自出生起,肠道就定植了来自母体和外界环境中的微生物,并逐渐形成结构稳定的微生物群落,称为肠道菌群(gut microbiota,GM)[1]。GM包含了相当于人体基因量150倍的基因,与人类共同进化,通过多种方式对人体产生影响,有学者认为GM是一个“被遗忘的人体器官”[2]。在稳态调节下,GM与宿主形成共生关系,菌群从宿主肠道获得自身所需营养和能量,同时帮助宿主消化食物,为宿主提供营养物质,加强肠道屏障作用,保护宿主不被病原体入侵[1]。此外,研究发现GM还具有调节宿主物质代谢及免疫系统的功能[3]。
近年来,GM被证实与肥胖、糖尿病、炎性肠病等疾病相关,GM与骨骼健康的关系也逐渐被认识。此外,由于益生菌和益生元对GM结构具有调节作用,其对骨骼的影响也日益受到关注[3]。本文就GM对骨代谢的影响及其机制、益生菌和益生元对骨骼的作用研究进展进行综述。
GM对骨骼的影响及其机制GM包含多种菌属,既包括有益菌群,又包括有害菌群,不同菌属数量及菌属间比例形成差异的菌群结构,不同的GM结构将对骨骼产生不同影响[1, 4]。Sjogren等[5]研究发现无菌小鼠骨量高于正常小鼠,说明GM对骨代谢具有调控作用。随着年龄增长,骨质疏松症患病率逐渐增加,GM结构也随之发生变化:致病性变形菌门和杆菌门比例增加,而具有抗炎作用乳酸杆菌比例下降,这些改变可能影响了骨代谢,增加骨质疏松发生风险[6]。但目前研究尚未阐明影响骨代谢的具体GM种类。GM影响骨代谢的机制尚不清楚,主要有以下三种可能机制。
调节钙吸收GM中有益菌群可发酵食物中的纤维产生短链脂肪酸(short-chain fatty acids,SCFA),SCFA可降低肠道局部pH值,减少肠道钙离子与磷形成复合物,从而促进钙吸收[4]。一项包含了24名青少年的研究发现,拟杆菌门中的拟杆菌属、厚壁菌门中的小类杆菌属和颤杆菌属可发酵膳食纤维,产生SCFA,降低肠道局部pH值,增加钙离子吸收[7]。此外,SCFA中的丁酸盐可为肠黏膜上皮细胞提供能量,改善肠绒毛结构,增大吸收面积,利于肠道钙吸收。这在一项体外试验中也得到证实:与正常小鼠结肠细胞相比,无菌小鼠结肠细胞处于能量剥夺状态,三羧酸循环中关键限速酶表达被抑制,ATP产生减少,从而诱导细胞自噬;当加入丁酸盐后结肠细胞线粒体氧化呼吸得到改善,从而抑制细胞自噬[8]。SCFA还可能通过表观遗传调控,包括改变核小体定位及诱导组蛋白乙酰化,促进肠黏膜细胞对矿物质的吸收[4]。此外,SCFA还通过影响矿物质吸收的信号通路促进钙吸收,体外研究发现,SCFA与细胞表面G蛋白偶联受体结合后,降低细胞内cAMP水平,增加促分裂原活化蛋白激酶磷酸化水平,引起下游信号热休克蛋白27磷酸化,促进细胞吸收钙离子[9]。
调节免疫,影响破骨细胞数量与功能骨组织中的造血干细胞可分化为破骨细胞和免疫细胞,GM通过促进宿主免疫系统成熟而调节骨代谢[10]。GM中有害菌群能够产生内毒素(lipopolysaccharide,LPS),通过与宿主免疫细胞表面Toll样受体(Toll-like receptor,TLR)结合,引起炎性反应[11]。动物实验发现无菌小鼠免疫系统中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)表达量降低,T细胞数目较GM定植小鼠减少,同时,骨骼中破骨细胞数量减少,骨质量高于GM定植小鼠,推测GM通过调节免疫系统及骨髓局部炎性反应来调控破骨细胞生成,从而影响骨代谢[5]。源于造血干细胞的前破骨细胞表面也表达TLR,同时还表达核因子kappa-B配体激活受体(receptor activator of nuclear factor kappa-B ligand,RANKL),前破骨细胞的命运与RANKL、护骨素(osteoprotegerin,OPG)及LPS密切关联[11]。LPS对破骨细胞分化成熟具有双向作用,当前破骨细胞只暴露于LPS而不暴露于RANKL时,将分化为吞噬细胞,而不分化为破骨细胞,此时LPS具有抑制破骨细胞生成,减少骨吸收作用[11]。当在RANKL刺激下,RANKL/ OPG比例升高,LPS与TLR结合,将促进前破骨细胞转化为破骨细胞,加速破骨细胞分化成熟,从而增加骨吸收[11]。
调节肠道激素分泌,影响骨代谢GM中有益菌群可刺激肠道细胞分泌肠促胰素[3]。肠促胰素包括一系列由肠道分泌,具有葡萄糖浓度依赖性促进胰岛素分泌作用的激素,包括葡萄糖依赖促胰肽(glucose-dependent insulinotropic polypeptide,GIP)和胰高血糖素样肽1(glucagon-like peptide-1,GLP-1)[12]。GIP可与成骨细胞表面受体结合,增加Ⅰ型胶原基因表达,促进胶原基质成熟及矿化,增加碱性磷酸酶活性,促进TGF-β分泌,促进骨形成;而GIP与前破骨细胞表面受体结合,抑制破骨细胞生成及活性,减少骨吸收。GLP-1则具有促进胰岛β细胞分泌胰岛素的作用,胰岛素能够促进骨形成;GLP-1还可以促进甲状腺C细胞分泌降钙素,从而抑制骨吸收[13]。近期研究表明GM中有害菌群的血清素可进入血循环,减少成骨细胞数量,抑制成骨细胞分化成熟,抑制骨形成,降低骨小梁体积百分数[14],亦有研究发现色氨酸羟化酶1具有催化血清素合成作用,而其抑制剂具有治疗低骨量的潜在作用[15]。
综上,GM中菌属繁多,其中有益菌群不仅能够代谢产生SCFA,降低肠道局部pH值,为肠黏膜细胞提供能量,增加吸收面积,调控肠黏膜上皮表观遗传及矿物质吸收信号通路,促进肠道钙吸收,而且能够刺激肠道细胞分泌GIP和GLP-1促进骨形成,抑制骨吸收,从而促进骨骼健康,降低骨质疏松发生风险。而有害菌群则一方面通过代谢产生LPS,促进炎性反应刺激破骨细胞生成,直接诱导前破骨细胞向破骨细胞转化,促进破骨细胞分化成熟,促进骨吸收;另一方面通过血清素,抑制骨形成,破坏骨微结构,增加骨质疏松风险。
因此,调整GM菌群结构,促进GM中有益菌群生长,降低有害菌群比例,对维持骨骼健康具有显著意义。近期研究显示,益生菌作为GM中有益菌群对骨骼具有保护作用,益生元由于具有调节GM结构的功能,有利于增加有益菌群,减少有害菌群。
益生菌对骨骼的作用益生菌(probiotics)是指与宿主共生且达一定数量后,通过改善肠道功能,保护肠黏膜,调解免疫反应等机制,有利于宿主健康的微生物[16]。GM中乳酸菌、双歧杆菌、埃希氏菌、肠球菌、芽孢杆菌、枯草杆菌、酵母菌等是有益于宿主健康的益生菌[3]。使用益生菌来发酵酸奶、制作奶酪等食物由来已久,近年来益生菌对骨代谢的影响也倍受关注。
有多项随机对照动物实验表明益生菌对骨骼发挥多重影响。第一,通过增加骨骼中钙含量促进骨骼健康:与空白对照组相比,补充芽孢杆菌和枯草杆菌可增加家禽胫骨中钙含量,并使胫骨横径增粗[17]。第二,抑制破骨细胞活性:在去卵巢小鼠中,补充乳酸菌与补充溶剂对照相比,破骨细胞活性降低,骨吸收降低,骨密度及骨小梁骨体积分数增加[18]。第三,通过抑制炎症反应减少骨吸收:口腔枯草杆菌、酵母菌、双歧杆菌能降低牙槽骨的破骨细胞活性从而减少牙槽骨的骨吸收[19];在牙周炎局部使用乳酸杆菌,通过其合成的精氨酸脱亚氨酶降低炎性反应因子基因表达,能够有效减少牙周炎所致牙周骨吸收[20];予雄性小鼠乳酸菌制剂灌胃,每周3次,连续4周,发现实验组TNF-α表达水平显著下降,减少了TNF-α介导的骨吸收,而骨小梁骨体积分数和骨密度显著增加[21];予性激素缺乏小鼠每周补充两次乳酸菌,发现其能降低肠道渗透性,抑制炎性反应,减少骨吸收[22]。第四,促进成骨细胞活性:1型糖尿病小鼠模型中,与未干预组相比,使用乳酸菌干预组Wnt10b表达水平更高,提示乳酸菌具有促进成骨细胞活性作用[23]。第五,促进骨骼矿化:斑马鱼研究发现,乳酸菌能够刺激胰岛素样生长因子1分泌,而促进骨骼矿化[24]。第六,调节骨代谢通路:斑马鱼研究发现,乳酸菌通过上调MAPK1/3通路基因表达而促进成骨细胞和骨细胞的成熟及分化[25];此外,大鼠研究也发现双歧杆菌通过上调SPARC和Bmp-2基因表达增加去卵巢大鼠的骨密度[26]。
因此,从斑马鱼到啮齿类动物研究均表明,益生菌能够通过多种途径抑制骨吸收,促进骨形成及矿化,增加骨密度,改善骨微结构,保护骨骼健康。
益生元对骨骼的作用益生元(prebiotics)是一类不能被人体消化的食物成分,具有刺激及活化肠道益生菌的作用,有利于人体健康[27]。益生元包含大量不被人体消化的低聚糖,包括葡聚糖、低聚果糖、菊粉、木聚糖、低聚半乳糖和大豆低聚糖等[3]。GM中有益菌群可代谢产生SCFA、支链脂肪酸、胆汁酸衍生物和维生素等益于人体健康的产物,而这些产物的生成依赖于GM的基质,这些基质部分来源于益生元,因此益生元可调节GM代谢产物,从而影响骨代谢[3]。
研究发现益生元对骨骼有以下影响:第一,益生元能够促进钙离子吸收:动物研究发现低聚果糖、菊粉、低聚半乳糖不仅增加小鼠和成年健康大鼠的钙吸收[28-30],而且菊粉和低聚果糖可显著增加去卵巢大鼠的钙吸收,减少骨量丢失[31]。人类研究中也发现补充低聚果糖9天到1年不等的时间,可增加青少年的钙吸收,且持续1年补充低聚果糖有助于升高青少年骨密度[32-33]。在一项安慰剂对照双盲交叉设计的研究中,补充丁酯低聚糖6周,能够增加绝经后女性的肠钙和镁的吸收,且骨密度低者,效果更显著[34]。低聚半乳糖也可增加绝经后女性的肠钙吸收[35]。第二,益生元对骨转换具有一定影响:低聚果糖和菊粉可升高小鼠体内骨钙素水平[30]。低聚半乳糖/低聚果糖混合制剂与钙剂合用时,可增加大鼠骨的矿化和骨密度,还可增加成骨细胞表面积[36]。一项针对绝经后女性的随机干预试验表明,补充低聚果糖24个月,可降低血及尿中I型胶原羧基端片段、骨钙素等骨转换生化指标水平[37]。第三,益生元具有改善骨强度的作用:低聚果糖和菊粉可增加小鼠及大鼠骨密度及骨小梁厚度[38-39],低聚果糖、低聚半乳糖和菊粉具有增加健康大鼠及去卵巢大鼠骨强度的作用[40-41]。第四,益生元还能增强其他益于骨骼健康制剂的作用:低聚果糖可增强大豆异黄酮对去卵巢大鼠骨密度及骨强度的改善作用[42],益生元也可增加益生菌的骨保护作用[3]。
可见,动物及人体研究均提示,益生元通过直接或间接作用促进骨形成,抑制骨吸收,增加骨密度及骨强度,从而发挥保护骨骼的作用。
总结和展望肠道菌群与骨代谢存在复杂而密切的关联,益生菌和益生元制剂对骨骼可能具有保护作用。然而,对骨骼具有保护作用的益生菌和益生元有哪些种类,其调节骨代谢的信号通路及确切机制,仍有待深入探讨。未来,肠道菌群可能成为调节骨代谢的重要靶点,益生菌和益生元等调节肠道菌群制剂有望为骨质疏松症的治疗提供新的思路,其治疗骨质疏松症的大样本、随机对照、长期人群研究,值得深入开展。
| [1] | Ohlsson C, Sjogren K. Effects of the gut microbiota on bone mass[J]. Trends Endocrinol Metab, 2015, 26: 69–74. DOI:10.1016/j.tem.2014.11.004 |
| [2] | Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464: 59–65. DOI:10.1038/nature08821 |
| [3] | Mccabe L, Britton RA, Parameswaran N. Prebiotic and Probiotic Regulation of Bone Health:Role of the Intestine and its Microbiome[J]. Curr Osteoporos Rep, 2015, 13: 363–371. DOI:10.1007/s11914-015-0292-x |
| [4] | Weaver CM. Diet, gut microbiome, and bone health[J]. Curr Osteoporos Rep, 2015, 13: 125–130. DOI:10.1007/s11914-015-0257-0 |
| [5] | Sjogren K, Engdahl C, Henning P, et al. The gut microbiota regulates bone mass in mice[J]. J Bone Miner Res, 2012, 27: 1357–1367. DOI:10.1002/jbmr.1588 |
| [6] | Ejtahed HS, Soroush AR, Angoorani P, et al. Gut microbiota as a target in the pathogenesis of metabolic disorders:a new approach to novel therapeutic agents[J]. Horm Metab Res, 2016, 48: 349–358. DOI:10.1055/s-00000025 |
| [7] | Whisner CM, Martin BR, Nakatsu CH, et al. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls:a randomised controlled trial using dual stable isotopic tracers[J]. Br J Nutr, 2014, 112: 446–456. DOI:10.1017/S0007114514000981 |
| [8] | Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab, 2011, 13: 517–526. DOI:10.1016/j.cmet.2011.02.018 |
| [9] | Yonezawa T, Kobayashi Y, Obara Y. Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line[J]. Cell Signal, 2007, 19: 185–193. DOI:10.1016/j.cellsig.2006.06.004 |
| [10] | Charles JF, Nakamura MC. Bone and the innate immune system[J]. Curr Osteoporos Rep, 2014, 12: 1–8. DOI:10.1007/s11914-014-0195-2 |
| [11] | Villa CR, Ward WE, Comelli EM. Gut microbiota-bone axis[J]. Crit Rev Food Sci Nutr, 2017, 57: 1664–1672. DOI:10.1080/10408398.2015.1010034 |
| [12] | Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action[J]. Cell Metab, 2013, 17: 819–837. DOI:10.1016/j.cmet.2013.04.008 |
| [13] | Mabilleau G. Incretins and bone:friend or foe?[J]. Curr Opin Pharmacol, 2015, 22: 72–78. DOI:10.1016/j.coph.2015.03.007 |
| [14] | Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum[J]. Cell, 2008, 135: 825–837. DOI:10.1016/j.cell.2008.09.059 |
| [15] | Yadav VK, Balaji S, Suresh PS, et al. Pharmacolog-ical inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis[J]. Nat Med, 2010, 16: 308–312. DOI:10.1038/nm.2098 |
| [16] | Steves CJ, Bird S, Williams FM, et al. The micro-biome and musculoskeletal conditions of aging:a review of evidence for impact and potential therapeutics[J]. J Bone Miner Res, 2016, 31: 261–269. DOI:10.1002/jbmr.2765 |
| [17] | Sadeghi AA. Bone mineralization of broiler chicks challenged with salmonella enteritidis fed diet containing probiotic (Bacillus subtilis)[J]. Probiotics Antimicrob Proteins, 2014, 6: 136–140. DOI:10.1007/s12602-014-9170-6 |
| [18] | Britton RA, Irwin R, Quach D, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model[J]. J Cell Physiol, 2014, 229: 1822–1830. DOI:10.1002/jcp.24636 |
| [19] | Messora MR, Oliveira LF, Foureaux RC, et al. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis[J]. J Periodontol, 2013, 84: 1818–1826. DOI:10.1902/jop.2013.120644 |
| [20] | Maekawa T, Hajishengallis G. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss[J]. J Periodontal Res, 2014, 49: 785–791. DOI:10.1111/jre.2014.49.issue-6 |
| [21] | Mccabe LR, Irwin R, Schaefer L, et al. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice[J]. J Cell Physiol, 2013, 228: 1793–1798. DOI:10.1002/jcp.v228.8 |
| [22] | Li JY, Chassaing B, Tyagi AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest, 2016, 126: 2049–2063. DOI:10.1172/JCI86062 |
| [23] | Zhang J, Motyl KJ, Irwin R, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri[J]. Endocrinology, 2015, 156: 3169–3182. DOI:10.1210/EN.2015-1308 |
| [24] | Avella MA, Place A, Du SJ, et al. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems[J]. PLoS One, 2012, 7: e45572. DOI:10.1371/journal.pone.0045572 |
| [25] | Maradonna F, Gioacchini G, Falcinelli S, et al. Probiotic supplementation promotes calcification in Daniorerio larvae:a molecular study[J]. PLoS One, 2013, 8: e83155. DOI:10.1371/journal.pone.0083155 |
| [26] | Parvaneh K, Ebrahimi M, Sabran MR, et al. Probiotics (Bifidobacteriumlongum) increase bone mass density and upregulate sparc and bmp-2 genes in rats with bone loss resulting from ovariectomy[J]. Biomed Res Int, 2015, 2015: 897639. |
| [27] | Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects:metabolic and health benefits[J]. Br J Nutr, 2010, 104 Suppl 2: S1–S63. |
| [28] | Bueno-Vargas P, Manzano M, Diaz-Castro J, et al. Maternal dietary supplementation with oligofructose-enriched inulin in gestating/lactating rats preserves maternal bone and improves bone microarchitecture in their offspring[J]. PLoS One, 2016, 11: e154120. |
| [29] | Legette LL, Lee W, Martin BR, et al. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model[J]. J Food Sci, 2012, 77: H88–H94. |
| [30] | Garcia-Vieyra MI, Del RA, Lopez MG. Agave fructans:their effect on mineral absorption and bone mineral content[J]. J Med Food, 2014, 17: 1247–1255. DOI:10.1089/jmf.2013.0137 |
| [31] | Zafar TA, Weaver CM, Zhao Y, et al. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats[J]. J Nutr, 2004, 134: 399–402. DOI:10.1093/jn/134.2.399 |
| [32] | Abrams SA, Griffin IJ, Hawthorne KM, et al. A combination of prebiotic short-and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents[J]. Am J ClinNutr, 2005, 82: 471–476. |
| [33] | Whisner CM, Martin BR, Nakatsu CH, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome:a randomized dose-response trial in free-living pubertal females[J]. J Nutr, 2016, 146: 1298–1306. DOI:10.3945/jn.115.227256 |
| [34] | Holloway L, Moynihan S, Abrams SA, et al. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women[J]. Br J Nutr, 2007, 97: 365–372. |
| [35] | van den Heuvel EG, Schoterman MH, Muijs T. Transgalactooligosaccharides stimulate calcium absorp-tion in postmenopausal women[J]. J Nutr, 2000, 130: 2938–2942. DOI:10.1093/jn/130.12.2938 |
| [36] | Bryk G, Coronel MZ, Pellegrini G, et al. Effect of a combination GOS/FOS(R) prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats[J]. Eur J Nutr, 2015, 54: 913–923. |
| [37] | Slevin MM, Allsopp PJ, Magee PJ, et al. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women[J]. J Nutr, 2014, 144: 297–304. |
| [38] | Bass EF, Baile CA, Lewis RD, et al. Bone quality and strength are greater in growing male rats fed fructose compared with glucose[J]. Nutr Res, 2013, 33: 1063–1071. |
| [39] | Weaver CM, Martin BR, Story JA, et al. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation[J]. J Agric Food Chem, 2010, 58: 8952–8957. DOI:10.1021/jf904086d |
| [40] | Weaver CM, Martin BR, Nakatsu CH, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation[J]. J Agric Food Chem, 2011, 59: 6501–6510. DOI:10.1021/jf2009777 |
| [41] | Yang LC, Wu JB, Lu TJ, et al. The prebiotic effect of Anoectochilusformosanus and its consequences on bone health[J]. Br J Nutr, 2013, 109: 1779–1788. |
| [42] | Mathey J, Puel C, Kati-Coulibaly S, et al. Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat[J]. Calcif Tissue Int, 2004, 75: 169–179. |
| (收稿日期:2017-01-10) |

