基于肠促胰素治疗对骨代谢的影响
项守奎1, 华飞1, 章振林2     
1. 213003 常州,苏州大学附属第三医院内分泌科;
2. 200233 上海,上海交通大学附属第六人民医院骨质疏松与骨病专科 骨代谢病和遗传研究室
摘要:糖尿病与骨代谢疾病密切相关,糖尿病患者易发生骨质疏松。基于肠促胰素治疗包括胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)受体激动剂和二肽基肽酶-4(dipeptidyl peptidase-4,DPP-4)抑制剂,这类药物不仅在调节体内葡萄糖稳态中起重要作用,而且对骨代谢有间接或直接的改善作用,有可能为骨质疏松的治疗提供新的思路,本文就上述热点问题作一综述。
关键词肠促胰素     骨代谢     胰高血糖素样肽-1     胰高血糖素样肽-1受体激动剂     二肽基肽酶-4     二肽基肽酶-4抑制剂    
Effects of incretin-based therapy on bone metabolism
XIANG Shou-kui1, HUA Fei1, ZHANG Zhen-Lin2     
1. Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
2. Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai 200233, China
Abstract: Diabetes and metabolic bone diseases are closely related. Patients with diabetes are characterized by an increased risk of osteoporosis. Incretin-based therapies include glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. Recent studies have demonstrated that incretin-based therapy not only can regulate the glucose homeostasis, but also affect bone metabolism by indirect or direct function, which provide new ways for clinical treatment of osteoporosis.
Key words: incretin     bone metabolism     glucagon-like peptide-1     glucagon-like peptide-1 receptor agonists     dipeptidyl peptidase-4     dipeptidyl peptidase-4 inhibitors    

肠促胰素是一类在食物营养物质刺激下,由肠道内分泌细胞合成分泌的激素,主要包括葡萄糖依赖性促胰岛素分泌多肽(glucose-dependent insulinotropic peptide, GIP)及胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)。GLP-1由肠黏膜L细胞释放,与胰高血糖素样肽-1受体(glucagon-like peptide-1 receptor, GLP-1R)结合后,发挥葡萄糖浓度依赖性降糖作用。GLP-1释放入血后迅速被二肽基肽酶-4(dipeptidy peptidase 4, DPP-4) 降解而失去生物活性。基于肠促胰素的治疗包括GLP-1受体激动剂以及DPP-4抑制剂两类,前者包括艾塞那肽和利拉鲁肽,后者有西格列汀、沙格列汀、维格列汀、利格列汀和阿格列汀等,两者均可增加循环中GLP-1的水平,改善机体的高血糖状态,在糖尿病领域得到广泛应用。此外愈来愈多的研究发现基于肠促胰素治疗可能通过多种作用机制影响骨代谢,本文就此做一综述。

肠促胰素与骨代谢

骨骼是一个动态组织,成骨细胞主导的骨形成和破骨细胞主导的骨吸收偶联形成的骨转换或骨重建维持其功能和形态的完整性。骨重建过程受多种因素的调节,肠促胰素可能是骨重建的调节因素之一。早在1980年,Klein等[1]就报道了全胃肠外营养(超过3个月)患者会出现骨痛、骨软化症、高尿钙症及血清碱性磷酸酶升高等表现,尽管血钙、血磷、25羟维生素D及甲状旁腺素均在正常范围,这些发现随后被众多研究所证实[2]。尽管这种现象可能与胃肠外营养本身有关,但是胃肠道与骨代谢之间的联系逐渐受到重视和研究。骨吸收呈现昼夜节律性变化,夜间由于没有营养物质的摄入,骨吸收因而增加以维持血钙水平的稳定。日间进食后骨吸收明显受到抑制,而骨形成则无明显变化,其机制可能与进食后肠促胰素的分泌有关[3]。动物实验研究表明,在摄入相同营养物质的情况下,一日多次进食大鼠的骨密度(bone mineral density, BMD)显著高于单次进食组[4]。随后众多研究提示,GLP-1及GIP可通过多种方式直接或间接地作用于骨骼,产生有利的影响[5]。因此有研究者提出了“肠-骨轴(entero-osseous axis)”的概念[6],即肠促胰素对骨代谢也有一定的调节作用。

GLP-1与骨代谢

Yamada等[7]建立GLP-1受体基因敲除(GLP-1R-/-)小鼠模型,研究发现同正常对照组相比,GLP-1R-/-小鼠的皮质骨BMD下降,骨脆性增加;骨组织形态计量学显示骨吸收活动明显增多,骨吸收指标尿脱氧吡啶啉水平升高,而降钙素mRNA表达水平下降,使用降钙素治疗后发现尿脱氧吡啶啉水平降低。既往研究表明小鼠的甲状腺C细胞也表达GLP-l受体,GLP-l通过与之结合促进降钙素分泌[8],因此GLP-1R-/-小鼠的骨吸收增加可能与降钙素水平降低有关[7]

Nuche-Berenguer等[9]研究发现,GLP-1在2型糖尿病及胰岛素抵抗大鼠模型中具有非胰岛素依赖性的骨合成作用,其机制可能与OPG/RANKL比值升高相关。随后他们利用高脂喂养大鼠模型研究发现,GLP-1也能够逆转高脂血症导致的骨量减少[10]

DPP-4与骨代谢

Zheng等[11]研究表明,在正常糖耐量的绝经后女性中,血浆DPP-4水平增加是骨质疏松的独立危险因素,其原因可能是血浆DPP-4水平增高与高脂血症、炎性反应因子白介素6(interleukin 6, IL-6);C反应蛋白(C-reactive protein, CRP)及胰岛素抵抗相关。Kim等[12]在绝经后健康女性中研究发现,血清DPP-4水平与血钙、血清甲状旁腺素及血清1型胶原交联C-末端肽(C-terminal telopeptide of type Ⅰ collagen, CTX)呈正相关,然而与腰椎及股骨颈的骨密度无显著相关性。进一步根据体质量指数(body mass index, BMI)将研究对象分为肥胖组(BMI≥25 kg/m2)和非肥胖组(BMI<25 kg/m2),结果发现肥胖组女性的血清DPP-4水平与腰椎的BMD呈负相关。Notsu等[13]在男性2型糖尿病患者中研究血清DPP-4水平与骨转换标志物及BMD的关系,多元回归分析表明,血清DPP-4与骨形成标志物骨钙素(osteocalcin, OC)、碱性磷酸酶(alkaline phosphatase, ALP)及骨吸收标志物(tartrate-resistant acid phosphatase 5b, TRACP-5b)呈显著正相关,但和BMD无显著相关性。校正混杂因素后,多因素Logostic回归分析表明,血清DPP-4与男性2型糖尿病患者的多发椎体骨折密切相关。

GLP-1受体激动剂与骨代谢

Yamada等[7]研究发现,艾塞那肽能够上调野生型小鼠甲状腺内降钙素的基因表达水平。Ma等[14]利用卵巢切除所致骨质疏松的老年大鼠模型评估艾塞那肽(给药16周)的治疗效果,研究发现艾塞那肽能够提高骨强度,阻止骨小梁微结构的破坏。基因表达分析提示艾塞那肽不仅通过增加OPG/RANKL比值抑制骨吸收,而且还通过增加成骨细胞特异性转录因子(如OC、Col1、Runx2、ALP等)的表达促进骨形成。Meng等[15]利用废用性骨丢失大鼠模型研究发现,艾塞那肽能够增加大鼠的骨量,并提高骨质量。该研究还发现,GLP-1R表达于骨髓基质细胞(bone marrow mesenchymal stem cells, BMSCs),艾塞那肽与BMSCs的GLP-1R结合后,通过调节PKA/β-catenin及PKA/PI3K/AKT/GSK3b信号通路促进BMSCs向成骨细胞分化,并抑制其向脂肪系细胞分化。Lu等[16]研究发现,利拉鲁肽能够增加卵巢切除所致骨质疏松大鼠的骨小梁体积,厚度和数量,提高BMD,抑制股骨的骨小梁分离度。通过大鼠及人BMSCs体外培养研究发现,利拉鲁肽能够上调成骨细胞特异性转录因子Runx2的基因表达,而抑制PPAR-γ的基因表达。因此利拉鲁肽对骨代谢的保护作用可能是通过调节BMSCs向成骨细胞分化来实现的。

硬骨素(sclerostin)由骨细胞分泌,能够促进成骨细胞凋亡,抑制骨形成。Kim等[17]研究发现,艾塞那肽通过下调骨细胞中SOST/硬骨素水平,从而增加2型糖尿病OLETF大鼠的骨密度。Nuche-Berenguer等[18]研究发现,在2型糖尿病和胰岛素抵抗模型大鼠中,艾塞那肽通过与Wnt信号通路相互作用促进成骨。此外,他们还利用高脂喂养大鼠模型研究发现,艾塞那肽能够逆转高脂血症导致的骨量减少[10]

Bunck等[19]对使用艾塞那肽的2型糖尿病患者进行研究,结果发现,艾塞那肽治疗44周后,2型糖尿病患者的体质量下降6%,但血清骨转换标志物及骨密度均无明显变化。Li等[20]研究发现,初诊2型糖尿病患者给予艾塞那肽治疗24周后,骨转换标志物(OC、CTX和TRAcP5b)及BMD均未发生显著变化。一项以人群为基础的队列研究表明,与其他降糖药物相比,GLP-1受体激动剂并不能降低2型糖尿病患者的骨折风险[21]。一项对随机对照试验(RCT)的Meta分析表明,利拉鲁肽与骨折风险降低相关,而艾塞那肽与骨折风险增加相关[22]。Lepsen等[23]研究发现,肥胖女性通过低热卡饮食减轻体质量后,骨矿含量(bone mineral content, BMC)下降,而骨形成标志物P1NP及骨吸收标志物CTX均无明显变化;而同时给予利拉鲁肽(1.2 mg/d)则能预防BMC下降,并升高P1NP水平,而CTX水平无明显变化。

DPP-4抑制剂与骨代谢

Glorie等[24]研究了西格列汀对STZ诱导糖尿病大鼠骨代谢的影响,结果发现西格列汀能够抑制骨吸收标志物CTX水平,减缓骨量丢失,增加骨强度,并且这种作用独立于血糖控制。Gilbert等[25]研究发现,DPP-4抑制剂(MK-0626) 对2型糖尿病MKR小鼠的骨代谢无不良影响,同时也不影响体外培养小鼠成骨细胞的分化。Bunck等[26]研究发现,新诊断的2型糖尿病患者使用维格列汀(100 mg/d)治疗1年,血钙、血磷、血清碱性磷酸酶及CTX和治疗前相比均未发生显著变化。Driessen等[27]对临床实践研究数据链(Clinical Practice Research Datalink, CPRD)数据库进行回顾性分析发现,正在使用DPP-4抑制剂的2型糖尿病患者的骨折风险与非糖尿病对照者比较,差异无统计学意义(P>0.05)。进一步研究发现,与其他降糖药物相比,短期使用DPP-4抑制剂与骨折风险之间也没有显著相关性[28]。一项Meta分析研究了DPP-4抑制剂与骨折风险的关系,结果显示,与安慰剂或其他降糖药物相比,使用DPP-4抑制剂(至少24周)与2型糖尿病患者的骨折风险降低密切相关[29]

总结

糖尿病与骨代谢疾病密切相关,糖尿病患者易发生骨质疏松。众多基础研究提示基于肠促胰素的治疗有超越降糖外的作用,可能通过直接或间接的方式影响骨代谢,然而临床研究结论不尽一致。因此还需要通过进一步研究来证实肠促胰素对骨代谢的作用及其内在机制,这有可能为骨质疏松特别是糖尿病合并骨质疏松的治疗提供新的思路和方法。

参考文献
[1] Klein GL, Targoff CM, Ament ME, et al. Bone disease associated with total parenteral nutrition[J]. Lancet, 1980, 2: 1041–1044.
[2] Buchman AL, Moukarzel A. Metabolic bone disease associated with total parenteral nutrition[J]. Clin Nutr, 2000, 19: 217–231. DOI:10.1054/clnu.1999.0083
[3] Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption[J]. J Bone Miner Res, 2003, 18: 2180–2189. DOI:10.1359/jbmr.2003.18.12.2180
[4] Li F, Muhlbauer RC. Food fractionation is a powerful tool to increase bone mass in growing rats and to decrease bone loss in aged rats:modulation of the effect by dietary phosphate[J]. J Bone Miner Res, 1999, 14: 1457–1465. DOI:10.1359/jbmr.1999.14.8.1457
[5] Mabilleau G. Interplay between bone and incretin hormones:a review[J]. Morphologie, 2017, 101: 9–18. DOI:10.1016/j.morpho.2016.06.004
[6] Bollag RJ, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects[J]. Mol Cell Endocrinol, 2001, 177: 35–41. DOI:10.1016/S0303-7207(01)00405-1
[7] Yamada C, Yamada Y, Tsukiyama K, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption[J]. Endocrinology, 2008, 149: 574–579. DOI:10.1210/en.2007-1292
[8] Lamari Y, Boissard C, Moukhtar MS, et al. Expression of glucagon-like peptide 1 receptor in a murine C cell line:regulation of calcitonin gene by glucagon-like peptide 1[J]. FEBS Lett, 1996, 393: 248–252. DOI:10.1016/0014-5793(96)00895-2
[9] Nuche-Berenguer B, Moreno P, Esbrit P, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states[J]. Calcif Tissue Int, 2009, 84: 453–461. DOI:10.1007/s00223-009-9220-3
[10] Nuche-Berenguer B, Lozano D, Gutierrez-Rojas I, et al. GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia[J]. J Endocrinol, 2011, 209: 203–210. DOI:10.1530/JOE-11-0015
[11] Zheng T, Yang L, Liu Y, et al. Plasma DPP4 activities are associated with osteoporosis in postmenopausal women with normal glucose tolerance[J]. J Clin Endocrinol Metab, 2015, 100: 3862–3870. DOI:10.1210/jc.2015-2233
[12] Kim SW, Cho EH. High levels of serum DPP-4 activity are associated with low bone mineral density in obese postmenopausal women[J]. Endocrinol Metab, 2016, 31: 93–99. DOI:10.3803/EnM.2016.31.1.93
[13] Notsu M, Kanazawa I, Tanaka S, et al. Serum dipeptidyl peptidase-4 is associated with multiple vertebral fractures in type 2 diabetes mellitus[J]. Clin Endocrinol (Oxf), 2016, 84: 332–337. DOI:10.1111/cen.12971
[14] Ma X, Meng J, Jia M, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats[J]. J Bone Miner Res, 2013, 28: 1641–1652. DOI:10.1002/jbmr.1898
[15] Meng J, Ma X, Wang N, et al. Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through beta-catenin[J]. Stem Cell Rep, 2016, 6: 633. DOI:10.1016/j.stemcr.2016.03.010
[16] Lu N, Sun H, Yu J, et al. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes[J]. PLoS One, 2015, 10: e0132744. DOI:10.1371/journal.pone.0132744
[17] Kim JY, Lee SK, Jo KJ, et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes[J]. Life Sci, 2013, 92: 533–540. DOI:10.1016/j.lfs.2013.01.001
[18] Nuche-Berenguer B, Moreno P, Portal-Nunez S, et al. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states[J]. Regul Pept, 2010, 159: 61–66. DOI:10.1016/j.regpep.2009.06.010
[19] Bunck MC, Eliasson B, Corner A, et al. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2011, 13: 374–377. DOI:10.1111/j.1463-1326.2010.01355.x
[20] Li R, Xu W, Luo S, et al. Effect of exenatide, insulin and pioglitazone on bone metabolism in patients with newly diagnosed type 2 diabetes[J]. Acta Diabetol, 2015, 52: 1083–1091. DOI:10.1007/s00592-015-0792-2
[21] Driessen JH, van Onzenoort HA, Starup-Linde J, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs[J]. Calcif Tissue Int, 2015, 97: 506–515. DOI:10.1007/s00223-015-0037-y
[22] Su B, Sheng H, Zhang M, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment:a meta-analysis of randomized controlled trials[J]. Endocrine, 2015, 48: 107–115. DOI:10.1007/s12020-014-0361-4
[23] Lepsen EW, Lundgren JR, Hartmann B, et al. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women[J]. J Clin Endocrinol Metab, 2015, 100: 2909–2917. DOI:10.1210/jc.2015-1176
[24] Glorie L, Behets GJ, Baerts L, et al. DPP Ⅳ inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats[J]. Am J Physiol Endocrinol Metab, 2014, 307: E447–455. DOI:10.1152/ajpendo.00217.2014
[25] Gilbert MP, Marre M, Holst JJ, et al. Comparison of the long-term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes[J]. Endocr Pract, 2016, 22: 406–411. DOI:10.4158/EP15758.OR
[26] Bunck MC, Poelma M, Eekhoff EM, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients[J]. J Diabetes, 2012, 4: 181–185. DOI:10.1111/jdb.2012.4.issue-2
[27] Driessen JH, van Onzenoort HA, Henry RM, et al. Use of dipeptidyl peptidase-4 inhibitors for type 2 diabetes mellitus and risk of fracture[J]. Bone, 2014, 68: 124–130. DOI:10.1016/j.bone.2014.07.030
[28] Driessen JH, van Onzenoort HA, Starup-Linde J, et al. Use of dipeptidyl peptidase 4 inhibitors and fracture risk compared to use of other anti-hyperglycemic drugs[J]. Pharmacoepidemiol Drug Saf, 2015, 24: 1017–1025. DOI:10.1002/pds.3837
[29] Monami M, Dicembrini I, Antenore A, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures:a meta-analysis of randomized clinical trials[J]. Diabetes Care, 2011, 34: 2474–2476. DOI:10.2337/dc11-1099
(收稿日期:2017-01-10)