2. 450004 郑州,郑州大学第一附属医院内分泌代谢科;
3. 200233 上海,上海交通大学附属第六人民医院骨质疏松和骨病科
肌少症(sarcopenia)是与增龄相关的进行性、全身肌量减少和/或肌强度下降或肌肉生理功能减退,其与活动障碍、跌倒、低骨密度及代谢紊乱密切相关,是老年人生理功能逐渐减退的重要原因和表现之一。肌少症会增加老年人的住院率及医疗花费,严重影响老年人的生活质量,甚至缩短老年人的寿命。
肌少症的流行病学肌少症的患病率存在广泛差异,可能受到研究人群和参考人群的影响,使用评价肌肉质量、肌肉强度和体力状态的方法和诊断阈值不同,其结果各异,但也有部分归因于肌少症患病率的真实差异。
美国研究者对14 818名年龄大于18岁人群(30%年龄>60岁),采用生物电阻抗方法测算骨骼肌质量指数(skeletal muscle mass index,SMI)显示肌少症患病率,结果SMI<1个标准差的男女性分别为45%及59%;SMI <2个标准差的男女性分别为7%及10%[1]。应用双能X线吸收检测仪(dual energy X ray absorptiometry,DXA)的检测方法,加拿大研究者对465 名老年男女性的研究显示,男性肌少症患病率为38.9%,女性为17.8%[2]。澳大利亚对平均年龄为86岁的63名女性的研究显示:I°肌少症患病率为25.4%,Ⅱ°肌少症患病率为3.2%[3]。英国研究者对平均年龄72.5岁社区老年人的调查显示,男女性肌少症患病率分别为4.6%和7.9%[4],而比利时的社区老人调查结果显示肌少症患病率为3.7%[5](表 1)。
研究来源 | 数据采集日期 | 国家/地区 | 男性/女性 (n) | 评价方法 | 年龄(岁) | 肌少症患病率(%) | ||||
肌肉质量 | 肌肉强度 | 体力状态 | 总计 | 男性 | 女性 | |||||
Abelian van Kan等[21] | 1992年1月- 1994年1月 | 法国 | 0/3025 | DXA | HS | GS | 80.51±3.9 | 5.2 | - | 5.2 |
Landi等[22] | 2003年10月 | 意大利 | 66/131 | MAMC | HS | GS | 82.2±1.4 | 21.8 | 25.7 | 19.8 |
Landi等[23] | 2003年10月 | 意大利 | 118/236 | MAMC | HS | GS | 85.8±4.9 | 29.1 | 27.1 | 30.1 |
Lee等[24] | - | 台湾 | 223/163 | DXA | HS,KE,PEF | SPPB,GS, TUG,或SCPT | 73.7±5.6 | 7.8Δ 16.6# | 10.8Δ 14.9# | 3.7Δ 19.0# |
Legrand等[25] | 2008年11月- 2009年9月 | 比利时 | 103/185 | BIA | HS | mSPPB,GS | 84.8±3.6 | 12.5 | 14.6 | 12.4 |
Malmstrom等[26] | 2000年9月- 2001年7月 | 美国(非裔 美国人) | 124/195 | DXA | - | GS | 59.2±4.4 | 4.1 | - | - |
McIntosh等[27] | - | 加拿大 | 42/43 | BIA | HS | GS | 75.2±5.7 | 6.0 | S:5 SS:0 | S:7 SS:0 |
Murphy等[28] | 美国 | 1426/1502 | DXA | HS | GS | 女性:73.5±2.88 男性:73.8±2.85 总计:70~79 | S:5 | |||
Patel等[29] | 英国▲ | 队列A: 103/0 | DXA, SFT | HS | GS,TUG, | (A):72.5±2.5 | (A):6.8 (B):7.8 | 4.6 | 7.9 | |
队列B: 765/1022 | 站起坐下 测试 | (B): 男性67.0±2.6; 女性67.1±2.6 | ||||||||
Patil等[30] | - | 芬兰 | 0/409 | DXA | HS | GS,SPPB,TUG | 74.2±3.0 | 0.9 | - | 0.9 |
Sanada等[31] | - | 日本 | 0/533 | DXA | HS,LEP | 坐位体前 屈,VO2max | <39岁:11.4% <49岁:21.2% <59岁:25.9% <69岁:29.8% <85岁:11.6% | 24.2 | 24.2 | |
Tanimoto等[32] | 2007年5月-6 月,2008,2009 | 日本 | 364/794 | BIA | HS | GS | 男性:74.4±6.4 女性:73.9±6.3 | 11.3 | 10.7 | |
Verschueren等[33] | - | 比利时,英国 | 679/0 | DXA | HS,KE | GS | 59.6±10.7 | S:3.7 SS:0 | - | - |
Volpato等[34] | 2004-2006 | 意大利 | 250/288 | BIA | HS | GS | 77.1±5.5 | 10.2 | 2.6 | 6.7 |
Yamada等[35] | - | 日本 | 568/1314 | BIA | HS | GS | 74.9±5.5 | 21.8 | 22.1 | |
医护机构患者 | ||||||||||
Bastiaanse等[36] | - | 荷兰 | 450/434 | CC | HS | GS | 50~59岁:46.5% 60~69岁:35.2% 70~79岁:16.2% >80岁:2.1% | 总:14.3 50~64岁: 12.7 >65岁: 17.4 | ||
Landi等[37] | 2010年8月-9月 | 意大利 | 31/91 | BIA | HS | GS | 84.1±4.8 | 32.8 | 67.7 | 20.8* |
急性护理 | ||||||||||
Gariballa等[38] | - | 英国 | 227/205 | MAMC | HS | - | ≥65 | 10.2 | - | - |
DXA:双能X线吸收法;MAMC:上臂肌围;BIA:生物电阻抗分析;SFT:皮褶厚度;F:女性;GS:步态速度;HS:握力;CC:小腿围;KE:膝伸肌力;LEP:腿伸展肌力;M:男性;PEF:呼气峰流速;S:肌少症肌少症;SCPT:爬楼梯力量测试;(m)SPPB:(改良的)标准体力状态量表;SS:重度肌少症;TUG:计时起立-行走测试;VO2max:最大耗氧量; Δ以相对骨骼肌质量指数为诊断标准(SMI kg/m2);#以骨骼肌百分比指数为诊断标准(SMI%);▲包括2个队列(A队列:采集详细的数据;B队列:采集相同的数据,但无DXA);*与女性人群相比,P<0.001 |
亚洲肌少症的研究分别使用亚洲肌少症工作组(Asia Working Group for Sarcopenia,AWGS)或欧洲老年肌少症工作组(European Working Group on Sarcopenia in Older People,EWGSOP)的诊断标准,应用EWGSOP标准得到的患病率相对较高。在使用AWGS标准的研究中,老年人肌少症的估计患病率在4.1%~11.5%[6-9]。中国大陆高龄农村男女性肌少症的患病率分别为6.4%及11.5%,相关危险因素包括性别、年龄、乙醇消耗量、消化道溃疡等[6]。香港社区老年男性肌少症患病率为9.4%,与高龄、认知功能低下、蛋白质或维生素摄入低有关[7]。日本老年男女性肌少症患病率为9.6%和7.7%[8]。台湾老年男女性肌少症患病率为9.3%和4.1%,与语言表达能力障碍有关,与认知能力无关[9]。基于EWGSOP诊断标准的肌少症患病率较高[10-14],例如日本骨关节炎/骨质疏松失能研究显示老年人肌少症患病率男性为13.8%,女性为12.4%,中年期锻炼习惯是老年肌少症的保护因子[10]。日本社区老年人研究也显示14.2%男性和22.1%女性患有肌少症[11]。香港的一项前瞻性研究中,基线肌少症患病率为9.0%,每年新增3.1%,但在4年随访期间,又有14.1%肌少症患者转为正常[12]。一项日本的研究显示,21.8%男性和22.1%女性患有肌少症,并呈现年龄和性别依赖性,75岁以下男性肌少症患病率明显低于同龄女性(65~69岁:2.8%和11.3%;70~74岁:5.3%和11.8%),而85岁以上男性肌少症患病率则明显高于女性(75.0%和54.3%)[13]。另一项日本研究显示,75岁以上女性前肌少症、肌少症和严重肌少症患病率分别为23.8%,11.2%和4.6%,老龄、低体质量指数(body mass index,BMI)、心脏病史、高脂血症与肌少症的发生有关[14]。另有其他研究未采用AWGS及EWGSOP的诊断标准。2008-2009年第4次韩国国民健康和营养调查结果显示,肌少症累及12.1%男性和11.9%女性,在男性中尤与锻炼相关[15]。我国结果显示,70岁以上男性和女性肌少症患病率分别为13.2%和4.8%[16]。中国台湾地区对不同人群调查结果的汇总分析提示,肌少症患病率分别在3.9%(男性5.4%,女性2.5%)和7.3%(男性8.2%,女性6.5%)之间[17]。亚洲老年人肌少症的患病率低于欧美人群,可能因为亚洲人群RASM临界值低于美国人群(男性分别为5.72和7.26 kg/m2,女性分别为4.82和 5.45 kg/m2)[18-19],即使使用身高校正后,亚洲年轻人群的平均峰值SMI仍然低于高加索人群大约15%[18, 20]。
采用不同肌少症评估方法和诊断标准,调查不同人群,得出的肌少症患病率差异较大,具体如下[21-38]:在老年人群中,男性肌少症患病率为0~85.4%,女性0.1%~33.6%;应用DXA做为肌肉量的评估方法,男性肌少症患病率为0~56.7%,女性患病率为0.1%~33.9%;应用生物电阻抗分析(bioelectrical impedance analysis,BIA)做为肌肉量的评估方法,男性和女性肌少症患病率分别为6.2%~85.4%以及2.8%~23.6%;社区老年居民中,肌少症的患病率为1%~29%,长期居住于护理院人群肌少症患病率为14%~33%,急诊老年人患病率为10%。大多数研究提示肌少症随增龄而增加,肌少症与性别相关,男性人群更常罹患肌少症。然而,在部分研究中,性别与肌少症患病率间并无明显相关性(表 1)。
肌少症的发病机制肌少症是增龄相关疾病,是环境和遗传因素共同作用的复杂疾病,多种风险因素和机制参与其发病[39-40],肌少症的发病机制涉及如下多个方面:
运动减少增龄相关的运动能力下降是老年人肌肉量和强度丢失的主要因素[39, 41]。长期卧床者肌肉强度的下降要早于肌肉量的丢失,低强度的活动导致肌力下降,而肌肉无力又使活动能力进一步降低,最终肌肉量和肌肉强度均下降[42]。较多研究提示老年人进行阻抗运动能显著增加肌肉量、肌肉强度和肌肉质量[43]。
神经-肌肉功能的减弱运动神经元的正常功能对肌纤维的存活是必需的,在肌少症发病机制中α运动神经元的丢失是关键因素,研究发现老年人70岁以后运动神经元数量显著减少,α运动神经元丢失达50%[44-45],显著影响下肢功能。老年时期α运动神经元和运动单元数量的显著减少直接导致肌肉协调性下降和肌肉强度的减弱。在肌肉纤维数量上,对死亡成人肌肉的研究发现,90岁时肌肉中Ⅰ型和Ⅱ型纤维含量仅为年轻人的一半[46-47]。老年时期,由于星状细胞数量和募集能力下降,导致Ⅱ型纤维比Ⅰ型纤维下降更显著。星状细胞是肌源性干细胞,可在再生过程中被激活,分化为新肌纤维和新星状细胞,但是这种再生过程在应对损伤时将导致Ⅱ型纤维不平衡和数量减少,且老年人肌肉更容易受损,修复能力更差。尽管以上是增龄相关的肌肉量、肌肉强度和收缩性降低的神经方面发病机制,但神经-肌肉受损在肌少症发病中的确切作用机制尚待阐明。
增龄相关激素变化胰岛素、雌激素、雄激素、生长激素和糖皮质激素等的变化参与肌少症的发病。肌少症时,身体和肌细胞内脂肪增加,这与胰岛素抵抗有关[48-50]。实验已证实老化肌细胞接受胰岛素作用后,蛋白合成代谢明显降低[51]。雌激素对肌少症发生的影响存在不一致的证据,一些流行病学和干预研究提示雌激素可以预防肌肉量的丢失。对5项随机对照临床试验的系统分析显示,3项研究表明雌激素替代治疗后肌肉强度增加,但不影响身体成分分布,一项研究表明替勃龙增加股四头肌和膝伸直肌强度,且增加瘦组织量、降低体脂量[52]。一项对健康、老化和身体成分研究,发现雌激素替代治疗后,股四头肌横断面面积更高,但与膝伸直肌强度无关[53]。可见,雌激素主要影响肌肉强度,在肌少症发病中可能不是一个重要因素。而男性睾酮水平随增龄每年下降1%,这在男性肌少症发病中起重要作用[54]。很多研究显示老年男性低睾酮水平与肌肉量、强度和功能的下降均相关,体外实验也证实睾酮可剂量依赖的促进星状细胞数量增加,且是其功能的主要调控因子[55]。此外,老年人25羟维生素D(25-hydroxy vitamin D,25OHD)缺乏非常普遍,多项研究证实1,25双羟维生素D水平降低与肌肉量、肌肉强度、平衡力下降和跌倒风险增加相关[56]。低维生素D水平导致甲状旁腺素(parathyroid hormone,PTH)分泌增高,高PTH水平是肌少症的独立因素[57]。
促炎性反应细胞因子促炎性反应细胞因子参与老年人肌少症的发病,研究发现血白细胞介素-6(interleukin-6,IL-6)、肿瘤坏死因子(tumor necrosis factor,TNF-α)和C反应蛋白(C reactive protein,CRP)水平与肌肉量、肌肉强度有关[58]。荷兰老年人群的研究提示高水平IL-6和CRP使肌肉量和肌肉强度丢失风险增加[59]。这些炎性反应细胞因子增高引起肌肉组织合成代谢失衡,蛋白分解代谢增加。老年人炎性反应细胞因子长期增高是肌少症的重要危险因素。
肌细胞凋亡肌肉活检显示老年人肌细胞凋亡显著高于年轻人,这是肌少症的基本发病机制[60],肌细胞凋亡与线粒体功能失常和肌肉量丢失有关。研究证实肌少症主要累及的Ⅱ型肌纤维更容易通过凋亡途径发生死亡[61]。增龄老化、氧化应激、低生长因子以及完全制动等可促发Caspase依赖或非依赖的凋亡信号通路。
遗传因素遗传因素可以分别解释个体间肌肉强度、下肢功能和日常生活能力变异的36%~65%、57%和34%[62-64]。肌少症的全基因组关联分析(genome-wide association studies,GWAS)数据较少,2009年对1000例无亲缘关系美国白人进行的GWAS与瘦组织(lean mass)分析,发现甲状腺释放激素受体(thyrotropin-releasing hormone receptor,TRHR)单核苷酸多态性(single nucleotide polymorphism,SNP)rs16892496 和rs7832552与瘦组织变异有关[65]。最近一项1 550例英国孪生子全基因DNA甲基化研究,发现一些基因DNA甲基化与肌肉量变异相关[66]。目前遗传研究主要集中在一些候选基因SNP与肌少症的表型,包括身体肌肉量、脂肪量和肌肉强度等关联研究,涉及的基因有GDF-8、CDKN1A、MYOD1、CDK2、RB1、IGF1、IGF2、CNTF、ACTN3、ACE、PRDM16、METTL21C和VDR等[66-70]。尽管发现了一些与肌少症相关的风险基因,但是未得到不同种族、更多人群一致的证实。
营养因素已证实老年人合成代谢率降低30%,合成代谢率降低究竟与老年人营养、疾病、活动少有关,还是仅与增龄有关,仍有争议[39, 71]。老年人营养不良和蛋白质摄入不足可致肌肉合成降低,已有研究证实氨基酸和蛋白补充可直接促进肌肉蛋白合成,预防肌少症,推荐合适的饮食蛋白摄入量为每天每千克体重1.0~1.2g[71]。
总之,肌少症是增龄相关疾病,随着社会老龄化,其患病率显著增加。据推测全球目前约有5千万人罹患肌少症,预计到2050年患此症的人数将高达5亿。肌少症将是一个未来面临的主要健康问题,但目前对肌少症的诊断标准缺乏一致性,尤其缺乏国内调查数据,因此采用共同诊断标准的大规模肌少症流行病学研究,亟待开展。肌少症是环境和遗传因素共同作用的复杂疾病,多种风险因素和机制参与其发生,对肌少症发病机制的深入研究,将为未来肌少症的治疗,提供重要的干预靶点。
[1] | Janssen I, Heymsfield SB, Ross R, et al. Lowrelative skeletal mucle mass (sarcopenia) in older persons is associated with functional impairment and physical disability[J]. J Am Geriatr Soc, 2002, 50 : 889–896. DOI:10.1046/j.1532-5415.2002.50216.x |
[2] | Bouchard D, Dionne I, Brochu M, et al. Sarcopenic/obesity and physical capacity in older men and women:data from the nutrition as a determinant of successful aging (NuAge)-the Quebec longitudinal study[J]. Obesity:Silver Spring, 2009, 17 : 2082–2088. DOI:10.1038/oby.2009.109 |
[3] | Woods J, Iuliano S, King S, et al. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia[J]. Clin Interv Aging, 2011, 6 : 67–76. |
[4] | Patel HP, Syddall HE, Jameson K, et al. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS)[J]. Age Ageing, 2013, 42 : 378–384. DOI:10.1093/ageing/afs197 |
[5] | Verschueren S, Gielen E, O'Neill TW, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men[J]. Osteoporos Int, 2013, 24 : 87–98. |
[6] | Han P, Kang L, Guo Q, et al. Prevalence and factors associated with sarcopenia in suburb-dwelling older Chinese using the Asian Working Group for Sarcopenia definition[J]. J Gerontol A Biol Sci Med Sci, 2016, 71 : 529–535. DOI:10.1093/gerona/glv108 |
[7] | Yu R, Leung J, Woo J. Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: Results from the Osteoporotic Fractures in Men (MrOs) Study[J]. J Am Med Dir Assoc, 2014, 15 : 551–558. DOI:10.1016/j.jamda.2014.02.005 |
[8] | Yuki A, Ando F, Otsuka R, et al. Epidemiology of sarcopenia in elderly Japanese[J]. J Phys Fitness Sports Med, 2015, 4 : 111–115. DOI:10.7600/jpfsm.4.111 |
[9] | Huang CY, Hwang AC, Liu LK, et al. Association of dynapenia, sarcopenia, and cognitive impairment among community-dwelling older Taiwanese[J]. Rejuvenation Res, 2016, 19 : 71–78. DOI:10.1089/rej.2015.1710 |
[10] | Akune T, Muraki S, Oka H, et al. Exercise habits during middle age are associatedwith lower prevalence of sarcopenia: The ROAD study[J]. Osteoporos Int, 2014, 25 : 1081–1088. DOI:10.1007/s00198-013-2550-z |
[11] | Ishii S, Tanaka T, Shibasaki K, et al. Development of a simple screening test forsarcopenia in older adults[J]. Geriatr Gerontol Int, 2014, 14 : 93–101. DOI:10.1111/ggi.12197 |
[12] | Yu R, Wong M, Leung J, et al. Incidence, reversibility, risk factors and theprotective effect of high body mass index against sarcopenia in communitydwellingolder Chinese adults[J]. Geriatr Gerontol Int, 2014, 14 : 15–28. DOI:10.1111/ggi.12220 |
[13] | Yamada M, Nishiguchi S, Fukutani N, et al. Prevalence of sarcopenia incommunity-dwelling Japanese older adults[J]. J Am Med Dir Assoc, 2013, 14 : 911–915. DOI:10.1016/j.jamda.2013.08.015 |
[14] | Kim H, Suzuki T, Kim M, et al. Incidence and predictors of sarcopenia onset incommunity-dwelling elderly Japanese women: 4-year follow-up study[J]. J Am Med Dir Assoc, 2015, 85 : e1–8. |
[15] | Ryu M, Jo J, Lee Y, et al. Association of physical activity with sarcopenia andsarcopenic obesity in community-dwelling older adults: The Fourth KoreaNational Health and Nutrition Examination Survey[J]. Age Ageing, 2013, 42 : 734–740. DOI:10.1093/ageing/aft063 |
[16] | Cheng Q, Zhu X, Zhang X, et al. A cross-sectional study of loss of muscle masscorresponding to sarcopenia in healthy Chinese men and women: Referencevalues, prevalence, and association with bone mass[J]. J Bone Miner Metab, 2014, 32 : 78–88. DOI:10.1007/s00774-013-0468-3 |
[17] | Wu IC, Lin CC, Hsiung CA, et al. Epidemiology of sarcopenia among ommunitydwellingolder adults in Taiwan: A pooled analysis for a broader adoption ofsarcopenia assessments[J]. Geriatr Gerontol Int, 2014, 14 : 52–60. DOI:10.1111/ggi.12193 |
[18] | Wen X, Wang M, Jiang CM, et al. Are current definitions of sarcopenia applicable for older Chinese adults?[J]. J Nutr Health Aging, 2011, 15 : 847–851. DOI:10.1007/s12603-011-0088-3 |
[19] | Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. Am J Epidemiol, 1998, 147 : 755–763. DOI:10.1093/oxfordjournals.aje.a009520 |
[20] | Lau EMC, Lynn HSH, Woo JW, et al. Prevalence of and risk factors for sarcopenia in elderly Chinese men and women[J]. J Gerontol A Biol Sci Med Sci, 2005, 60 : 213–216. DOI:10.1093/gerona/60.2.213 |
[21] | Abellan van Kan G, Cesari M, Gillette-Guyonnet S, et al. Sarcopenia and cognitive impairment in elderly women: results from the EPIDOS cohort[J]. Age Ageing, 2013, 42 : 196–202. DOI:10.1093/ageing/afs173 |
[22] | Landi F, Cruz-Jentoft AJ, Liperoti R, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilsirente study[J]. Age Ageing, 2013, 42 : 203–209. DOI:10.1093/ageing/afs194 |
[23] | Landi F, Liperoti R, Russo A, et al. Association of anorexia with sarcopenia in a community-dwelling elderly population: results from the ilsirente study[J]. Eur J Nutr, 2013b, 52 : 1261–1268. DOI:10.1007/s00394-012-0437-y |
[24] | Lee WJ, Liu LK, Peng LN, et al. Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: results from the I-Lan longitudinal aging study[J]. J Am Med Dir Assoc, 2013, 14 : 528. |
[25] | Legrand D, Vaes B, Mathei C, et al. The prevalence of sarcopenia in very old individuals according to the European consensus definition: insights from the BELFRAIL study[J]. Age Ageing, 2013, 42 : 727–734. DOI:10.1093/ageing/aft128 |
[26] | Malmstrom TK, Miller DK, Herning MM, et al. Low appendicular skeletal muscle mass (ASM) with limited mobility and poor health outcomes in middle-aged African Americans[J]. J Cachexia Sarcopenia Muscle, 2013, 4 : 179–186. DOI:10.1007/13539.2190-6009 |
[27] | McIntosh EI, Smale KB, Vallis LA. Predicting fat-free mass index and sarcopenia: a pilot study in community-dwelling older adults[J]. Age(Dordr), 2013, 35 : 2423–2434. |
[28] | Murphy RA, Ip EH, Zhang Q, et al. Transition to sarcopenia and determinants of transitions in older adults: a population-based study[J]. J Gerontol A Biol Sci Med Sci, 2014, 69 : 751–758. DOI:10.1093/gerona/glt131 |
[29] | Patel HP, Syddall HE, Jameson K, et al. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS)[J]. Age Ageing, 2013, 42 : 378–384. DOI:10.1093/ageing/afs197 |
[30] | Patil R, Uusi-Rasi K, Pasanen M, et al. Sarcopenia and osteopenia among 70-80-year-old home-dwelling Finnish women: prevalence and association with functional performance[J]. Osteoporos Int, 2013, 24 : 787–96. DOI:10.1007/s00198-012-2046-2 |
[31] | Sanada K, Iemitsu M, Murakami H, et al. Adverse effects of coexistence of sarcopenia and metabolic syndrome in Japanese women[J]. Eur J Clin Nutr, 2012, 66 : 1093–1098. DOI:10.1038/ejcn.2012.43 |
[32] | Tanimoto Y, Watanabe M, Sun W, et al. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan[J]. Arch Gerontol Geriatr, 2012, 55 : e9–13. DOI:10.1016/j.archger.2012.06.015 |
[33] | Verschueren S, Gielen E, O'Neill TW, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men[J]. Osteoporos Int, 2013, 24 : 87–98. |
[34] | Volpato S, Bianchi L, Cherubini A, et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm[J]. J Gerontol A Biol Sci Med Sci, 2014, 69 : 438–446. DOI:10.1093/gerona/glt149 |
[35] | Yamada M, Nishiguchi S, Fukutani N, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults[J]. J Am Med Dir Assoc, 2013, 14 : 911–915. DOI:10.1016/j.jamda.2013.08.015 |
[36] | Bastiaanse LP, Hilgenkamp TI, Echteld MA, et al. Prevalence and associated factors of sarcopenia in older adults with intellectual disabilities[J]. Res Dev Disabil, 2012, 33 : 2004–2012. DOI:10.1016/j.ridd.2012.06.002 |
[37] | Landi F, Liperoti R, Fusco D, et al. Prevalence and risk factors of sarcopenia among nursing home older residents[J]. J Gerontol A Biol Sci Med Sci, 2012, 67 : 48–55. |
[38] | Gariballa S, Alessa A. Sarcopenia: prevalence and prognostic significance in hospitalized patients[J]. Clin Nutr, 2013, 32 : 772–776. DOI:10.1016/j.clnu.2013.01.010 |
[39] | Rolland Y, Czerwinski S, Kan G, et al. Sarcopenia: Its assessment,etiology,pathogenesis,consequences and future perspectives[J]. J Nutr Health Aging, 2008, 12 : 433–450. DOI:10.1007/BF02982704 |
[40] | Lang T, Streeper P, Cawthon P, et al. Sarcopenia: etiology,consequences,intervention,and assessment[J]. Osteopros Int, 2010, 21 : 543–559. DOI:10.1007/s00198-009-1059-y |
[41] | Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study[J]. J Appl Physiol, 2001, 90 : 2157–2165. |
[42] | Kortebein P, Ferrando A, Lombeida J, et al. Effect of 10 days of bed rest on skeletal muscle in healthy older adults[J]. JAMA, 2007, 297 : 1772–1774. |
[43] | Hasten DL, Pak-Loduca J, Obert KA, et al. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds[J]. Am J Physiol Endocrinol Metab, 2000, 278 : E620–606. |
[44] | McComas AJ. 1998 ISEK Congress keynote lecture: motor units: how many,how large,what kind?International Society of Electrophysiology and Kinesiology[J]. J Electromyogr Kinesiol, 1998, 8 : 391–402. DOI:10.1016/S1050-6411(98)00020-0 |
[45] | Doherty TJ. Invited review: aging and sarcopenia[J]. J Appl Physiol, 2003, 95 : 1717–1727. DOI:10.1152/japplphysiol.00347.2003 |
[46] | Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology[J]. J Appl Physiol, 1979, 46 : 451–456. |
[47] | Larsson L, Sjodin B, Karlsson J. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males,age 22-65 years[J]. Acta Physiol Scand, 1978, 103 : 31–39. DOI:10.1111/apha.1978.103.issue-1 |
[48] | Chung SM, Hyun MH, Lee E, et al. Novel effects of sarcopenic osteoarthritis on metabolic syndrome,insulin resistance,osteoporosis,and bone fracture: the national survey[J]. Osteoporos Int, 2016, 27 : 2447–2457. DOI:10.1007/s00198-016-3548-0 |
[49] | Koo BK, Roh E, Yang YS, et al. Difference between old and young adults in contribution of β-cell function and sarcopenia in developing diabetes mellitus[J]. J Diabetes Investig, 2016, 7 : 233–240. DOI:10.1111/jdi.2016.7.issue-2 |
[50] | Volpi E, Mittendorfer B, Rasmussen BB, et al. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly[J]. J Clin Endocrinol Metab, 2000, 85 : 4481–4490. |
[51] | Guillet C, Prod'homme M, Balage M, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans[J]. FASEB J, 2004, 18 : 1586–1587. |
[52] | Jacobsen DE, Samson MM, Kezic S, et al. Postmenopausal HRT and tibolone in relation to muscle strength and bodycomposition[J]. Maturitas, 2007, 58 : 7–18. DOI:10.1016/j.maturitas.2007.04.012 |
[53] | Taaffe DR, Newman AB, Haggerty CL, et al. Estrogen replacement,muscle composition,and physical function: The Health ABC Study[J]. Med Sci Sports Exerc, 2005, 37 : 1741–1747. DOI:10.1249/01.mss.0000181678.28092.31 |
[54] | Morley JE, Newman AB, Haggerty CL, et al. Longitudinal changes in testosterone,luteinizing hormone,and folliclestimulating hormone in healthy older men[J]. Metabolism, 1997, 46 : 410–413. DOI:10.1016/S0026-0495(97)90057-3 |
[55] | Chen Y, Zajac JD, MacLean HE. Androgen regulation of satellite cell function[J]. J Endocrinol, 2005, 186 : 21–31. DOI:10.1677/joe.1.05976 |
[56] | Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, et al. Effect of vitamin D on falls: a meta-analysis[J]. JAMA, 2004, 291 : 1999–2006. DOI:10.1001/jama.291.16.1999 |
[57] | Visser M, Deeg DJ, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam[J]. J Clin Endocrinol Metab, 2003, 88 : 5766–5772. DOI:10.1210/jc.2003-030604 |
[58] | Cesari M, Kritchevsky SB, Baumgartner RN, et al. Sarcopenia,obesity,and inflammation-results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study[J]. Am J Clin Nutr, 2005, 82 : 428–434. |
[59] | Visser M, Pahor M, Taaffe DR, et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study[J]. J Gerontol A Biol Sci Med Sci, 2002, 57 : 326–332. DOI:10.1093/gerona/57.5.M326 |
[60] | Giresi PG, Stevenson EJ, Theilhaber J, et al. Identification of a molecular signature of sarcopenia[J]. Physiol Genomics, 2005, 21 : 253–263. DOI:10.1152/physiolgenomics.00249.2004 |
[61] | Solomon A, Bouloux P. Endocrine therapies for sarcopenia in older men[J]. Br J Hosp Med:Lond, 2006, 67 : 477–481. DOI:10.12968/hmed.2006.67.9.22000 |
[62] | Reed T, Fabsitz RR, Selby JV, et al. Genetic influences and grip strength norms in the NHLBI twin study males aged 59-69[J]. Ann Hum Biol, 1991, 18 : 425–432. DOI:10.1080/03014469100001722 |
[63] | Arden NK, Spector TD. Genetic influences on muscle strength,lean body mass,and bone mineral density: a twin study[J]. J Bone Miner Res, 1997, 12 : 2076–2081. DOI:10.1359/jbmr.1997.12.12.2076 |
[64] | Frederiksen H, Gaist D, Petersen HC, et al. Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid-and late-life physical functioning[J]. Genet Epidemiol, 2002, 23 : 110–122. DOI:10.1002/(ISSN)1098-2272 |
[65] | Liu XG, Tan LJ, Lei SF, et al. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass[J]. Am J Hum Genet, 2009, 84 : 418–423. DOI:10.1016/j.ajhg.2009.02.004 |
[66] | Livshits G, Gao F, Malkin I, et al. Contribution of heritability and epigenetic factors to skeletal muscle mass variation in United Kingdom twins[J]. J Clin Endocrinol Metab, 2016, 101 : 2450–2459. DOI:10.1210/jc.2016-1219 |
[67] | Huygens W, Thomis MA, Peeters MW, et al. Linkage of myostatin pathway genes with knee strength in humans[J]. Physiol Genomics, 2004, 17 : 264–270. DOI:10.1152/physiolgenomics.00224.2003 |
[68] | Zhang ZL, He JW, Qin YJ, et al. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families[J]. Osteoporos Int, 2008, 19 : 39–47. DOI:10.1007/s00198-007-0435-8 |
[69] | Yue H, He JW, Zhang H, et al. Contribution of myostatin gene polymorphisms to normal variation in lean mass,fat mass and peak BMD in Chinese male offspring[J]. Acta Pharmacol Sin, 2012, 33 : 660–667. DOI:10.1038/aps.2012.12 |
[70] | Huang J, Hsu YH, Mo C, et al. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway[J]. J Bone Miner Res, 2014, 29 : 1531–1540. DOI:10.1002/jbmr.2200 |
[71] | Rizzoli R. Nutrition and sarcopenia[J]. J Clin Densitom, 2015, 18 : 483–487. DOI:10.1016/j.jocd.2015.04.014 |
(收稿日期:2016-08-20) |