二甲双胍对骨代谢的影响
刘畅, 刘亭亭, 缪婧, 王旭, 王秀梅     
150000 哈尔滨,哈尔滨医科大学附属第二医院牙体牙髓科
摘要:二甲双胍(metformin,MF)作为一种抗糖尿病药物,在世界范围内被广泛用于治疗2型糖尿病(type 2 diabetes mellitus,T2MD)。近年来,二甲双胍在骨代谢中的作用逐渐得到证实,大量体内外实验表明其对成骨细胞、脂肪细胞等细胞的代谢产生一定影响。已经证实二甲双胍通过激活腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)途径促进成骨细胞的分化、矿化以及成骨相关基因的表达。一些临床研究显示,二甲双胍对于糖尿病性骨质疏松(DM-induced bone fragility)产生有益的作用。本文对相关文献加以综述,为二甲双胍在成骨方面的临床研究和应用提供依据和思路。
关键词二甲双胍    成骨细胞    骨代谢    
Effects of metformin on bone metabolism
LIU Chang, LIU Ting-ting, MIAO Jing, WANG Xu, WANG Xiu-mei     
Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
Abstract: Metformin is an antidiabetic drug, widely used in the treatment of type 2 diabetes mellitus(T2DM). In recent years, the role of metformin in bone remodeling has been gradually confirmed. A large number of in vitro and in vivo experiments have shown that it has an effect on the metabolism of cells such as osteoblasts and adipocytes. Metformin has been shown to promote osteoblast differentiation, mineralization, and bone formation-related gene expression by activating adenosine monophosphate activated protein kinase (AMPK)signaling pathway. Some clinical studies have shown that metformin has a beneficial effect on bone fragility in diabetic patients. This article reviews the relevant literature and provides the basis for the clinical research and application of metformin in osteogenesis.
Key words: metformin    osteoblasts    bone metabolism    

二甲双胍作为一种安全稳定的抗糖尿病药物被广泛用于2型糖尿病治疗。其主要通过增加肌肉内葡萄糖的无氧酵解,激活腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)信号通路增强胰岛素在肝和肌肉等组织中的敏感性,抑制肠道对葡萄糖的吸收和肝糖原异生达到增加胰岛素水平和降低血糖的作用[1]。研究发现,二甲双胍对治疗非乙醇性脂肪肝及多囊卵巢综合征等胰岛素抵抗相关疾病亦有一定帮助[2-4]。另外,应用二甲双胍联合化疗药物治疗Ⅱ期非小细胞肺癌的前瞻性研究显示其具有一定的抗肿瘤作用[5]。一项针对糖尿病患者的研究也显示二甲双胍可以降低心血管疾病的发生率[6]。近年来,二甲双胍的骨保护作用得到越来越多的关注和证实,现将其对骨代谢影响的研究进展进行阐述。

二甲双胍对成骨细胞增生、分化和矿化的影响 二甲双胍在生理糖浓度下的成骨促进作用

Cortizo等[7]首次研究了二甲双胍在成骨细胞系分化中的作用,显示25.0~500.0 μmol/L二甲双胍在24 h内呈剂量依赖性促进UMR106和MC3T3细胞的增生,其中200 μmol/L促进作用最明显。并可增加MC3T3细胞Ⅰ型胶原的表达和矿化结节的形成,显著提高其碱性磷酸酶活性。Kanazawa等[8]进一步证实在MC3T3-E1成骨细胞系中,50.0 μmol/L浓度的二甲双胍可以显著增加内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS),骨形态发生蛋白-2(bone morphogenetic protein 2,BMP-2),Ⅰ型胶原(type 1 collagen)和骨钙素(bone gla protein,BGP)的表达。另有研究证实,二甲双胍能在细胞和组织水平上减少骨保护素配体(nuclear factor kappa B receptor activating factor ligand,RANKL)的表达并刺激骨保护素(osteoprotegerin,OPG)的合成。从而上调OPG/RANKL比率,抑制破骨细胞的形成和分化。因此,可通过双重作用减少骨丢失,预防骨质疏松[9]。吕娇等[10]在大鼠下颌骨细胞中加入二甲双胍(0~800 μmol/L),结果显示一定浓度范围的二甲双胍可促进原代下颌骨细胞的增生、分化和矿化,在生理条件下提高成骨细胞的成骨能力。

在体内试验中,有研究表明二甲双胍能改善去卵巢(ovariectomized,OVX)大鼠因雌激素缺乏导致的胫骨骨小梁稀疏变薄,抑制骨溶解,甚至可以使其胫骨骨密度达到正常大鼠水平[11]。这个结果表明二甲双胍除了在体外有良好的成骨作用外,还对OVX大鼠的骨丢失具有直接的抑制作用。Pradeep等[12]在存在骨缺损的慢性牙周炎患者的牙周袋中使用1%的二甲双胍凝胶,6个月后,发现牙周探诊深度(probing depth,PD)和附着丧失水平(attachment loss,AL)等多项临床指数和影像指数均显著提高。研究显示糖尿病大鼠的种植体周围骨组织经二甲双胍干预后,OPG表达增加,得到其可改善种植体周围骨质,增强种植体骨愈合能力的结论[13]

二甲双胍对高糖条件下成骨细胞的影响

越来越多的研究表明骨骼与葡萄糖代谢密切相关,骨质疏松症被认为是糖尿病的并发症之一,称为糖尿病性骨质疏松症。实际上,一些临床研究表明,二甲双胍可降低2型糖尿病患者骨折风险[14-15]。以往研究显示晚期糖基化终产物(advanced glycation end products,AGES)的蛋白交联与成骨细胞和骨细胞的功能障碍及糖尿病性骨质疏松症相关。糖尿病患者的AGEs和同型半胱氨酸的循环水平增加,它们直接损害成骨细胞和骨细胞的功能,导致骨形成和骨重建减少[16-17]。Xu等[18]研究显示二甲双胍可以明显改善由AGEs引起的成骨细胞异常增生,并证实其逆转AGEs的致骨损害作用可能是通过下调AGEs受体引起的。由此推测,二甲双胍不仅可以有效降低糖尿病患者的血糖,还可以改善由AGEs引起的成骨异常,对糖尿病患者的骨组织起到一定的保护作用。研究显示二甲双胍在生理糖浓度下可以促进大鼠下颌骨成骨细胞的增生、分化和矿化。16.5 mmol/L高糖环境则引起二甲双胍作用改变,表现为促分化但抑制矿化[19]。有研究者推测二甲双胍可以通过局部给药的方式转移到种植体周围的骨组织中,以改善糖尿病患者的骨-种植体接触。其检测了生理糖浓度(5.5 mmol/L)和高糖浓度(16.5 mmol/L)下大鼠下颌骨成骨细胞对二甲双胍的摄取情况和大鼠有机阳离子转运蛋白(rat organic cation transporter,rOCT)的表达。结果显示,大鼠成骨细胞具有在细胞内转运二甲双胍的能力,其主要是rOCT1介导的继发性主动转运。而高糖可通过rOCT1的磷酸化提高成骨细胞对二甲双胍的摄取[20]。以此为二甲双胍用于2型糖尿病患者的种植牙局部给药以增加骨形成,从而提高临床种植牙成功率的推测提供依据。

二甲双胍对其他成骨相关细胞的成骨诱导作用 二甲双胍对间充质干细胞的成骨诱导作用

以往研究证实,二甲双胍具有促进大鼠骨髓间充质干细胞(bone mesenchymal stem cells,BMSCs)向成骨细胞分化,抑制其向脂肪细胞分化的潜在应用价值[21]。近来有研究将诱导性多能干细胞来源的间充质干细胞(induced pluripotent stem cell-derived mesenchymal stem cells,iPSC-MSCs)接种到磷酸钙骨水泥支架(calcium phosphate cement,CPC)上时,用10 μmol/L二甲双胍处理。结果显示,二甲双胍刺激iPSC-MSCs碱性磷酸酶的活性,增强矿化结节的形成,增加Runt相关转录因子2(runt-related transcription factor 2,RUNX2)和成骨细胞特异性转录因子Osterix(OSX)等成骨标志物的表达。肝激酶B1(liver kinase B1,LKB1)是一种AMPK激酶,当抑制其活性时,二甲双胍诱导的AMPK激活,RUNX2的表达和核定位被逆转[22]。免疫印迹和细胞摄取试验表明,iPSC-MSCs表达功能性有机阳离子转运蛋白-1(organic cation transporter 1,OCT-1)[23],而OCT-1是介导细胞内摄取二甲双胍的跨膜蛋白。以上结果表明,表达OCT-1的iPSC-MSCs通过诱导部分由LKB1/AMPK通路介导的成骨作用来响应二甲双胍。研究表明iPSC-MSCs比骨髓间充质干细胞具有更高的增生能力和更少的致瘤性[24-26],因此以iPSC-MSCs为基础的组织再生领域将为口腔颌面部骨组织缺损提供新的治疗思路,同时也提示可将自体间充质干细胞联合二甲双胍作为治疗糖尿病和非糖尿病患者的牙周和骨组织缺损的一种新的治疗选择。另有研究表明,在脐带间充质干细胞(umbilical cord mesenchymal stem cells,UC-MSCs)中功能性OCTs表达是促进二甲双胍在细胞内吸收从而诱导其成骨作用的生物学先决条件[27]。未来的临床前研究有必要对功能性OCTs的表达是否可以作为预测二甲双胍成骨反应的潜在生物标志物进行探讨。

二甲双胍诱导脂肪干细胞向成骨细胞分化

脂肪干细胞(adipose stem cells,ASCs)的特点是高增生活性并具有分化为成骨细胞,成软骨细胞和脂肪细胞的能力[28-29]。Smieszek等[30]研究发现,二甲双胍通过促进外源性骨形成相关蛋白如BMP-2、BGP的合成,对小鼠ASCs的促骨生成作用产生影响。其在后续研究中构建了由人体脂肪组织来源干细胞(human adipose stem cells,hASCs)、二甲双胍和SS316L不锈钢生物材料构成的三元化合物模型,表面覆盖由溶胶-凝胶法制备的SiO2/ZrO2无机复合膜,评价此生物材料在骨愈合特别是非愈合的骨缺损治疗方面的作用。这是首次将二甲双胍作为一种促进金属植入物骨诱导性能的药物,结果表明,二甲双胍可以改善SiO2/ZrO2涂层的成骨性能,证实了SiO2/ZrO2-MET涂层的体外造骨性能[31]

二甲双胍诱导牙髓细胞向成牙本质细胞分化及矿化

人牙髓细胞与间充质干细胞具有相似的基因表达和分化能力[32-33]。研究人员用不同浓度二甲双胍处理人牙髓细胞,结果显示二甲双胍以剂量依赖的形式显著激活AMPK信号通路从而诱导人牙髓细胞向成牙本质细胞分化和矿化。但此研究中不同剂量二甲双胍对人牙髓细胞的增生无影响,与以往二甲双胍对细胞增生产生影响的研究结果不一致[34],产生差异的原因可能是实验过程不同及细胞类型不同所导致。

二甲双胍通过激活AMPK和ERK信号通路影响成骨

二甲双胍可使骨细胞中的细胞外信号调节激酶1/2(extracellular signal-regulated kinase,ERK-1/2)被磷酸化并呈现时间依赖性[35]。目前认为,丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路对关键区域的作用及持续时间是调节骨细胞增生与分化过程的重要环节之一,可见加入二甲双胍引起的ERK-1/2磷酸化与促进成骨细胞的生长发育密切相关。

AMPK的活化可促进成骨细胞的分化和骨钙素的表达[36-37],抑制同型半胱氨酸(homocysteine,Hcy)诱导的细胞凋亡[37],抑制氧化应激,改善糖基化终末产物导致的成骨细胞功能损伤[38]。由此说明,AMPK可能是糖尿病性骨质疏松的治疗靶点。Kanazawa等[35]在MC3T3-E1成骨细胞系中加入二甲双胍(5.5~50.0 μmol/L)后,磷酸化AMPK的表达可持续增高60 min,并引起内皮型一氧化氮合酶(endothelial nitric oxide synthas,eNOS)和BMP-2的表达量增加,加入AMPK抑制剂后,eNOS和BMP-2表达量显著降低。但Kasai等[39]得出浓度为2 mmol/L的二甲双胍可以导致AMPK信号通路持续性磷酸化,抑制成骨细胞增生、分化和矿化的相反的结论。说明小剂量二甲双胍可能通过激活AMPK信号通路来促进成骨细胞的分化和矿化过程,大剂量则产生相反的作用。这些研究结果提示AMPK活化可能是治疗糖尿病性骨质疏松的候选方案。

展望

二甲双胍作为降糖药物对于糖尿病患者的益处早已得到肯定。随着研究的深入,其在成骨方面的作用亦得到了广泛关注及证实,这种潜在的骨保护作用可能会改善由糖尿病引起的骨量减少和骨质疏松。虽然二甲双胍的一些促成骨机制仍不十分明确,但相信经过更多的探讨及大量的临床对照研究,二甲双胍将在各种骨破坏缺损相关疾病的治疗中发挥巨大的作用。

参考文献
[1] Kirpichnikov D, Mcfarlane SI, Sowers JR. Metfor-min: an update[J]. Ann Intern Med, 2002, 137: 25–33. DOI:10.7326/0003-4819-137-1-200207020-00009
[2] Feng W, Gao C, Bi Y, et al. A randomized trial comparing gliclazide, liraglutide, and metformin effects on diabetes with nonalcoholic fatty liver disease[J]. J Diabetes, 2017, 9: 800–809. DOI:10.1111/1753-0407.12555
[3] Huang TO, Chen PC, Wu MH, et al. Metformin improved health-related quality of life in ethnic Chinese women with polycystic ovary syndrome[J]. Health Qual Life Outcomes, 2016, 14: 119. DOI:10.1186/s12955-016-0520-9
[4] 田宏, 欧阳远朔, 丁上书, 等. 二甲双胍治疗对多囊卵巢综合征模型大鼠卵巢中Fas/FasL表达的影响[J]. 西安交通大学学报(医学版), 2018, 39: 825–830.
[5] Parikh AB, Kozuch P, Rohs N, et al. Metformin as a repurposed therapy in advanced non-small cell lung cancer (NSCLC): results of a phase Ⅱ trial[J]. Invest New Drugs, 2017, 35: 813–819. DOI:10.1007/s10637-017-0511-7
[6] John-Michael G, Thomas JM, Twells LK, et al. Comparative effectiveness of incretin-based therapies and the risk of death and cardiovascular events in 38, 233 metformin monotherapy users[J]. Medicine, 2016, 95: e3995. DOI:10.1097/MD.0000000000003995
[7] Cortizo AM, Sedlinsky C, Mccarthy AD, et al. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture[J]. Eur J Pharmacol, 2006, 536: 38–46. DOI:10.1016/j.ejphar.2006.02.030
[8] Kanazawa I, Yamaguchi T, Yano S, et al. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression[J]. Biochem Biophys Res Commun, 2008, 375: 414–419. DOI:10.1016/j.bbrc.2008.08.034
[9] Mai QG, Zhang ZM, Xu S, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats[J]. J Cell Biochem, 2011, 112: 2902–2909. DOI:10.1002/jcb.23206
[10] 吕娇, 刘洪臣, 鄂玲玲, 等. 盐酸二甲双胍对大鼠下颌骨成骨细胞增生、分化及矿化功能的影响[J]. 中华老年口腔医学杂志, 2008, 6: 47–50. DOI:10.3969/j.issn.1672-2973.2008.01.018
[11] Gao Y, Li Y, Xue J, et al. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats[J]. Eur J Pharmacol, 2010, 635: 231–236. DOI:10.1016/j.ejphar.2010.02.051
[12] Pradeep AR, Patnaik K, Nagpal K, et al. Efficacy of locally-delivered 1% metformin gel in the treatment of intrabony defects in patients with chronic periodontitis: a randomized, controlled clinical trial[J]. J Investigat Clin Dent, 2016, 7: 239–245. DOI:10.1111/jicd.12150
[13] 刘宇.二甲双胍对糖尿病大鼠种植体周围骨组织中OPG和RANKL表达的影响[D].太原: 山西医科大学研究生院, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10114-1013223940.htm
[14] Ferron M, Mckee MD, Levine RL, et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice[J]. Bone, 2013, 50: 570–575.
[15] Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk[J]. Diabetologia, 2005, 48: 1292–1299. DOI:10.1007/s00125-005-1786-3
[16] Saito M, Fujii K, Mori Y, et al. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats[J]. Osteoporos Int, 2006, 17: 1514–1523. DOI:10.1007/s00198-006-0155-5
[17] Kanazawa I, Tomita T, Miyazaki S, et al. Bazedoxi-fene ameliorates homocysteine-induced apoptosis and accumulation of advanced glycation end products by reducing oxidative stress in MC3T3-E1 cells[J]. Calcif Tissue Int, 2017, 100: 286–297. DOI:10.1007/s00223-016-0211-x
[18] Xu T, Liu G. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells[J]. Exp Clin Endocrinol Diabetes, 2008, 116: 333–340. DOI:10.1055/s-2007-992786
[19] 吕娇.二甲双胍对高糖环境下颌骨成骨细胞影响的机制研究[D].北京: 中国人民解放军军医进修学院, 2008. http://cdmd.cnki.com.cn/Article/CDMD-90030-2008087676.htm
[20] Ma L, Wu X, Ling-Ling E, et al. The transmem-brane transport of metformin by osteoblasts from rat mandible[J]. Arch Oral Biol, 2009, 54: 951–962. DOI:10.1016/j.archoralbio.2009.07.010
[21] Molinuevo MS, Schurman L, Mccarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies[J]. J Bone Miner Res, 2010, 25: 211–221. DOI:10.1359/jbmr.090732
[22] Wang P, Ma T, Guo D, et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells[J]. J Tissue Eng Regen M, 2017, 12: 437–446.
[23] Patel H, Younis RH, Ord RA, et al. Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin[J]. J Oral Pathol Med, 2013, 42: 250–256. DOI:10.1111/j.1600-0714.2012.01196.x
[24] Hynes K, Menicanin D, Gronthos S, et al. Clinical utility of stem cells for periodontal regeneration[J]. Periodontology, 2012, 59: 25.
[25] Villa-Diaz LG, Brown SE, Liu Y, et al. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates[J]. Stem Cells, 2012, 30: 1174–1181. DOI:10.1002/stem.1084
[26] Zhao Q, Gregory CA, Lee RH, et al. MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs[J]. Proc Natl Acad Sci USA, 2015, 112: 530–535. DOI:10.1073/pnas.1423008112
[27] Al Jofi FE, Ma T, Guo D, et al. Functional organic cation transporters mediate osteogenic response to metformin in human umbilical cord mesenchymal stromal cells[J]. Cytotherapy, 2018: S1465324918304055.
[28] G ao, Xue Y, Li J, et al. Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells[J]. J Pharmacy Pharmacol, 2010, 60: 1695–1700.
[29] Marycz K, Tomaszewski KA, Kornicka K, et al. Met-formin decreases reactive oxygen species, enhances osteogenic properties of adipose-derived multipotent mesenchymal stem cells in vitro, and increases bone density in vivo[J]. Oxid Med Cell Longev, 2016, 2016: 1005–1008.
[30] Smieszek A, Stręk Z, Kornicka K, et al. Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels-an ex vivo study[J]. Int J Mol Sci, 2017, 18: 9.
[31] Agnieszka, Szydlarska J, Mucha A, et al. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization[J]. J Biomater Appl, 2017, 32: 570–586. DOI:10.1177/0885328217738006
[32] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. P Natl Acad Sci USA, 2000, 97: 13625–13630. DOI:10.1073/pnas.240309797
[33] Qin W, Gao X, Ma T, et al. Metformin enhances the differentiation of dental pulp cells into odontoblasts by activating AMPK signaling[J]. J Endod, 2018, 44: 576–584. DOI:10.1016/j.joen.2017.11.017
[34] Jacques P, Véronique V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling[J]. Biochem Pharmacol, 2002, 64: 755–763. DOI:10.1016/S0006-2952(02)01135-8
[35] Kanazawa I, Yamaguchi T, Yano S, et al. Adiponec-tin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells[J]. BMC Cell Biol, 2007, 8: 51. DOI:10.1186/1471-2121-8-51
[36] Ippei K, Toru Y, Shozo Y, et al. Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression[J]. Am J Physiol Endocrinol Metab, 2009, 296: E139. DOI:10.1152/ajpendo.90677.2008
[37] Kim DY, Park YG, Quan HY, et al. Ginsenoside Rd stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells by activating AMP-activated protein kinase via the BMP-2 signaling pathway[J]. Fitoterapia, 2013, 83: 215–222.
[38] Takeno A, Kanazawa I, Tanaka KI, et al. Activation of AMP-activated protein kinase protects against homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by regulating the expressions of NADPH oxidase 1 (Nox1) and Nox2[J]. Bone, 2015, 77: 135–141. DOI:10.1016/j.bone.2015.04.025
[39] Kasai T, Bandow K, Suzuki H. Osteoblast differentiation is functionally associated with decreased AMP kinase activity[J]. J Cell Physiol, 2009, 221: 740–749. DOI:10.1002/jcp.21917
(收稿日期:2019-01-08)