IGFBP5、COX2、COL2A1、Smad1、Runx2、GDF5等靶点调节软骨细胞增生分化,通过pthrp/HDAC4,BMP/Smad,MAPK,NF-κB等信号传导通路维持软骨细胞内环境的稳态,保持软骨基质合成与代谢之间的平衡。OA常伴随着合成代谢基因的变化(如COL2AI),基因多态性在此过程中也有所体现,如GDF5和SMAD3都是OA风险等位基因,也是miRNA参与调节的靶点基因,因此OA与miRNA表达水平关系密切。

miRNA由于数量庞大,相互作用错综复杂,目前在软骨细胞分化及相关信号通路中的研究还不够深入,有必要进行软骨细胞特异性miRNA的功能、调控机制、作用靶点、作用剂量、活性因素、表达时序性等方面的研究,可以更好的了解软骨相关疾病的发病机制,提出新的诊断依据和治疗手段,指导软骨组织工程及软骨修复研究,最终用于临床实践,使患者受益。

参考文献
[1] Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis[J]. Trends Mol Med, 2012, 18: 109–118. DOI:10.1016/j.molmed.2011.11.005
[2] Yi R, Fuchs E. MicroRNAs and their roles in mammalian stem cells[J]. J Cell Sci, 2011, 124: 1775–1783. DOI:10.1242/jcs.069104
[3] Martinez NJ, Gregory RI. MicroRNA Gene Regulatory Pathways in the Establishment and Maintenance of ESC Identity[J]. Cell Stem Cell, 2010, 7: 31–35. DOI:10.1016/j.stem.2010.06.011
[4] Courts C, Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification[J]. J Forensic Sci, 2011, 56: 1464–1470. DOI:10.1111/jfo.2011.56.issue-6
[5] Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105: 1949–1954. DOI:10.1073/pnas.0707900105
[6] Lian JB, Stein GS, van Wijnen AJ, et al. MicroRNA control of bone formation and homeostasis[J]. Nat Rev Endocrinol, 2012, 8: 212–227. DOI:10.1038/nrendo.2011.234
[7] Duru N, Zhang Y, Gernapudi R, et al. Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages[J]. Sci Rep, 2016, 6: 39572. DOI:10.1038/srep39572
[8] Lee S, Yoon DS, Paik S, et al. microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J]. Stem Cells Dev, 2014, 23: 1798–1808. DOI:10.1089/scd.2013.0609
[9] Hassan MQ, Gordon JA, Beloti MM, et al. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program[J]. Proc Natl Acad Sci U S A, 2010, 107: 19879–19884. DOI:10.1073/pnas.1007698107
[10] Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS Lett, 2006, 580: 4214–4217. DOI:10.1016/j.febslet.2006.06.080
[11] Papaioannou G, Mirzamohammadi F, Lisse TS, et al. MicroRNA-140 provides robustness to the regulation of hypertrophic chondrocyte differentiation by the PTHrP-HDAC4 pathway[J]. J Bone Miner Res, 2015, 30: 1044–1052. DOI:10.1002/jbmr.2438
[12] Li P, Wei X, Guan Y, et al. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacety-lase 4 during growth plate development[J]. FASEB J, 2014, 28: 3930. DOI:10.1096/fj.13-249318
[13] Chen X, Shi J, Zhong J, et al. miR-1, regulated by LMP1, suppresses tumour growth and metastasis by targeting K-ras in nasopharyngeal carcinoma[J]. Int J Exp Pathol, 2015, 96: 427–432. DOI:10.1111/iep.2015.96.issue-6
[14] Nakamura Y, Yamamoto K, He XJ, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25[J]. Nat Communicat, 2011, 2: 251.
[15] Hu F, Zhu W, Wang L. MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4[J]. Arch Oral Biol, 2013, 58: 192–199. DOI:10.1016/j.archoralbio.2012.08.013
[16] Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2[J]. Proc Natl Acad Sci USA, 2011, 108: 9863–9868. DOI:10.1073/pnas.1018493108
[17] Zhang J, Tu Q, Bonewald LF, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1[J]. J Bone Miner Res, 2011, 26: 1953–1963. DOI:10.1002/jbmr.377
[18] Park SJ, Cheon EJ, Kim HA. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1beta-induced catabolic effects in human articular chondrocytes[J]. Osteoarthrit Cartil, 2013, 21: 981–989. DOI:10.1016/j.joca.2013.04.012
[19] Han J, Yang T, Gao J, et al. Specific microRNA expression during chondrogenesis of human mesenchymal stem cells[J]. Int J Mol Med, 2010, 25: 377–384.
[20] Yang B, Guo H, Zhang Y, et al. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9[J]. PLoS One, 2011, 6: e21679. DOI:10.1371/journal.pone.0021679
[21] Sorrentino A, Ferracin M, Castelli G, et al. Isolation and characterization of CD146+ multipotent mesen-chymal stromal cells[J]. Exp Hematol, 2008, 36: 1035–1046. DOI:10.1016/j.exphem.2008.03.004
[22] Zhang Y, Xie RL, Gordon J, et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2[J]. J Biol Chem, 2012, 287: 21926–21935. DOI:10.1074/jbc.M112.340398
[23] Wei J, Shi Y, Zheng L, et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2[J]. J Cell Biol, 2012, 197: 509–521. DOI:10.1083/jcb.201201057
[24] Zhang Y, Jia J, Yang S, et al. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes[J]. Exp Mol Med, 2014, 46: e79. DOI:10.1038/emm.2013.152
[25] Tsai CH, Yang DY, Lin CY, et al. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression[J]. Mol Oncol, 2017, 11: 1380–1398. DOI:10.1002/1878-0261.12106
[26] Laine SK, Hentunen T, Laitala-Leinonen T. Do microRNAs regulate bone marrow stem cell niche physiology?[J]. Gene, 2012, 497: 1–9. DOI:10.1016/j.gene.2012.01.045
[27] Song J, Lee M, Kim D, et al. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity[J]. Biochem Biophys Res Commun, 2013, 431: 210–214. DOI:10.1016/j.bbrc.2012.12.133
[28] Chen HY, Ghori-Javed FY, Rashid H, et al. Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation[J]. J Bone Mineral Res, 2014, 29: 2653–2665. DOI:10.1002/jbmr.2287
[29] Lin CS, Chen JJ, Huang YT, et al. Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families[J]. Plant Mol Biol, 2013, 82: 193–204. DOI:10.1007/s11103-013-0055-y
[30] Gu J, Lu Y, Li F, et al. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation[J]. Cell Death Dise, 2014, 5: e1469. DOI:10.1038/cddis.2014.444
[31] Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes[J]. Arthritis Rheum, 2010, 62: 1361–1371.
[32] Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8: 543–552. DOI:10.1038/nrrheum.2012.128
[33] Akhtar N, Makki MS, Haqqi TM. MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes[J]. Arthritis Rheumatol, 2014, 67: 423–434.
[34] Kim JH, Kim SJ. Overexpression of microRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes[J]. J Pharmacol Sci, 2014, 125: 83–90. DOI:10.1254/jphs.13232FP
[35] Park SJ, Cheon EJ, Lee MH, et al. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes[J]. Arthritis Rheum, 2013, 65: 3141–3152. DOI:10.1002/art.38188
[36] Li Q, Zhang X, Li N, et al. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer[J]. Biochem Biophys Res Commun, 2017, 485: 506–512. DOI:10.1016/j.bbrc.2017.02.016
[37] Matsukawa T, Sakai T, Yonezawa T, et al. Micro-RNA-125b regulates the expression of aggrecanase-1(ADAMTS-4) in human osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2013, 15: R28. DOI:10.1186/ar4164
[38] Wang GL, Wu YB, Liu JT, et al. Upregulation of miR-98 inhibits apoptosis in cartilage cells in osteoarthritis[J]. Genet Test Mol Biomarkers, 2016, 20: 645–653. DOI:10.1089/gtmb.2016.0011
[39] Wang J, Chen L, Jin S, et al. miR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis[J]. Acta Biochim Biophys Sin (Shanghai), 2016, 48: 923–929. DOI:10.1093/abbs/gmw084
[40] Iliopoulos D, Malizos KN, Oikonomou P, et al. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks[J]. PLoS One, 2008, 3.
[41] Miyaki S, Sato T, Inoue A, et al. (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 24: 1173-1185.
[42] Nakamura Y, Inloes JB, Katagiri T, et al. Chondro-cyte-specific microRNA-140 regulates endochondral bone development and targets dnpep To modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31: 3019–3028. DOI:10.1128/MCB.05178-11
[43] Yang B, Kang X, Xing Y, et al. Effect of microRNA-145 on IL-1beta-induced cartilage degradation in human chondrocytes[J]. FEBS Lett, 2014, 588: 2344–2352. DOI:10.1016/j.febslet.2014.05.033
[44] Li X, Gibson G, Kim JS, et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis[J]. Gene, 2011, 480: 34–41. DOI:10.1016/j.gene.2011.03.003
[45] Dudek KA, Lafont JE, Martinez-Sanchez A, et al. Type Ⅱ collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010, 285: 24381–24387. DOI:10.1074/jbc.M110.111328
(收稿日期:2017-11-17)