铁调素与骨质疏松症
张辉, 徐又佳     
215004 苏州,苏州大学附属第二医院骨科 苏州大学骨质疏松症诊疗技术研究所
摘要: 铁调素,作为系统铁稳态的关键调节者,在血液病、肝脏疾病和肿瘤等方面都受到了高度的重视,铁调素对骨质疏松症的影响也逐渐被发现。随着《铁调素治疗围绝经期和绝经后女性骨质疏松症》专利在美国的申请,铁调素改善骨质疏松症的可能机制便成为研究热点。本文针对铁调素和骨质疏松症的关系做一综述,以期对以后的研究有所帮助。
关键词铁调素          骨质疏松症    
Hepcidin and osteoporosis
ZHANG Hui, XU You-jia     
Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Osteoporosis Institute of Soochow University, Suzhou 215004, Jiangsu, China
Abstract: Hepcidin, the key regulator of system iron homeostasis, is concerned in many diseases such as tumour, hematological and hepatic diseases. Its effect on osteoporosis has been found gradually. As "the treatment of osteoporosis in peri-menopausal and post-menopausal women with hepcidin" patent is applicated in the United States, and possible mechanisms of hepcidin to improve osteoporosis becomes research hotspot. This paper reviewed the relationship between hepcidin and osteoporosis.
hepcidin     iron     osteoporosis    

当前,骨质疏松症并没有像肿瘤、心脑血管病那样引起人们的足够重视,但是中国正处于老龄化社会阶段,若不重视骨质疏松症,势必会使更多的老年人罹患这个本可以预防的疾病。在骨质疏松症的大量相关研究中,相比较于其他经典的观点,铁代谢异常对骨代谢的影响目前越来越受到重视[1-2]。各种病理和非病理状态,如血液病长期输血治疗、绝经后女性等,均会使机体内铁升高,从而导致骨密度下降和骨质疏松症风险增高[3-4]。因此,调节铁代谢稳态便成为治疗骨质疏松症的一个方向,而铁调素正是机体系统铁稳态的关键调节者,这使铁调素改善并治疗骨质疏松症的设想有了可能性。

干预骨质疏松症药物及其机制

骨质疏松症是以单位体积内骨组织量减少、骨密度下降为特点的一组慢性骨病。根据这一特点,目前临床上有以下几类药物。

钙剂和维生素D:这是骨质疏松症的基础治疗方法,通过促进钙的吸收、减缓骨量丢失,从而达到增加骨量的目的[5]。此外,补充适量的活性维生素D还可以增强老年人肌肉力量和平衡能力,减少骨质疏松性骨折的发生[6]

双膦酸盐类药物:此类药物通过抑制破骨细胞的活性来减少骨吸收,降低骨转换,从而抑制骨质疏松[7]。这对于以高转换率为特点的Ⅰ型绝经后骨质疏松症是很好的治疗药物。

甲状旁腺素 (parathyroid hormone,PTH):此类药物可促进成骨活性,增加骨矿化及骨密度,改善骨重建[8]。对于长期运用双膦酸盐,破骨活性指标已降到正常以下,已达到“冰冻骨”标准的患者,用甲状旁腺素来提升成骨活性是个不错的选择。

中成药:如仙灵骨葆 (淫羊藿)、金天格胶囊等,可改善骨代谢及骨转换指标,增加骨密度[9-10]

其他:维生素K可促进骨形成,抑制骨吸收,提高骨量,可作为骨质疏松症的辅助治疗,提高疗效[11];在绝经后骨质疏松症中还可以选择降钙素、共轭雌激素、选择性雌激素受体调节剂、RANK配体抑制剂等药物进行干预[12-15]

铁调素、铁与骨质疏松症的相互作用 铁与骨质疏松

在Ⅰ型绝经后骨质疏松症患者体内往往能检测出其铁相关指标高于正常值[16]。众多研究也报道铁蓄积或者铁过载与骨质疏松症有关,是骨质疏松症的独立危险因素[17-20]。其可能原因是:“铁死亡”。铁死亡由Dolma等[21]在2003年首次发现,因为其是铁依赖的细胞死亡,所以被命名为铁死亡[22-23]。铁死亡是有别于凋亡、自噬和坏死的一种细胞死亡方式[17-19]。由于铁在细胞代谢过程中会通过费氏反应 (Fenton chemistry) 产生活性氧 (reactive oxygen species,ROS)[24];机体内过多的铁则会产生过多的脂质ROS;这种脂质ROS的蓄积则会破坏细胞的完整性以及细胞膜的流动性和渗透性,从而导致细胞死亡[22-23]。此外,还有实验证明过多的ROS不仅可以下调Runx2、Wnt-β catenin和ERK等基因的表达,影响与成骨细胞生物活性密切相关的信号通路,从而降低成骨细胞的增生分化活性及其钙化等能力[25],还会通过刺激核因子κB受体活化因子配基 (receptor activator of nuclear factor κ b ligand,RANKL) 等信号通路来促进破骨细胞分化和骨吸收功能[26];有研究证明,当使用ROS拮抗剂时,会逆转下调的Runx2等基因,相反,抑制RANKL等基因的表达,骨丢失得到改善[27]。这样,ROS就从成骨细胞和破骨细胞两种途径共同促进骨质疏松症的发展。综上,降铁是一个很新颖、也可能是很有效的防治骨质疏松的方案[28]

铁调素与铁

目前,临床上的降铁方案均使用的是物理途径的铁螯合剂,主要有去铁胺、去铁酮和地拉罗司三大类[29],并有初步临床研究证明铁螯合剂降铁可以改善椎体和股骨颈的骨密度[30]。但是,目前上述三类降铁药物在临床实践中多用于各类血液病患者,该类疾病患者血清铁蛋白浓度大多处于超过1 000 μg/L的病理状态,而正常Ⅰ型绝经后骨质疏松症患者的血清铁蛋白浓度仅会是正常值的2~3倍,一般在500 μg/L以内。在这种状态下,首先医生既无相关的药品说明或者指南指导临床用药,也没有确切用药剂量和停药指征;其次,当患者停止用药后,铁还会从肠道中被吸收,并在体内再次蓄积;更重要的是,上述3类药物降铁迅速,很容易导致患者血清铁蛋白从轻微升高状态立刻转为低水平或者缺铁状态,而铁缺乏可致骨量下降[31]。铁调素则是近几年发现的由肝脏合成和分泌的系统铁稳态关键调节者[32-33],这种蛋白可通过与各种细胞膜表面的膜铁转运蛋白结合,诱导其内化和泛素化,从而降解膜铁转运蛋白[34],而膜铁转运蛋白则又是目前已知的唯一的铁转出蛋白[35]。通过铁调素膜铁转运蛋白调节轴的调节作用,首先,肠道细胞吸收的铁不再 (或者极少量) 进入机体的血液循环系统,也就是说铁不再被肠道吸收,这就从源头上减少了铁的摄入;其次,当肝、脾细胞膜表面丰富的膜铁转运蛋白被内化降解后,机体内固有的铁也会被“困”在相应的储铁细胞内,不再会 (或者极少量) 被释放到机体的血液循环当中。铁调素采用生物化学的方式,通过“少吸收”和“少释放”的这两种途径达到降铁的目的,而不像铁螯合剂物理降铁螯合排出体外那么简单:当机体处于铁蓄积的高铁状态时,铁调素分泌增加,使铁下降;当机体处于铁缺乏的低铁状态时,铁调素分泌下降,使铁上升。经过这样的负反馈调节,铁调素可将机体内的铁调整到一个自稳的健康状态。

铁调素与骨质疏松症

铁调素可以对机体内的铁进行调节并使系统铁处于相对稳态,这一事实使研究者有了一个大胆的猜想——铁调素是否可以改善骨质疏松症?国际上,在2010年,美国公布了“铁调素防治绝经后骨质疏松症”发明专利[36];在2013年,徐又佳等[28]也提出铁调素可能对防治绝经后骨质疏松症有益的设想。这些都说明了铁调素防治由铁蓄积或铁过载引起的骨质疏松症的应用前景。

铁调素防治骨质疏松症的可能机制和研究进展

铁调素对骨质疏松症的影响在细胞和动物水平上的研究已有初步阳性结果。

铁调素促进成骨细胞相关基因表达发挥作用

Lu等[37]的研究发现铁调素通过激活BMP2/Smad信号通路和丝裂原激活的蛋白激酶 (mitogen-activated protein kinase,MAPK)/P38信号通路促进间充质干细胞向成骨细胞分化和成骨细胞基因表达。

铁调素促进成骨细胞钙化发挥作用

张鹏等[38]在培养的人成骨细胞中加入不同浓度铁调素后发现,在50 nmol/L的浓度内,铁调素可促进成骨细胞内Ca2+浓度增加,且具有呈剂量依赖性趋势。Xu等[39]在研究中将人成骨细胞用尼莫地平和乙二胺四乙酸 (ethylene diamine tetraacetic acid,EDTA) 预处理,结果显示细胞内Ca2+浓度明显上升,该研究证明了铁调素主要是通过L型钙通道增加成骨细胞内Ca2+浓度。

铁调素通过降铁发挥作用

在细胞研究方面,Zhao等[40]发现铁调素与去铁胺在某些方面有着相似的功能,在降铁的同时还可以上调骨保护素 (osteoprotegerin,OPG) 和骨钙素 (bone gla protein,BGP) 的基因表达来促进成骨细胞的功能。Li等[41]在研究中发现铁调素不仅可使成骨细胞内Ca2+浓度增加,铁调素还可以使暴露在高铁环境中的成骨细胞内Ca2+浓度上升得更加明显。

在动物研究方面,Jiang等[42]首次在斑马鱼上敲除铁调素基因,结果斑马鱼体内的铁明显升高,与成骨相关的runx2a、run2b、sp7、alp和bmp2a等基因表达下调,并且发生骨矿化异常现象,而胚胎期注射了铁调素信使RNA的铁调素基因敲除的斑马鱼体内铁较之前明显下降,成骨相关基因和骨形成与之前相比,都有一定恢复。Shen等[43]则是在铁调素基因敲除的7月龄小鼠上发现小鼠体内铁升高,成骨活性下降,反映破骨活性的指标无明显变化,骨量减少。

结语

铁调素是机体内发挥着维持系统铁稳态重要作用的一种类激素,当前众多的实验研究都证明铁代谢与骨代谢是紧密联系的,所以铁调素的代谢水平势必关系着与铁代谢有关的骨质疏松症的发生发展,尤其是在Ⅰ型绝经后骨质疏松症中的作用更不容忽视。可是目前关于铁调素和骨质疏松症的研究还只停留在细胞和动物水平,并不能直接证明铁调素对人体的影响,但目前的研究成果却可以证明铁调素在铁蓄积或者铁过载引起的骨质疏松症中有着很好的应用前景,关于铁调素能否改善骨质疏松症或者预防骨质疏松性骨折的问题,还有待于日后的研究结果去证实。

参考文献
[1] Toxqui L, Vaquero MP. Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis[J]. Nutrients, 2015, 7 : 2324–2344. DOI:10.3390/nu7042324
[2] Xiao W, Beibei F, Guangsi S, et al. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass[J]. J Endocrinol, 2015, 226 : 121–134.
[3] Valizadeh N, Farrokhi F, Alinejad V, et al. Bone density in transfusion dependent thalassemia patients in Urmia, Iran[J]. Iran J Pediatr Hematol Oncol, 2014, 4 : 68–71.
[4] Si L, Winzenberg TM, Chen M, et al. Screening for osteoporosis in Chinese post-menopausal women: a health economic modelling study[J]. Osteoporos Int, 2016, 27 : 2259–2269.
[5] Sirichakwal PP, Kamchansuppasin A, Christine CA, et al. Vitamin D status is positively associated with calcium absorption among postmenopausal thai women with low calcium intakes[J]. J Nut, 2015, 145 : 990–995. DOI:10.3945/jn.114.207290
[6] Mason C, Tapsoba JD, Catherine Duggan, et al. Effects of vitamin D3 supplementation on lean mass, muscle strength, and bone mineral density during weight loss: a double-blind randomized controlled trial[J]. J Am Geriatr Soc, 2016, 64 : 769–778.
[7] Miller PD, Pannacciulli N, Brown JP, et al. Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates[J]. J Clin Endocrinol Metab, 2016, 6 : jc20161801.
[8] Song J, Jin Z, Feng C, et al. Single and combined use of human parathyroid hormone (PTH) (1-34) on areal bone mineral density (aBMD) in postmenopausal women with osteoporosis: evidence based on 9 RCTs[J]. Med Sci Monit, 2014, 20 : 2624–2632. DOI:10.12659/MSM.892581
[9] 覃裕, 邱冰, 朱思刚, 等. 仙灵骨葆胶囊治疗骨质疏松症的疗效及其对骨代谢及骨转换指标的影响分析[J]. 中国骨质疏松杂志, 2015, 9 : 1056–1060.
[10] 高爱荣, 王雅萍, 路丽, 等. 金天格胶囊治疗骨质疏松症疗效观察[J]. 中国骨质疏松杂志, 2016, 22 : 99–101.
[11] Gajic-Veljanoski O, Bayoumi AM, Bayoumi G, et al. Vitamin K supplementation for the primary prevention of osteoporotic fractures: is it cost-effective and is future research warranted?[J]. Osteoporos Int, 2012, 23 : 2681–2692. DOI:10.1007/s00198-012-1939-4
[12] Henriksen K, Byrjalsen I, Andersen JR, et al. A randomized, double-blind, multicenter, placebo-controlled study to evaluate the efficacy and safety of oral salmon calcitonin in the treatment of osteoporosis in postmenopausal women taking calcium and vitamin D[J]. Bone, 2016, 91 : 122–129. DOI:10.1016/j.bone.2016.07.019
[13] Goldberg T, Fidler B. Conjugated estrogens/bazedoxifene (Duavee): a novel agent for the treatment of moderate-to-severe vasomotor symptoms associated with menopause and the prevention of postmenopausal osteoporosis[J]. P T, 2015, 40 : 178–182.
[14] Ohta H. Updates on lifestyle-related diseases and bone metabolism. Efficacy of selective estrogen receptor modulators (SERMs) in lifestyle-related osteoporosis[J]. Clin Calcium, 2014, 24 : 1679–1687.
[15] Capozzi A, Lello S, Pontecorvi A. The inhibition of RANK-ligand in the management of postmenopausal osteoporosis and related fractures: the role of denosumab[J]. Gynecol Endocrinol, 2014, 30 : 403–408. DOI:10.3109/09513590.2014.892067
[16] Jian J, Pelle E, Huang X. Iron and menopause: does increased iron affect the health of postmenopausal women?[J]. Antioxid Redox Sign, 2009, 11 : 2939–2943. DOI:10.1089/ars.2009.2576
[17] Weinberg ED. Iron loading: a risk factor for osteoporosis[J]. Biometals, 2006, 19 : 633–635.
[18] Voskaridou E, Terpos E. Pathogenesis and management of osteoporosis in thalassemia[J]. Pediatr Endocrinol Rev, 2008, 6 : 86–93.
[19] Yang Q, Jian J, Steven BA, et al. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis[J]. J Bone Miner Res, 2011, 26 : 1188–1196. DOI:10.1002/jbmr.337
[20] Chen B, Yan YL, Chen L, et al. Therapeutic effect of deferoxamine on iron overload-induced inhibition of osteogenesis in a zebrafish model[J]. Calcified Tissue International, 2014, 94 : 353–360.
[21] Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3 : 285–296. DOI:10.1016/S1535-6108(03)00050-3
[22] Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15 : 234–245. DOI:10.1016/j.chembiol.2008.02.010
[23] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 : 1060–1072. DOI:10.1016/j.cell.2012.03.042
[24] Torti SV, Torti FM. Iron and cancer: more ore to be mined[J]. Nat Rev Cancer, 2013, 13 : 342–355. DOI:10.1038/nrc3495
[25] He YF, Ma Y, Chao G, et al. Iron overload inhibits osteoblast biological activity through oxidative stress[J]. Biol Trace Element Res, 2013, 152 : 292–296. DOI:10.1007/s12011-013-9605-z
[26] Jia P, Xu YJ, Zeng LZ, et al. Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species[J]. J Orthopaed Res, 2012, 30 : 1843–1852. DOI:10.1002/jor.v30.11
[27] Zhao L, Wang Y, Wang ZJ, et al. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character[J]. J Nutrit Biochem, 2015, 26 : 1174–1182. DOI:10.1016/j.jnutbio.2015.05.009
[28] 徐又佳, HuangXi. 降低"铁过载":一个防治绝经后骨质疏松的新方案[J]. 中华骨质疏松和骨矿盐疾病杂志, 2012, 5 : 1–6.
[29] Rossi F, Perrotta S, Bellini G, et al. Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels[J]. Haematologica, 2014, 99 : 1876–1884. DOI:10.3324/haematol.2014.104463
[30] Casale M, Citarella S, Filosa A, et al. Endocrine function and bone disease during long-term chelation therapy with deferasirox in patients with β-thalassemia major[J]. Am J Hematol, 2014, 89 : 1102–1106. DOI:10.1002/ajh.23844
[31] Bo L, Liu ZC, Zhong YB, et al. Iron deficiency anemia's effect on bone formation in zebrafish mutant[J]. Biochem Biophys Res Commun, 2016, 475 : 271–276. DOI:10.1016/j.bbrc.2016.05.069
[32] Christina HP, Erika VV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem, 2001, 276 : 7806–7810.
[33] Zhao NN, Zhang AS, Caroline AE. Iron regulation by hepcidin[J]. J Clin Invest, 2013, 123 : 2337–2343.
[34] Bo Q, Priscilla S, Fung E, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination[J]. Cell Metab, 2012, 15 : 918–924. DOI:10.1016/j.cmet.2012.03.018
[35] Qian Y, Yin CY, Chen Y, et al. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element[J]. Cell Sign, 2015, 27 : 934–942. DOI:10.1016/j.cellsig.2015.01.017
[36] Huang X.Treatment of osteoporosis in pefi-and post-menopausal women with Hepcidin[P]. U.S.Patent Application 12/704.187.2010-2-11.
[37] Lu H, Lian L, Shi D, et al. Hepcidin promotes osteogenic differentiation through the bone morphogenetic protein 2/small mothers against decapentaplegic and mitogen-activated protein kinase/P38 signaling pathways in mesenchymal stem cells[J]. Mol Med Rep, 2015, 11 : 143–150.
[38] 张鹏, 徐又佳, 赵东阳, 等. 铁调素对人成骨细胞 (hFOBl.19) 内钙离子转运的影响[J]. 苏州大学学报, 2008, 28 : 14–15.
[39] Xu YJ, Li GF, Du B, et al. Hepcidin increases intracellular Ca2+ of osteoblast hFOB1.19 through L-type Ca2+ channels[J]. Regulat Peptide, 2011, 172 : 58–61.
[40] Zhao LP, Lin H, Xu YJ, et al. Effect of deferoxamine and hepcidin on gene expression of osteocalcin, type Ⅰ collagen and osteoprotegerin in human osteoblast (hFOB1.19)[J]. Bone, 2010, 47 : 425.
[41] Li GF, Xu YJ, He YF, et al. Effect of hepcidin on intracellular calcium in human osteoblasts[J]. Mol Cell Biochem, 2012, 366 : 169–174.
[42] Jiang Y, Yan Y, Xu YJ, et al. Hepcidin inhibition on the effect of osteogenesis in zebrafish[J]. Biochem Biophys Res Commun, 2016, 476 : 1–6. DOI:10.1016/j.bbrc.2016.05.118
[43] Shen GS, Yang Q, Xu YJ, et al. Hepcidin1 knockout mice display defects in bone microarchitecture and changes of bone formation markers[J]. Calcified Tissue Int, 2014, 94 : 632–639. DOI:10.1007/s00223-014-9845-8
(收稿日期:2016-09-13)