肿瘤性骨软化症(tumor induced osteomalacia,TIO)为一种罕见的获得性代谢性骨病。1937年,McCane首次报导了肿瘤性骨软化的病例,但并未认识到肿瘤与骨软化症之间的因果关系[1]。1959年Prader等[2]推测TIO患者是由于肿瘤分泌“利磷因子”释放入血后,使肾脏排磷增多,出现骨软化症状,而切除肿瘤后患者可恢复如常。2000年发现成纤维细胞生长因子23(FGF-23)升高是遗传性低血磷性骨软化症的病因,这是低磷性骨软化症里程碑式的发现[3]。后有研究发现TIO患者血清FGF-23水平也明显升高,而手术切除的TIO肿瘤表达FGF-23[4],术后患者FGF-23水平下降,症状好转[5, 6]。这些证明FGF-23即为“利磷因子”。后续研究证明FGF-23可通过抑制肾脏近曲小管上钠/磷共转运蛋白的表达,使肾脏重吸收磷减少,肾磷排出增加。FGF-23还可以通过其他机制加剧骨矿化障碍,影响1a羟化酶活性,使1,25羟维生素D生成减少。至此,对于TIO的疾病认识进入一个新的阶段。
TIO的临床表现为进行性发展的骨痛、乏力,严重者可有骨折、骨骼畸形、活动障碍等。生物化学检查特点为低血磷、高尿磷、高碱性磷酸酶,1,25羟维生素D水平相对较低,血钙水平可正常,部分患者甲状旁腺素(parathyroid hormone,PTH)升高。影像学表现为骨软化,骨密度减低,体格检查或影像学检查可发现占位性病变。由于对肿瘤性骨软化症的认识局限性,使TIO的诊断常被延误。TIO肿瘤多是来源于间叶组织的良性肿瘤,位于骨或软组织内,少数其他组织来源的癌或类癌也出现低血磷及骨软化症的临床表现[7, 8]。该类肿瘤生长缓慢,位置隐匿,体积较小,只有很少一部分肿瘤可在仔细的体格检查中发现。临床诊断考虑TIO后,借助影像学手段寻找肿瘤,CT及MRI检查可发现大部分肿瘤,肿瘤位置多位于下肢(53.9%)、头部(29.2%)、上肢(6.7%)、胸腹部(5.6%)、骨盆(4.5%)。
核医学功能显像在TIO肿瘤的定位诊断中起重要的作用,奥曲肽显像(99Tcm-OCT),也称为生长抑素受体显像,是一种最常用的检查手段[8, 9],本课题组前期研究发现奥曲肽显像的阳性率为82.0%[10]。奥曲肽显像可发现TIO肿瘤的原因在于,间叶组织来源的肿瘤表达生长抑素受体[11],而奥曲肽显像可标记生长抑素受体,特别是与生长抑素受体的2、5亚型亲和力较高。少部分表达生长抑素受体1、3、4亚型的肿瘤可能出现奥曲肽检查阴性的结果,可通过Ga68作为显像剂的PET检查进一步定位。功能显像阳性的患者,根据其摄取部位的不同,再进行B超、CT或MRI检查,进一步明确肿瘤与周围组织的关系,有利于下一步手术切除治疗。
TIO最有效的治疗方式为手术治疗。切除定位明确的肿瘤后,患者的症状明显缓解,血磷水平恢复正常[11]。定位不明确的TIO患者,可服用中性磷制剂增加血磷水平,这种治疗方式亦可使患者症状缓解。但补磷治疗可能会进一步刺激PTH的分泌,出现继发性或三发性甲状旁腺功能亢进症,严重者需行甲状旁腺手术治疗[12]。而有研究认为,西那卡塞或者甲状旁腺切除术是治疗伴有甲旁亢的TIO的备选方式,采用该治疗可不口服中性磷溶液[13, 14]。
TIO肿瘤病理特点TIO肿瘤多位于骨组织及软组织中,笔者医院的资料表明,软组织肿瘤稍多[15]。1987年,Weidner[16]将TIO肿瘤命名为磷酸盐尿性间叶组织肿瘤(phosphaturic mesenchymal tumour,PMT),而此前,则被称为血管外皮细胞瘤、血管瘤、成骨细胞瘤、骨化性纤维瘤、巨细胞瘤,肉芽肿瘤或简单称之为肉瘤。1991年,Weidner等提出磷酸盐尿性间叶组织肿瘤(PMT),包括混合结缔组织亚型(phosphaturic mesenchymal tumors mixed connective tissue variants,PMTMCT),成骨细胞瘤样亚型,非骨化性纤维瘤样亚型,骨化性纤维瘤样亚型。2004年,Folpe等[14]认为所有的TIO肿瘤都可归于磷酸盐尿性间叶组织肿瘤混合结缔组织亚型(PMTMCT)。
TIO肿瘤的镜下组织形态学共同特点包括:大量的梭形纤维母细胞样细胞,丰富的血管(畸形血管),可见破骨样多核巨细胞、骨样化生及软骨样结构,也可见云雾状钙化、陈旧性出血、细胞黏液样变性等。软组织来源和骨来源的肿瘤存在共同的镜下特点,也有少量差异。Folpe等[14]对32例PMT肿瘤的镜下观察发现:软组织来源和骨来源的肿瘤基质中均可见骨样、软骨样、黏液样物质,软骨样物在软组织来源的肿瘤中多见(67%),骨来源的肿瘤中偏少(33%),而骨样物质多见于骨组织来源的肿瘤(44%),软骨来源的少见(11%)。云雾样钙化在软组织来源的肿瘤中更多见(78%),骨来源肿瘤中占33%。外周编织骨骨壳仅在软骨来源肿瘤中观察到,但本研究曾在骨组织来源的肿瘤中观察到骨壳的存在(2/10),故骨壳并非软组织来源肿瘤的特殊现象。软组织来源的肿瘤中发现脂肪细胞,而骨来源的肿瘤未见。肿瘤组织中可见丰富的血管,骨与软组织来源的肿瘤都会出现毛细血管及厚壁血管,而软组织来源肿瘤中中更多见毛细血管(39%),多于骨组织来源肿瘤(11%),二者均出现血管周的肌性改变,以及动脉瘤样改变。两种来源的肿瘤组织中均可观察到破骨样细胞,软骨样细胞。细胞异型性少见,核分级及核分裂活性均偏低,但这两项指标在软组织来源的肿瘤稍高于骨来源肿瘤[14]。PMT肿瘤的功能性特点包括分泌FGF-23[17]。FGF-23主要由成骨细胞及骨细胞分泌[18],近期研究发现其他组织如静脉窦的周细胞、破骨细胞、软骨细胞等也可分泌FGF-23[19]。而TIO肿瘤主要为间叶组织来源,可见大量不成熟骨样、软骨样组织,而亦有血管内皮瘤以及破骨细胞来源的TIO[20],与FGF-23的分泌组织来源一致。从组织形态学来看,PMT肿瘤区别于其他间叶组织来源的肿瘤最突出的特点是丰富的血管组织,可见大量畸形厚壁血管,而血管周围可见大量长梭形或星芒状纤维母细胞样细胞聚集。另外,肿瘤细胞间可见大量不成熟骨小梁结构及软骨样结构,一些研究发现,PMT肿瘤的MEPE、OC、DMP1表达阳性,这说明肿瘤组织有成骨的特性[21, 22]。肿瘤中这些异位化生的骨组织起源是什么,肿瘤为什么会表达FGF-23,目前的研究尚没有给出一个满意的答案。
内皮细胞-间充质细胞转化机制在肿瘤发生中的作用侵袭性是恶性肿瘤的特征,肿瘤具有侵犯周围组织,以及通过血管转移至远隔部位的能力。而内皮细胞-间充质细胞转化(endothelial-to-mesenchymal transition,EndMT)机制在肿瘤发展中起重要作用。1995年,Hay 等首次提出EndMT的概念,EndMT是一种细胞调整自身转录和蛋白表达的改变,它是对细胞外一系列刺激做出的反应,有可能存在可逆过程。EndMT的核心在于减少细胞黏附,增加细胞移动性。EndM使上皮细胞失去极性,细胞形状可变,黏附性改变,获得间叶细胞以单个细胞为单位迁移的能力的过程[23]。
EndMT常出现在胚胎发育过程中调控组织生成,也可能在上颚形成、胎盘形成[24, 25]以及组织损伤修复的纤维化过程中起作用[23, 24, 25, 26]。EndMT在前列腺癌、乳腺癌中的发生、发展中有重要作用,而EndMT过程的错误,是小儿肾脏恶性肿瘤Wilms’瘤发生过程中的重要因素[27]。近期发现在甲状腺癌、卵巢癌等肿瘤的发展过程中,EndMT机制也起着重要作用[26, 28, 29]。虽然有诸多证据证明EndMT在肿瘤中起重要作用,但EndMT过程更像是一种短暂的过渡状态,很难在肿瘤中取样。研究提出EndMT在肿瘤转移的过程中可能起如下作用:(1) 上皮细胞肿瘤通过EndMT的过程脱离肿瘤体;(2) 将微小残留病灶播种在其他位置;(3)在这些位置,肿瘤细胞通过上皮再生过程,再次从间叶细胞形式转化为上皮形式,形成新的肿瘤;(4) 而有的肿瘤细胞仍然以间叶细胞的形式保存于血管内,可能随血液流通;(5) 血循环中的肿瘤细胞可能增加肿瘤转移机会;(6) 该类细胞也可能作为微小转移灶存在于骨髓中;(7) 亦可通过EndMT过程转变为上皮细胞,形成可引起骨破坏的转移灶[30]。
很多通路都参与了EndMT的过程。该过程会出现上皮表面信号分子、细胞骨架成分的下调,如E-cadherin、zonulaoccludens (ZO)-1、claudins、occludins、cytokeratins等,而间叶细胞成标记的表达上调,如vimentinand a-smooth muscle actin,或者细胞间质组分,如collagens and fibronectin[31]。EndMT的起始过程主要是各种导致的上皮细胞黏附因子E-cadherin的下调;而在EndMT过程中,各种分子通路变化的结果是转录因子的转录调节变化,如Snail(Snail1)、Slug(Snail2)、zinc-finger E-box-binding homeobox (ZEB)1/2 and Twist1/2等。最终识别E-box 序列,抑制E-cadherin的表达,并通过其他途径促进肿瘤血管生成。β-Catenin 不仅通过与E-cadherin反应,也通过Wnt通路促进细胞增生,而E-cadherin 通过稳定Snail,参与Wnt通路,还与炎性因子肿瘤坏死因子(tumor necrosis factor-α,TNF-α)引起结肠癌的过程有关。而在EndMT的发生、发展过程中,诸多通路参与调控EndMT,如转化生长因子-β(transforming growth factor-β,TGF-β)、Her2/3、表皮生长因子(epidermal growth factor,EGF)、Notch、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白介素(interleukin-1β,IL-1β)、血管内皮生长因子(vascular endothelial growth factor,VEGF)等[32]。
肿瘤所处的微环境在肿瘤生成、转移、发展中至关重要。周围组织基底膜的完整性对肿瘤进展、转移有重要作用。细胞的微环境中布满了炎性、免疫因子,肿瘤与临近细胞的互相接触,需要共享氧、营养物质、细胞外基质以及可溶性细胞因子。生长的肿瘤周围细胞分泌生长因子、抑制分子来调节肿瘤的生长或凋亡,而肿瘤分子刺激性地分泌细胞因子调节周围细胞的黏附。细胞周围环境分泌的细胞因子,如TGF-β、HIF-1α,EGF,WNTs和Notch等,均可促进EndMT的过程,而肿瘤细胞与周围微环境的相互作用可促进肿瘤生长、迁移的信号通路激活。如TGFb和HER2/Ras/MAPK之间的交互作用会导致生长因子和细胞因子的大量分泌[31]。细胞外基质蛋白MMP3在此过程中发挥重要作用。肿瘤细胞的EGFR激活也可导致MMP-9分泌增加。而细胞周围组织的硬度也影响EndMT过程,在塑料板即玻璃上培养的上皮细胞用MMP3处理后经历EndMT过程,而同样处理的上皮细胞在软材料上培养时不发生EndMT过程[33]。另外,细胞快速生长时,会导致局部的低氧及营养缺乏,因此,局部血管增加,以提供氧气和营养物质。局部的低氧相关基因表达,使肿瘤异质化。肿瘤对低氧和营养缺乏环境的适应不仅仅导致血管生成的特殊通路高表达,还可以使代谢亢进,糖酵解,对酸中毒环境抵抗[34]。HIF-1α是低氧时高表达的基因,可诱导EndMT过程,使肿瘤干细胞更新,促进代谢。敲除HIF-1α可抑制甚至反转EndMT的表型。HIF1的下游调控包括Snail、Twist、ZEB1/2,导致E-cadherin的表达抑制。Notch、Wnt、TGFb、T-cellfactor-4(TCF-4) 和 VEGF通路也参与了低氧诱导的EndMT过程[35, 36]。
虽然在骨骼中,很少有关于上皮细胞转换成为间叶细胞肿瘤的报道。但有研究表明,在骨骼相关疾病如进行性骨化性纤维发育不良(fibrodysplasia ossificans progressive,FOP)异位骨化生机制中,EndMT机制可导致异位骨化[37],而骨折修复部位的软骨细胞及成骨细胞亦可表达内皮细胞标记分子,提示EndMT可能参与了骨折修复过程[38]。
肿瘤与FGFR 肿瘤发生与FGFR纤维生长因子受体(fibroblast growth factor receptor,FGFR)是跨膜络氨酸蛋白激酶受体,属于免疫球蛋白受体超家族。与配体结合后,会出现激酶活化,激活下游细胞内信号网络。在人类中,FGFR共有4种亚型,编码类似的跨膜受体络氨酸激酶,分别命名为FGFR1-4。FGFR存在胞外域,包括配体结合区,2~3个由可变剪切形成的免疫球蛋白环,一个酸性盒,一个跨膜区,一个分段的络氨酸激酶区。首个免疫球蛋白环被认为是在受体自抑制方面起重要作用[39]。FGFR1-3的第3个免疫球蛋白样结构域受可变剪切的调控,形成IIIb和IIIc的受体亚型。在不同组织中,FGFR的剪切形式不同,具有不同的组织特异性。IIIC常常在间叶组织中表达,而IIIb在上皮组织中表达。由于旁分泌的影响,上皮组织的表型也可在间叶组织中被检测到,反之亦然。这可能在肿瘤发生发展过程中起了很重要的作用[40]。
FGFR与配体结合后,出现受体的二聚化,使FGFR出现构象变化,使细胞内受体的络氨酸出现磷酸化,包括激酶结构域和羧基端。FGFR1有7个自身磷酸化的位点,分别是Y463、Y583/Y585、Y653/Y654、Y730和 Y766[41]。晶体学研究方法可观察到FGFR下游通路激活的过程,主要分为三步:首先,活化结构域上的络氨酸出现转磷酸作用,FGFR1的Y653,使激酶激活至50~100倍;其次,近膜区的络氨酸Y463,激酶插入位Y583/Y585,以及C端尾Y766,被磷酸化,并且成为下游多种蛋白的对接点;最后活化区Y654的磷酸化激活激酶至10倍。其他通路也通过相关的途径活化FGFR信号通路,包括Shb、Src kinase、p38 MAPK、Jun-N-terminal、kinase pathways、STATs、Crk和RSK等。通路活化后最终影响ERK、STAT、AKT的表达,这些通路可能与细胞增生有关[42]。
目前研究已表明,FGFR的改变与肿瘤发生相关。其形式包括:染色体异位/融合基因,FGFR过表达,点突变及单核苷酸多态性,选择性剪切,终止信号受损,肿瘤生长的自分泌和旁分泌刺激,FGFR作为抑癌基因的失活[41]。其中,FGFR融合基因与肿瘤密切相关,除白血病外,实体瘤也发现FGFR融合基因。高通量测序技术检测发现FGFR2与胆管癌、乳腺癌、前列腺癌相关,肺癌、膀胱癌、甲状腺癌、口腔癌、成胶质细胞瘤、头颈部鳞癌均于FGFR1-3的融合基因有关。目前发现的FGFR1融合基因往往位于FGFR1前部,而FGFR2及FGFR3融合于尾部[43]。
有研究发现FGF与FN的融合蛋白促进手术后金属植入物导致的异位骨化[44]。近期Lee等[45]用FISH的方法检测发现FGFR1-FN1融合蛋白在引起TIO的肿瘤中占有60%的比例,作者认为也许嵌合蛋白与肿瘤的生物学特性(肿瘤生成和FGF-23分泌)无明显相关,但可能对疾病的治疗有一定的意义。目前尚无类似研究证明类似结论。
FGFR1与FGF-23研究表明,激动FGFR1可能引起FGF-23分泌。用组织特异性剔除小鼠的成骨细胞FGFR1,当FGFR1转录表达下降50%时,骨的FGF-23表达下降,血浆FGF-23下降3倍,同时降低的还有sclerostin、PHEX、MEPE、DMP1的转录。但磷、维生素D和骨骼表型未见明显变化[46]。细胞研究发现磷可刺激成骨细胞系FGF-23的表达,这可能是通过FGFR1及其后通路FRS2和 Erk1/2完成的,加抑制剂后作用消失[47]。而动物实验表明FGFR1的单克隆抗体(R1MAb),可使小鼠血FGF-23增加,出现轻度的低磷,颅骨培养的成骨细胞也可观察到R1MAb刺激后FGF-23mRNA增加,用siRNA抑制后,作用消失[48]。
总结和展望目前,对于PMT的细胞来源,以及它产生FGF-23的机制不明。而病理方面发现,FGF-23分泌、大量畸形厚壁血管形成是其特征性表现。内皮细胞-间充质细胞转化(EndMT)是否参与PMT肿瘤的发生、发展,尚需进一步研究证实。FGFR与肿瘤发生密切相关,且FGFR1-FN融合基因与PMT有关,但尚不能证明其因果关系,也不能完全解释FGF-23的分泌。这些疑问仍需相关深入研究进一步解答。
| [1] | Drake TG,Albright F,Castleman B. Parathyroid hyperplasia in rabbits produced by parenteral phosphate administration[J]. J Clin Invest,1937,16:203-206. |
| [2] | Prader A,Illig R,Uehlinger E,et al. Rickets following bone tumor[J]. Helv Paediatr Acta,1959,14:554-565. |
| [3] | ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23[J]. Nat Genet,2000,26:345-348. |
| [4] | Shimada T,Mizutani S,Muto T,et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia[J]. Proc Natl Acad Sci USA,2001,98:6500-6505. |
| [5] | Silve C,Beck L. Is FGF23 the long sought after phosphaturic factor phosphatonin?[J]. Nephrol Dial Transplant,2002,17:958-961. |
| [6] | Larsson T,Zahradnik R,Lavigne J,et al. Immunohistochemical detection of FGF-23 protein in tumors that cause oncogenic osteomalacia[J]. Eur J Endocrinol,2003,148:269-276. |
| [7] | Leaf DE,Pereira RC,Bazari H,et al. Oncogenic osteomalacia due to FGF-23-expressing colon adenocarcinoma[J]. J Clin Endocrinol Metab,2013,98:887-891. |
| [8] | McMurtry CT,Godschalk M,Malluche HH,et al. Oncogenic osteomalacia associated with metastatic prostate carcinoma:case report and review of the literature[J]. J Am Geriatr Soc,1993,41:983-985. |
| [9] | Paglia F,Dionisi S,Minisola S. Octreotide for tumor-induced osteomalacia[J]. N Engl J Med,2002,346:1748-1749. |
| [10] | Jiang Y, Xia WB, Xing XP, et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and review of the literature[J]. J Bone Miner Res,2012,27:1967-1975. |
| [11] | Houang M,Clarkson A,Sioson L,et al. Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A)[J]. Hum Pathol,2013,44:2711-2718. |
| [12] | Huang QL,Feig DS,Blackstein ME. Development of tertiary hyperparathyroidism after phosphate supplementation in oncogenic osteomalacia[J]. J Endocrinol Invest,2000,23:263-267. |
| [13] | Markou A,Tsiama V,Tournis S,et al. Coexistence of tumor-induced osteomalacia and primary hyperparathyroidism[J]. Endocr Pract,2011,17:e144-148. |
| [14] | Folpe AL,Fanburg-Smith JC,Billings SD, et al.Most osteomalacia-associated mesenchymai tumors are a single histopathologic entity:all analysis of 32 cases and a comprehensive review of the literature[J].Am J Surg Pathol,2004,28:1-30. |
| [15] | Jiang Y,Xia WB,Xing XP,et al. Tumor-induced osteomalacia:an important cause of adult-onset hypophosphatemic osteomalacia in China:report of 39 cases and review of the literature[J]. J Bone Miner Res,2012,27:1967-1975. |
| [16] | Weidner N. Review and update:oncogenic osteomalacia-rickets[J]. Ultrastruct Pathol,1991,15:317-333. |
| [17] | Bahrami A,Weiss SW,Montgomery E,et al. RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia[J]. Am J Surg Pathol,2009,33:1348-1354. |
| [18] | Tiosano D,Hochberg Z. Hypophosphatemia:the common denominator of all rickets[J]. J Bone Miner Metab,2009,27:392-401. |
| [19] | Haeusler G,Freilinger M,Dominkus M,et al. Tumor-induced hypophosphatemic rickets in an adolescent boy-clinical presentation,diagnosis,and histological findings in growth plate and muscle tissue[J]. J Clin Endocrinol Metab,2010,95:4511-4517. |
| [20] | William J,Laskin W,Nayar R,et al. Diagnosis of phosphaturic mesenchymal tumor (mixed connective tissue type) by cytopathology[J]. Diagn Cytopathol,2012,40:E109-113. |
| [21] | Wang HG,Kawashima N,Iwata T,et al. MEPE activated by furin promotes pulpal cell adhesion[J]. J Dent Res,2011,90:529-534. |
| [22] | Toyosawa S,Tomita Y,Kishino M,et al. Expression of dentin matrix protein 1 in tumors causing oncogenic osteomalacia[J]. Mod Pathol,2004,17:573-578. |
| [23] | Hay ED. The mesenchymal cell,its role in the embryo,and the remarkable signaling mechanisms that create it[J]. Dev Dyn,2005,233:706-720. |
| [24] | Nawshad A,Medici D,Liu CC,et al. TGFbeta3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex[J]. J Cell Sci,2007,120:1646-1653. |
| [25] | Iwano M,Plieth D,Danoff TM,et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. J Clin Invest,2002,110:341-350. |
| [26] | Guarino M,Micheli P,Pallotti F,et al. Pathological relevance of epithelial and mesenchymal phenotype plasticity[J]. Pathol Res Pract,1999,195:379-389. |
| [27] | Li CM,Guo M,Borczuk A,et al. Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition[J]. Am J Pathol,2002,160:2181-2190. |
| [28] | Lien HC,Hsiao YH,Lin YS,et al. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling:identification of genes potentially related to epithelial-mesenchymal transition[J]. Oncogene,2007,26:7859-7871. |
| [29] | Deng X,Wu B,Xiao K,et al. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3[J]. Cell Physiol Biochem,2015,35:71-82. |
| [30] | Hugo H,Ackland ML,Blick T,et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression[J]. J Cell Physiol,2007,213:374-383. |
| [31] | Lee JM,Dedhar S,Kalluri R,et al. The epithelial-mesenchymal transition: new insights in signaling,development,and disease[J]. J Cell Biol,2006,172:973-981. |
| [32] | Lindsey S,Langhans SA. Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition[J]. Front Oncol,2014,4:358. |
| [33] | Barrallo-Gimeno A,Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer[J]. Development,2005,132:3151-3161. |
| [34] | Zhu QC,Gao RY,Wu W,et al. Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer[J]. Asian Pac J Cancer Prev,2013,14:2689-2698. |
| [35] | Zeisberg M,Neilson EG. Biomarkers for epithelial-mesenchymal transitions[J]. J Clin Invest,2009,119:1429-1437. |
| [36] | Martin A,Cano A. Tumorigenesis: Twist1 links EMT to self-renewal[J]. Nat Cell Biol,2010,12:924-925. |
| [37] | Medici D,Shore EM,Lounev VY,et al. Conversion of vascular endothelial cells into multipotent stem-like cells[J]. Nat Med,2010,16:1400-1406. |
| [38] | Lewinson D,Maor G,Rozen N,et al. Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system[J]. Histochem Cell Biol,2001,116:381-388. |
| [39] | Olsen SK,Ibrahimi OA,Raucci A,et al. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity[J]. Proc Natl Acad Sci U S A,2004,101:935-940. |
| [40] | Grose R,Dickson C. Fibroblast growth factor signaling in tumorigenesis[J]. Cytokine Growth Factor Rev,2005,16:179-186. |
| [41] | Mohammadi M,Dikic I,Sorokin A,et al. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction[J]. Mol Cell Biol, 1996,16:977-989. |
| [42] | Ahmad I,Iwata T,Leung HY. Mechanisms of FGFR-mediated carcinogenesis[J]. Biochim Biophys Acta,2012,1823:850-860. |
| [43] | Wu YM,Su F,Kalyana-Sundaram S,et al. Identification of targetable FGFR gene fusions in diverse cancers[J]. Cancer Discov,2013,3:636-647. |
| [44] | Park JM,Koak JY,Jang JH,et al. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein[J]. Int J Oral Maxillofac Implants,2006,21:859-866. |
| [45] | Lee JC,Jeng YM,Su SY,et al. Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour[J]. J Pathol,2015,235:539-545. |
| [46] | Xiao Z,Huang J,Cao L,et al. Osteocyte-specific deletion of Fgfr1 suppresses FGF23[J]. PLoS One, 2014,9:e104154. |
| [47] | Sun N,Zou H,Yang L,et al. Inorganic polyphosphates stimulate FGF23 expression through the FGFR pathway[J]. Biochem Biophys Res Commun,2012,428:298-302. |
| [48] | Wu AL,Feng B,Chen MZ,et al. Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia[J]. PLoS One,2013,8:e57322. |
| (收稿日期:2015-04-07) |
