2型糖尿病患者血清羧化不全骨钙素与糖、脂代谢的相关性
康京京1, 梅涛2, 王炜1, 祝捷1, 吴玉洁1, 陈超1, 邢学农1     
1. 230001 合肥,安徽医科大学附属安徽省立医院内分泌科;
2. 230001 合肥,安徽医科大学附属安徽省立医院体检中心
摘要目的 探讨2型糖尿病(type 2 diabetes mellitus,T2DM)患者血清羧化不全骨钙素(undercarboxylated osteocalcin,ucOC)水平与糖、脂代谢的关系。方法 123例T2DM患者根据病程分为D1组(< 5年组,43例)、D2组(5~15年组,51例)、D3组(>15年组,29例),40名正常体检者作为对照组。比较各组间血清ucOC水平和糖脂代谢指标差异。另外将T2DM患者按ucOC高低分为两组,分析其与糖、脂代谢指标的相关性。结果 (1)T2DM组三酰甘油(triglyceride,TG)显著高于对照组[(2.24±1.64)mmol/L vs.(1.44±0.76)mmol/L],而血清ucOC浓度明显低于对照组[(0.43±0.35)mg/L vs.(1.52±0.88)mg/L];(2)T2DM患者血清ucOC水平与糖化血红蛋白(glycosylated hemoglobin,HbA1c)、TG呈负相关(P=0.005,P=0.008);HbA1c水平与血清空腹C肽(fasting c-peptide,FCP)呈负相关(P=0.009),与Ⅰ型胶原羧基端交联肽(β-C-terminal telopeptide of type 1 collagen,CTX)呈正相关(P=0.016)。结论 ucOC可作为一种能量代谢调节激素对糖、脂代谢起正性调控作用,可能在T2DM发病过程中起一定作用。
关键词2型糖尿病     骨钙素     羧化不全骨钙素     糖脂代谢    
Relationship between serum undercarboxylated osteocalcin and glucose and lipid metabolism in type 2 diabetes
KANG Jing-jing1, MEI Tao2, WANG Wei1, ZHU Jie1, WU Yu-jie1, CHEN Chao1, XING Xue-nong1     
1. Department of Endocrinology, Anhui Provincial Hospital Affiliated of Anhui Medical University, Hefei 230001, China;
2. Health Center, Anhui Provincial Hospital Affiliated of Anhui Medical University, Hefei 230001, China
Abstract: Objective To explore the relationship between serum undercarboxylated osteocalcin (ucOC) and glucose and lipid metabolism in type 2 diabetes. Methods A total of 123 patients with type 2 diabetes were divided into three groups, including D1 group(less than 5 years group, 43 cases), D2 group (5-15 years group, 51cases) and D3 group(more than 15 years group, 29 cases) according to the course, 40 subjects with normal glucose tolerance were included as control group. Moreover, diabetic patients were divided into two groups according to the ucOC concentration. The associations of ucOC and serum glucose level as well as lipid metabolic indexes were examined. Results (1) Compared with control group, serum ucOC level was significantly reduced in diabetic group[(0.43±0.35)mg/L vs. (1.52±0.88)mg/L]. But the serum triglyceride (TG) level in diabetic group was higher than that in the control group[(2.24±1.64)mmol/L vs. (1.44±0.76)mmol/L]. (2)For diabetic patients, serum ucOC level was negatively correlated to glycosylated hemoglobin (HbA1c) and TG(P=0.005, P=0.008). And HbA1c was negatively correlated to serum fasting c-peptide (FCP)(P=0.009), and positively correlated to β-C-terminal telopeptide of type 1 collagen(CTX)(P=0.016). Conclusion Serum ucOC could regulate glucose and lipid metabolism, and may pariticipate in the onset of type 2 diabetes.
Key words: type 2 diabetes mellitus     osteocalcin     undercarboxylated osteocalcin     glucose and lipid metabolism    

骨钙素(osteocalcin,OC)是由成骨细胞分泌并储存于骨基质中的非胶原蛋白,破骨细胞的骨吸收作用使其释放入血液,被认为是骨转换的标志物[1]。OC包括羧化完全骨钙素(fully carboxylated osteocalcin,cOC)及羧化不全骨钙素(ucOC),OC在维生素K依赖性羧化酶作用下所有谷氨酸残基均羧化成为cOC,而含有未羧化氨基酸残基即ucOC。近年动物实验已经证明骨代谢与能量代谢相互影响,OC尤其是ucOC可以促进胰岛β细胞增生、增加胰岛素分泌并能提高胰岛素敏感性[2],而一些临床研究也发现OC水平与糖脂代谢指标明显相关,可能在糖尿病的发生、发展中起一定作用。本文对T2DM患者血清ucOC水平与糖脂代谢的关系进行研究分析。

对象与方法 对象

选择2016年6月至9月在安徽医科大学附属安徽省立医院内分泌科住院的年龄≥40岁的2型糖尿病(type 2 diabetes mellitus, T2DM)患者123例(依据2013年中华医学会糖尿病学分会诊治指南),平均年龄(58.87±10.54)岁,其中,男性69例,平均年龄(58.65±11.59)岁,女性54例,平均年龄(59.19±11.11)岁。根据患者糖尿病病程分为3组:病程<5年(D1,43例)、病程5~15年(D2,51例)、病程>15年(D3,29例)。另外选择同期安徽医科大学附属安徽省立医院40名健康体检正常者作为对照组(C组),平均年龄(57.13±8.75)岁,其中男性20例,平均年龄(58.40±9.57)岁,女性20例,平均年龄(55.85±7.87)岁,经口服葡萄糖耐量试验排除糖耐量异常。所有受试者均排除:糖尿病急性并发症或严重慢性并发症、肝肾功能不全、甲状腺及甲状旁腺疾病、风湿免疫系统疾病、恶性肿瘤、长期服用糖皮质激素及其他影响骨代谢的因素。

方法

记录受试者的性别、年龄、病程,测量身高、体质量并计算体质量指数(body mass index,BMI)=体质量(kg)/身高2(m2)。所有受试者均隔夜空腹8 h于次日清晨采血,西门子Aptio Automation全自动生物化学分析仪测定空腹血糖(fasting plasma glucose,FPG)、总胆固醇(total cholesterol,TC)、三酰甘油(triglyceride,TG)、血肌酐(serum creatinine,SCr)、血尿酸(serum uric acid,SUA),ADVIA Centaur XP全自动化学发光分析仪测定空腹c肽(fasting c-peptide,FCP),Bio-Rad Variant Ⅱ糖化血红蛋白分析仪测定糖化血红蛋白(glycosylated hemoglobin,HbA1c)。

使用Cobas e 601全自动电化学发光免疫分析仪(德国罗氏)测定受试者血清25羟维生素D(25-hydroxyvitamin D,25OHD)、Ⅰ型胶原羧基端交联肽(β-C-terminal telopeptide of type 1 collagen,CTX)、总骨钙素(total osteocalcin,tOC)含量, 检测试剂盒购于罗氏诊断产品(上海)有限公司。采用酶联免疫吸附法(enzyme-linked immuno sorbent assay,ELISA)检测血清ucOC,试剂盒购于日本TaKaRa公司,测定仪器为美国Themo Multiskan MK3全自动酶标仪。

统计学方法

采用SPSS 19.0统计学软件进行分析,资料数据采用均数±标准差(x±s)表示,正态数据两组间均数的比较使用两独立样本均数的t检验,非正态数据采用非参数秩和检验进行统计分析,多组数据比较采用单因素方差分析。变量间关系采用Logistic回归分析及Pearson相关分析。均为双侧检验,以P<0. 05为差异有统计学意义。

结果 两组一般资料比较

T2DM组和对照组相比,两组间年龄、BMI、SCr、SUA、25 OHD、tOC、CTX等差异无统计学意义,而血清ucOC显著低于正常对照组[(0.43±0.35)μg/L vs. (1.52±0.88)μg/L],差异有统计学意义(P<0.05),且TG、TC与对照组比较,差异有统计学意义(P<0.05)。考虑到女性激素可能对骨代谢的影响,剔除所有女性对象后分析发现,男性T2DM组血清ucOC仍显著低于正常对照组[(0.40±0.27)μg/L vs. (1.51±0.82)μg/L],TG高于对照组[(2.49±1.97)mmol/L vs. (1.58±0.85)mmol/L)],差异均有统计学意义(P<0.05)。比较两组女性数据发现,T2DM组血清ucOC明显低于正常对照组,而SUA、TG、CTX高于正常对照组。组内比较显示,T2DM组男性FCP、tOC低于女性,SCr、SUA、TG高于女性,差异均具有统计学意义(P<0.05)(表 1)。

表 1 两组一般资料比较(x±s) Table 1 Comparison of general information between diabetic patients group and control group(x±s)
组别例数年龄(岁)BMI(kg/m2)HbA1c(%)FCP(mmol/L)SCr(μmol/L)
C4057.13±8.7524.93±2.115.41±0.31-65.26±12.12
2055.85±7.8724.26±1.985.52±0.16-57.37±7.07
2058.40±9.5725.61±2.075.29±0.39-72.75±11.18
D12358.87±10.5425.61±3.919.10±2.30*0.53±0.3761.98±14.93
5459.19±11.1125.08±3.778.86±2.13*0.61±0.4555.41±14.81
6958.65±11.5926.02±3.999.28±2.41*0.45±0.2667.13±12.95
组别SUA
(μmol/L)
TG
(mmol/L)
TC
(mmol/L)
25OHD
(μg/L)
tOC
(μg/L)
ucOC
(μg/L)
CTX
(ng/L)
C324.33±88.571.44±0.764.80±0.6820.17±7.4613.81±4.201.52±0.88377.79±144.45
261.20±52.101.30±0.664.87±0.7217.44±7.0113.89±4.331.54±0.96343.59±110.09
387.45±70.711.58±0.854.73±0.6522.90±7.0313.73±4.191.51±0.82411.99±175.07
D322.73±91.182.24±1.64*4.41±1.00*21.18±7.7215.63±6.210.43±0.35*424.37±226.89
297.62±71.47*1.92±1.00*4.58±1.0019.97±8.5216.95±7.280.46±0.34*455.99±243.16*
342.96±100.412.49±1.97*△4.28±0.98*22.13±6.9414.58±5.030.40±0.27*399.35±211.66
C:正常对照组; D:2型糖尿病组; BMI:体质量指数; HbA1C:血红蛋白;FCP:空腹C肽; SCr:血肌酐; SUA:血尿酸; TG:甘油三脂; TC:总胆固醇; 25OHD:25羟维生素D;tOC:总骨钙素;ucOC:羧化不全骨钙素;CTX:Ⅰ型胶原羧基端交联肽;与对照组比较,*P<0.05;与女性比较,P<0.05
T2DM各组相关指标比较

T2DM各组指标比较发现,D2、D3组ucOC、FCP、CTX较D1组低,差异有统计学意义(P<0.05)。在剔除各组女性对象后发现,D2、D3组FCP、CTX仍明显低于D1组患者,差异有统计学意义(P<0.05)(表 2)。

表 2 T2DM各组相关指标比较(x±s) Table 2 Comparison of indexes among various groups with T2DM(x±s)
组别例数年龄(岁)BMI(kg/m2)HbA1c(%)FCP(mmol/L)SCr(μmol/L)SUA(μmol/L)
D14356.60±11.1925.91±4.159.36±2.720.63±0.4959.21±13.35306.65±89.13
D25157.90±9.0725.72±4.138.81±2.010.47±0.23*61.69±15.88331.66±82.51
D32965.59±9.49*△24.90±3.059.21±2.100.42±0.28*66.66±14.55329.76±107.47
D12154.67±12.8226.97±4.259.78±3.100.53±0.2463.29±11.16310.42±112.67
D23258.87±8.4025.80±4.149.13±2.140.46±0.27#66.59±13.57353.89±80.01
D31663.94±10.22#25.14±3.208.94±1.890.33±0.20#73.25±12.34#359.77±118.34
组别TG(mmol/L)TC(mmol/L)25OHD(μg/L)tOC(μg/L)ucOC(μg/L)CTX(ng/L)
D12.17±1.364.30±0.9920.35±8.6316.37±6.750.45±0.37500.68±244.74
D22.36±1.824.42±0.9720.63±6.3414.88±5.060.38±0.28*391.73±192.38*
D32.14±1.694.56±1.023.40±8.3715.84±7.220.37±0.21*368.16±233.38*
D12.71±1.724.19±1.0919.86±7.1015.24±5.150.42±0.25508.36±228.96
D22.50±2.174.25±0.9421.62±5.6813.82±4.010.41±0.32355.10±175.23#
D32.20±1.934.45±0.9625.98±7.77#14.29±6.570.39±0.28348.84±216.10#
BMI:体质量指数; HbA1C:血红蛋白;FCP:空腹C肽; SCr:血肌酐; SUA:血尿酸; TG:甘油三脂; TC:总胆固醇; 25OHD:25羟维生素D;tOC:总骨钙素;ucOC:羧化不全骨钙素;CTX:Ⅰ型胶原羧基端交联肽;与D1组比较,*P<0.05;与D2组比较,P<0.05;与D1男组比较,#P<0.05
T2DM危险因素多元Logistic回归分析

T2DM患者血清ucOC、TG、TC等指标与对照组存在统计学差异,多元Logistic回归分析显示:血清ucOC及TG与T2DM发病独立相关,前者是T2DM的保护因素,后者则是危险因素(表 3)。

表 3 T2DM危险因素多元Logistic回归分析 Table 3 Risk factors for type 2 diabetes multivariate logistic regression analysis
指标ORSEWaldsP
ucOC0.0560.44831.980.000
TG2.8590.0258.3190.004
ucOC:羧化不全骨钙素; TG:三酰甘油
ucOC-H组与ucOC-L组的比较

将T2DM患者按血清ucOC均值高低进行分组,血清ucOC浓度≥均值为ucOC-H组,<均值为ucOC-L组,其中ucOC-H组38例,ucOC-L组85例。两组年龄、病程、BMI、FCP、SCr、SUA、TC、25OHD、tOC、CTX等指标差异无统计学意义(P>0.05),而ucOC-H组HbA1c、TG明显低于ucOC-L组,差异有统计学意义(P<0.05)。男性患者,两组间的HbA1c、TG差异有统计学意义(表 4)。

表 4 ucOC-H组与ucOC-L组比较(x±s) Table 4 Comparison of ucOC-H and ucOC-L group(x±s)
组别例数年龄(岁)病程(月)BMI(kg/m2)HbA1c(%)FCP(mmol/L)SCr(μmol/L)
ucOC-L8560.79±10.45115.74±57.6625.84±3.699.50±2.350.53±0.3361.74±15.32
ucOC-H3858.47±11.35108.08±64.5025.15±4.348.20±1.90*0.52±0.4362.53±14.20
ucOC-L4862.24±10.53114.67±74.1025.93±3.429.68±2.540.45±0.2166.67±13.31
ucOC-H2157.08±11.79105.71±65.3626.21±5.138.37±1.840.45±0.3568.19±12.33
组别SUA(μmol/L)TG(mmol/L)TC(mmol/L)25(OH)D(ng/mL)tOC(ng/mL)CTX(pg/mL)
ucOC-L324.14±92.002.40±1.714.50±0.9721.19±8.0415.17±5.66424.64±226.45
ucOC-H319.66±90.501.89±1.41*4.22±1.0421.13±7.0316.68±7.32423.73±231.14
ucOC-L347.30±101.732.80±2.214.36±0.9022.53±6.9014.48±5.03413.36±211.02
ucOC-H333.47±99.251.81±1.414.10±1.1321.21±7.1214.62±5.08366.44±214.92
BMI:体质量指数; HbA1C:血红蛋白;FCP:空腹C肽; SCr:血肌酐; SUA:血尿酸; TG:甘油三脂; TC:总胆固醇; 25OHD:25羟维生素D;tOC:总骨钙素;ucOC:羧化不全骨钙素;CTX:Ⅰ型胶原羧基端交联肽;与ucOC-L组比较,*P<0.05;与ucOC-L男组比较,P<0.05
Pearson相关性分析

T2DM患者HbA1c水平与血清FCP、ucOC呈负相关(r=-0.249、-0.250,均P<0.05)。在男性患者中,这种负相关关系仍存在(r=-0.398、-0.296,均P<0.05),且HbA1c水平与CTX呈正相关(r=0.293,P<0.05)(表 5)。

表 5 HbA1c与其他因素的相关关系 Table 5 Associations of HbA1c with various factors
指标HbA1cHbA1c
rPrP
FCP-0.2490.009-0.3980.002
CTX0.0280.7600.2930.016
ucOC-0.2500.005-0.2960.014
HbA1C:血红蛋白;FCP:空腹C肽; CTX:Ⅰ型胶原羧基端交联肽;ucOC:羧化不全骨钙素

T2DM患者血清ucOC水平与HbA1c、TG呈负相关(r=-0.250、-0.242,均P<0.05)。在男性患者中,这种负相关关系仍存在(r=-0.296、-0.439,均P<0.05)(表 6)。

表 6 ucOC与其他因素的相关关系 Table 6 Associations of ucOC with various factors
指标ucOCucOC
rPrP
HbA1c-0.2500.005-0.2960.014
TG-0.2420.008-0.4390.000
ucOC:羧化不全骨钙素; HbA1C:血红蛋白;TG:甘油三脂
讨论

大量临床研究已经证实糖代谢异常可以影响骨代谢,临床观察中发现糖尿病患者多数伴有骨密度的改变,且骨折发生率较血糖正常者增高[3]。因为2型糖尿病患者存在胰岛素抵抗和胰岛素相对不足,成骨细胞Twist的表达抑制被削弱,Twist对Runt相关转录因子2(runt-related transcription factor 2, Runx2)活性的抑制相对增强,进而成骨细胞增生分化受阻,骨钙素合成分泌下降,骨形成减少[4-5];此外胰岛素信号还能抑制叉头蛋白转录因子O1的磷酸化,减少骨保护素的产生,导致骨吸收增加,骨折风险增加[6]

随着对糖尿病患者骨代谢状况的深入研究,发现骨骼对糖代谢也有调节作用,并成为近年来基础和临床新的研究热点。已有研究证实糖代谢紊乱者血清骨钙素水平降低[7],Yeap等[8]研究还提示老年人群中较高的血清ucOC水平与较低的T2DM发病风险有关。本研究结果显示T2DM患者血清ucOC明显低于糖代谢正常人群,支持低血清ucOC水平可能导致糖代谢紊乱,与目前大多数相关研究结果一致。本研究还发现糖尿病病程较长患者血清ucOC、FCP水平明显低于病程较短者,提示血清ucOC水平下降引起的糖代谢紊乱与胰岛β细胞功能受损、血清胰岛素水平下降有关。可能机制为:(1)ucOC可结合于胰岛β细胞膜上G蛋白偶联受体6a(G protein-coupled receptor 6a,Gpcr 6a),促进胰岛β细胞增生[9-10];(2)通过间接途径作用于胰腺:Gpcr 6a受体还存在于小肠内分泌细胞STC-1细胞膜上,当ucOC与此受体结合时,可促进该细胞胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)表达而刺激胰岛素分泌[11-12]。(3)ucOC还可以抑制胰岛β细胞膜上电压门控钾通道,增加葡萄糖刺激的胰岛素分泌而降糖[13]。对T2DM危险因素进行Logistic回归分析显示,低血清ucOC与高TG水平是T2DM发病的危险因素,且ucOC影响要高于其他因素,提示低血清ucOC对机体的作用可能主要体现在糖代谢保护因素作用降低,而非损害因素作用增加。

另外,有研究认为骨吸收是OC脱羧的重要过程之一,动物实验发现在破骨细胞数量增加、活性增强时,血清ucOC水平升高,糖耐量随之改善。一项临床研究发现健康妇女在糖耐量正常时,其骨吸收程度随着HbA1c增高而加强,并可引起骨钙素水平升高,且这一变化在糖尿病前期患者中同样存在[14],据此认为糖尿病发生过程中可能存在骨代偿机制,即血糖和HbA1c升高时机体通过增强骨吸收,促进ucOC形成,以改善糖代谢;而当糖代谢紊乱进一步发展超过骨代偿能力时,骨转换速率逐渐减慢。本研究中病程较短T2DM患者CTX、ucOC及FCP均高于病程较长患者,提示在T2DM早期人体可能通过增加骨吸收延缓ucOC水平下降,保护胰岛β细胞功能来改善糖代谢,而在糖代谢紊乱加重时这种代偿逐渐衰竭。本文为避免性激素对女性骨代谢的影响,在T2DM男性患者组进行相关性分析时发现,HbA1c与CTX呈正相关,与FCP、ucOC呈负相关,提示在T2DM患者血糖控制不佳时血清ucOC下降导致胰岛β细胞功能降低,随之骨吸收代偿性增加促进OC脱羧,延缓ucOC水平下降从而改善糖代谢。

ucOC还对能量代谢产生影响,动物实验发现将小鼠骨钙素基因敲除可导致其胰岛素分泌量及血浆浓度明显下降,且胰岛素敏感性降低,血糖升高,伴有脂代谢紊乱[2]。而给予实验小鼠皮下泵入ucOC,其胰岛素分泌增加以及胰岛素敏感性提高、血糖下降;更重要的是,注射ucOC可有效预防高脂饮食诱导的肥胖及T2DM的发生,证实了ucOC对能量代谢的调节作用[6]。近年来人体研究进一步证实ucOC对能量代谢的影响,Díaz-López等[15]随访心血管高风险患者,对新诊断糖尿病与血糖正常者进行对照分析,发现糖尿病发病风险随着血清tOC尤其是ucOC浓度降低逐渐增高。一项日本研究显示T2DM患者ucOC与HbA1c呈负相关[16],更有研究显示糖尿病患者ucOC不仅与血糖水平呈负相关,还和MOHA-β呈正相关[17]。但也有随访研究显示基线骨钙素水平与T2DM发生并无相关性[18]。本研究发现血清tOC在糖耐量正常人群与T2DM患者中差异无统计学意义(P>0.05),而ucOC水平在T2DM患者中明显下降;同时发现T2DM患者HbA1c及TG随血清ucOC水平下降而逐渐增高,且剔除女性后仍存在上述关系,提示血清ucOC水平降低与血糖控制欠佳有关,并可导致血脂异常,与前述临床研究基本相符。

综上所述,尽管目前尚未明确OC对能量代谢的具体调控机制,但大部分相关研究仍表明OC尤其是ucOC参与了能量代谢。T2DM患者血清ucOC明显降低,可能是其发病的危险因素之一,另外随着对ucOC的深入研究,其可能作为一种能量代谢调节激素应用于临床。

参考文献
[1] Schwetz V, Pieber T, Obermayer-Pietsch B, et al. The endocrine role of the skeleton:background and clinical evidence[J]. Eur J Endocrinol, 2012, 166: 959–967. DOI:10.1530/EJE-12-0030
[2] Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007, 130: 456–469. DOI:10.1016/j.cell.2007.05.047
[3] Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis[J]. Osteoporos Int, 2007, 18: 427–444. DOI:10.1007/s00198-006-0253-4
[4] Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J]. Cell, 2010, 142: 309–319. DOI:10.1016/j.cell.2010.06.002
[5] Okazaki K, Yamaguchi T, Tanaka K, et al. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis[J]. Calcified Tissue Int, 2012, 91: 286–296. DOI:10.1007/s00223-012-9641-2
[6] Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism[J]. Cell, 2010, 142: 296–308. DOI:10.1016/j.cell.2010.06.003
[7] Motyl KJ, McCabe LR, Schwartz AV. Bone and glucose metabolism:a two-way street[J]. Arch Biochem Biophys, 2010, 503: 2–10. DOI:10.1016/j.abb.2010.07.030
[8] Yeap BB, Alfonso H, Chubb SA, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men[J]. J Clin Endocrinol Metab, 2015, 100: 63–71. DOI:10.1210/jc.2014-3019
[9] Wei J, Hanna T, Suda N, et al. Osteocalcin promotes beta-cell proliferation during development and adulthood through gprc6a[J]. Diabetes, 2014, 63: 1021–1031. DOI:10.2337/db13-0887
[10] Otani T, Mizokami A, Hayashi Y, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin[J]. Cell Signal, 2015, 27: 532–544. DOI:10.1016/j.cellsig.2014.12.018
[11] Mizokami A, Yasutake Y, Gao J, et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice[J]. PLoS One, 2013, 8: 1–8.
[12] Mizokami A, Yasutake Y, Higashi S, et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion[J]. Bone, 2014, 69: 68–79. DOI:10.1016/j.bone.2014.09.006
[13] Gao J, Zhong X, Ding Y, et al. Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells[J]. Eur J Pharmacol, 2016, 777: 41–48. DOI:10.1016/j.ejphar.2016.02.060
[14] Xuan Y, Sun LH, Liu DM, et al. Positive association between serum levels of bone resorption marker CTX and HbA1c in women with normal glucose tolerance[J]. J Clin Endocrinol Metab, 2015, 100: 274–281. DOI:10.1210/jc.2014-2583
[15] Díaz-López A, Bulló M, Juanola-Falgarona M, et al. Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population:a nested case-control study[J]. J Clin Endocrinol Metab, 2013, 98: 4524–4531. DOI:10.1210/jc.2013-2472
[16] Kanazawa I, Yamaguchi T, Yamauchi M, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus[J]. Osteoporosis Int, 2011, 22: 187–194. DOI:10.1007/s00198-010-1184-7
[17] Hwang YC, Jeong IK, Ahn KJ, et al. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects[J]. Diabetes Metal Res Rev, 2009, 25: 768–772. DOI:10.1002/dmrr.v25:8
[18] Hwang YC, Jee JH, Jeong IK, et al. Circulating osteocalcin level is not associated with incident type 2 diabetes in middle-aged male subjects:mean 8.4-year retrospective follow-up study[J]. Diabetes Care, 2012, 35: 1919–1924. DOI:10.2337/dc11-2471
(收稿日期:2017-04-06)