扩展功能
文章信息
- 姚宏凯, 刘迎, 靳令经
- YAO Hong-Kai, LIU Ying, JIN Ling-Jing
- A型肉毒毒素改善雷诺现象血管痉挛的作用及机制研究进展
- Research progress on the mechanism of action of botulinum neurotoxin type A in the improvement of vasospasm in Raynaud's phenomenon
- 国际神经病学神经外科学杂志, 2020, 47(6): 641-644
- Journal of International Neurology and Neurosurgery, 2020, 47(6): 641-644
-
文章历史
收稿日期: 2020-06-18
修回日期: 2020-09-15
雷诺现象(Raynaud’s phenomenon, RP),即由于寒冷或情绪紧张等刺激导致指(趾)端细小动脉痉挛,出现肢端苍白、继之紫绀、发红的现象,伴局部发凉、麻木和疼痛等感觉异常。雷诺现象发病机制不清,缺乏特效治疗方法。2004年,Sycha等[1]首次报道了A型肉毒毒素(botulinum neurotoxin type A, BoNT/A)治疗雷诺现象。随后,多项临床研究显示,雷诺现象患者手部注射BoNT/A后疼痛缓解、血流改善、皮温升高,及溃疡愈合改善[2-5]。作为缓解雷诺现象血管痉挛症状的一种手段,BoNT/A受到越来越多的关注,但其具体机制尚未十分清楚。本文现就相关研究进展综述如下。
1 BoNT/A对雷诺现象的治疗作用雷诺现象按病因分为原发的雷诺现象和继发于其他疾病的雷诺现象,均以肢体末端血管对低温的敏感性增强、引起血管异常收缩为主要表现[6]。其发病率与地理环境、气候变化有关,可高达2%~14%[7]。皮肤血管的血管张力调节很复杂,其反应性受血管内皮分泌的递质及周围神经调控机制影响。皮肤血流量由复杂的交互系统调节,包括交感神经的调控、温度和血管内皮细胞释放的递质等[8]。低温通过选择性增强交感神经递质去甲肾上腺素释放,引起血管平滑肌收缩[9],减少皮肤血流量。雷诺现象患者血管平滑肌还会出现α2c肾上腺素能受体异常上调,该现象可能导致患者的交感神经缩血管效应亢进[10]。在病程初期,雷诺现象以可逆性血管收缩为主要特点,不伴有组织结构改变[11-12]。随病程进展,晚期出现血管内皮细胞及平滑肌细胞增生、肥大,管腔狭窄,严重时可导致肢端坏死[11-12]。
BoNT/A是由肉毒梭菌产生的多肽,可进入神经突触前膜抑制神经递质释放,发挥化学性去神经作用,被广泛用于痉挛及肌张力障碍等疾病的治疗。Fregene等[2]采用病例对照研究报道了26例继发性雷诺现象患者接受BoNT/A注射治疗后双手皮肤温度、疼痛和指端溃疡的程度均较前显著改善。Zhang等[13]对10例中国患者进行了回顾性研究,发现治疗后患者血流速度明显增快,溃疡、疼痛等临床症状都得到改善。而Jenkins等[3]和Uppal等[5]采用前瞻性自身对照试验,结果显示严重雷诺现象患者注射BoNT/A后注射侧手掌捏握力显著改善,伴有疼痛和耐寒能力的改善,冷水刺激引起的皮温恢复时间缩短。Motegi等[4]采用前瞻性病例研究对10例日本雷诺现象患者进行肉毒毒素治疗,发现BoNT/A能显著改善患者的临床症状和体征。Dhaliwal等[14]和Castanedo等[15]也进行了前瞻性的病例对照研究,分别对40例和8例患者进行研究,结果显示试验组患者较对照组患者疼痛明显减轻,耐寒性增加,发作频率和严重性都有所下降。因此,BoNT/A已经成为缓解雷诺现象严重血管痉挛症状的一种新手段。
2 BoNT/A对小动脉交感神经系统的影响人体小动脉的血管平滑肌上存在α1和α2肾上腺能受体,肢端动脉交感神经肾上腺素能α受体的神经递质主要是去甲肾上腺素(norepinephrine, NA)。Kim等[16]通过在大鼠背部构建皮瓣模型后注射BoNT/A后观察到,BoNT/A可通过增加灌注来增加大鼠背侧皮瓣的存活率。Zhou等[17]通过大鼠提睾肌动脉电刺激模型,研究发现BoNT/A可以明显抑制电刺激所诱发的血管收缩、痉挛,且抑制效应与NA能受体阻滞剂哌唑嗪(α1受体阻滞剂)等同,提示BoNT/A通过抑制NA能系统抑制血管收缩以及增加血液流动。Franks等[18]对小鼠膀胱及尿道外括约肌进行BoNT/A注射,对NA进行放射免疫测定,发现注射BoNT/A后,NA释放显著下降。Roh等[19]在小鼠皮瓣模型中观察到,使用BoNT/A的小鼠较未使用的小鼠存活面积明显增加,且去甲肾上腺素水平显著降低。Judy等[20]对豚鼠离体子宫动脉进行了BoNT/A的注射,通过电生理监测发现子宫动脉的收缩明显减少,同时伴有含有NA的囊泡在神经末梢释放受阻,说明BoNT/A对多个部位的小动脉均具有抑制血NA释放的作用。Westerink等[21]研究发现,BoNT/A可以抑制PC12细胞释放NA;同时,BoNT/A也可抑制人神经母细胞瘤细胞(SH-SY5Y)NA的释放,并伴有突触小体相关蛋白-25(synaptosome-associated protein 25, SNAP-25)被裂解增多[22]。Zhou等[17]应用大鼠颈上交感神经元研究发现,BoNT/A(50 U/mL)可抑制NA的释放,同时可检测到SNAP-25被裂解,提示其与胆碱能神经元类似,在交感神经元中,BoNT/A可能是通过裂解SNAP-25,抑制SNARE复合体的形成,从而抑制NA释放。NA储存于交感神经节后神经末梢囊泡内,通过钙依赖性的胞裂外排及非钙依赖性的拟交感物质替换两种方式释放[23]。其中钙依赖性胞裂外排为主要释放方式,由SNARE复合体介导囊泡膜与突触前膜融合后将NA排出至突触间隙,突触小泡缔合性膜蛋白(synaptic vesicle-associated membrane protein, VAMP)、突触融合蛋白、Munc-18蛋白等亦参与突触递质释放[24]。
此外,在1项前瞻性的临床研究中,Lucía等[25]对2例儿童进行了BoNT/A注射以治疗雷诺现象引起的足底溃疡,治疗后患者的症状明显改善,足底溃疡上皮化,且疼痛缓解。研究者认为BoNT/A不仅抑制乙酰胆碱的释放,而且抑制去甲肾上腺素,P物质(substance P, SP),降钙素基因相关肽(calcitonin gene related peptide, CGRP)和谷氨酸的释放。这些神经递质在几种神经性疼痛途径中发挥作用。CGRP与SP等神经肽共存,在神经元内合成,经轴浆运输后到达神经末梢,并以囊泡形式储存备用。二者由前体大分子酶切生成后与乙酰胆碱(acetylcholine, ACh)共存神经末梢的大致密核心囊泡,BoNT/A抑制含ACh的大致密核心囊泡释放,同时也抑制CGRP、SP的释放,从而减轻神经病理性疼痛症状[26]。Durham等[27]通过原代培养大鼠三叉神经节发现BoNT/A可以直接减少从三叉神经节神经元释放的CGRP的数量,即BoNT/A镇痛作用可能部分归因于其抑制激活的感觉神经元释放CGRP的能力。Carmichael等[28]的实验也证实了BoNT/A可通过阻断促炎性神经肽SP和CGRP的释放来改善神经刺激和疼痛。Cui等[29]的研究证明,皮下BoNT/A注射可抑制福尔马林所诱导的谷氨酸释放,而谷氨酸被证实是诱导和维持疼痛中枢敏化的重要介质。而在慢性疼痛中,SP和谷氨酸刺激传播疼痛的慢速C纤维去极化,进而导致血管收缩和疼痛[30]。这些介质参与血管收缩,抑制其释放有助于舒张血管增加手指血液供应。此外,研究发现BoNT/A还可能通过抑制慢性缺血或损伤所致神经异位钠通道的表达和去极化所致的疼痛[31]。
3 BoNT/A对内皮细胞的影响在病程初期,雷诺综合征均以可逆性血管收缩为主要特点,不伴有组织结构改变。随病程进展,晚期出现血管内皮细胞及平滑肌细胞增生、肥大,管腔狭窄,严重时可导致肢端坏死[11-12]。血管内皮细胞产生的舒张介质,如一氧化氮(nitricoxide, NO)、前列腺素等合成减少;血管收缩介质,如血管紧张素、内皮素等合成增加;血管舒缩稳态平衡被打破[32]。Kim等[33]应用大鼠构建右上腹皮瓣模型,发现注射BoNT/A后血管舒张和血管内皮增殖的相关因子,如血管内皮生长因子(vascular endothelial growth factor, VEGF)、血小板/内皮细胞黏附分子(platelet endothelial cell adhesion molecule-1, PECAM-1/CD31)和诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)表达显著上调。Haubner等[34]通过真皮细胞培养模型,发现BoNT/A能够增加VEGF、PECAM-1等的表达,促进皮肤修复和再生。Park等[35]通过构建腹直肌皮瓣模型,注射BoNT/A后同样观察到CD31和VEGF表达相比于对照组显著增加,而VEGF是NO介导的血管生成和血管舒张因子。提示BoNT/A可能通过上调内皮细胞生长因子、血小板及内皮细胞黏附分子等的表达,促进内皮功能修复。
此外,雷诺现象由于发作性血管痉挛,可能导致周围组织再灌注损伤,与手指严重疼痛和感觉异常的发生以及指端溃疡的形成有关[36]。Uchiyama等[37]制备皮肤缺血再灌注损伤损伤小鼠模型,发现在缺血再灌注区域注射BoNT/A可显著减少褥疮样溃疡的形成;注射区CD31+血管和α-平滑肌肌动蛋白(alpha-smooth muscle actin, α-SMΑ)以及周细胞或成纤维细胞的数量显著增加DNA损伤细胞和凋亡细胞的数量明显减少;BoNT/A显著减少氧化剂诱导的血管内皮细胞中活性氧(reactive oxygen species, ROS)的细胞内聚集。这些结果表明,BoNT/A可能通过促进血管内皮再生、抑制缺氧诱导损伤,从而抑制皮肤缺血再灌注损伤后的溃疡形成,并促进其修复。
4 结语综上所述,BoNT/A治疗雷诺现象作用日益等到证实,其作用的机制较为复杂,涉及交感神经末梢神经肽的释放、肾上腺素能递质释放、内皮细胞保护等多种因素,且还可能存在其他尚待探索的途径。系统性地研究BoNT/A治疗雷诺现象的机制,可以拓展BoNT/A的临床应用提供理论基础。
| [1] |
Sycha T, Graninger M, Auff E, et al. Botulinum toxin in the treatment of Raynaud's phenomenon:a pilot study[J]. Eur J Clin Invest, 2004, 34(4): 312-313. DOI:10.1111/j.1365-2362.2004.01324.x |
| [2] |
Fregene A, Ditmars D, Siddiqui A. Botulinum toxin type A:a treatment option for digital ischemia in patients with Raynaud's phenomenon[J]. J Hand Surg Am, 2009, 34(3): 446-452. DOI:10.1016/j.jhsa.2008.11.026 |
| [3] |
Jenkins SN, Neyman KM, Veledar E, et al. A pilot study evaluating the efficacy of botulinum toxin A in the treatment of Raynaud phenomenon[J]. J Am Acad Dermatol, 2013, 69(5): 834-835. DOI:10.1016/j.jaad.2013.06.029 |
| [4] |
Motegi S, Yamada K, Toki S, et al. Beneficial effect of botulinum toxin A on Raynaud's phenomenon in Japanese patients with systemic sclerosis:a prospective, case series study[J]. J Dermatol, 2016, 43(1): 56-62. DOI:10.1111/1346-8138.13030 |
| [5] |
Uppal L, Dhaliwal K, Butler PE. A prospective study of the use of botulinum toxin injections in the treatment of Raynaud's syndrome associated with scleroderma[J]. J Hand Surg Eur Vol, 2014, 39(8): 876-880. DOI:10.1177/1753193413516242 |
| [6] |
Herrick AL. The pathogenesis, diagnosis and treatment of Raynaud phenomenon[J]. Nat Rev Rheumatol, 2012, 8(8): 469-479. DOI:10.1038/nrrheum.2012.96 |
| [7] |
Pope J. Raynaud's phenomenon (primary)[J]. Clin Evid, 2005(13): 1546-1554. |
| [8] |
Herrick AL, Wigley FM. Raynaud's phenomenon[J]. Best Pract Res Clin Rheumatol, 2020, 34(1): 101474. DOI:10.1016/j.berh.2019.101474 |
| [9] |
Flavahan NA, Vanhoutte PM. Effect of cooling on alpha-1 and alpha-2 adrenergic responses in canine saphenous and femoral veins[J]. J Pharmacol Exp Ther, 1986, 238(1): 139-147. |
| [10] |
Herrick AL. Pathogenesis of Raynaud's phenomenon[J]. Rheumatology (Oxford), 2005, 44(5): 587-596. DOI:10.1093/rheumatology/keh552 |
| [11] |
Bakst R, Merola JF, Franks AG Jr, et al. Raynaud's phenomenon:pathogenesis and management[J]. J Am Acad Dermatol, 2008, 59(4): 633-653. DOI:10.1016/j.jaad.2008.06.004 |
| [12] |
Cooke JP, Marshall JM. Mechanisms of Raynaud's disease[J]. Vasc Med, 2005, 10(4): 293-307. DOI:10.1191/1358863x05vm639ra |
| [13] |
Zhang XL, Hu Y, Nie ZY, et al. Treatment of Raynaud's phenomenon with botulinum toxin type A[J]. Neurol Sci, 2015, 36(7): 1225-1231. DOI:10.1007/s10072-015-2084-6 |
| [14] |
Dhaliwal K, Griffin MF, Salinas S, et al. Optimisation of botulinum toxin type A treatment for the management of Raynaud's phenomenon using a dorsal approach:a prospective case series[J]. Clin Rheumatol, 2019, 38(12): 3669-3676. DOI:10.1007/s10067-019-04762-4 |
| [15] |
Quintana Castanedo L, Feito Rodríguez M, Nieto Rodríguez D, et al. Botulinum toxin A treatment for primary and secondary Raynaud's phenomenon in teenagers[J]. Dermatol Surg, 2020. DOI:10.1097/DSS.0000000000002397.Epubaheadofprint |
| [16] |
Kim TK, Oh EJ, Chung JY, et al. The effects of botulinum toxin A on the survival of a random cutaneous flap[J]. J Plast Reconstr Aesthet Surg, 2009, 62(7): 906-913. DOI:10.1016/j.bjps.2007.12.034 |
| [17] |
Zhou YW, Liu Y, Hao YH, et al. The mechanism of botulinum A on Raynaud syndrome[J]. Drug Des Devel Ther, 2018, 12: 1905-1915. DOI:10.2147/DDDT.S161113 |
| [18] |
Smith CP, Franks ME, Mcneil BK, et al. Effect of botulinum toxin A on the autonomic nervous system of the rat lower urinary tract[J]. J Urol, 2003, 169(5): 1896-1900. DOI:10.1097/01.ju.0000049202.56189.54 |
| [19] |
Roh TS, Jung BK, Yun I, et al. Effect of botulinum toxin A on vasoconstriction and sympathetic neurotransmitters in a murine random pattern skin flap model[J]. Wound Repair Regen, 2017, 25(1): 75-85. DOI:10.1111/wrr.12501 |
| [20] |
Morris JL, Jobling P, Gibbins IL. Differential inhibition by botulinum neurotoxin A of cotransmitters released from autonomic vasodilator neurons[J]. Am J Physiol Heart Circ Physiol, 2001, 281(5): H2124-H2132. DOI:10.1152/ajpheart.2001.281.5.H2124 |
| [21] |
Westerink RH, Ewing AG. The PC12 cell as model for neurosecretion[J]. Acta Physiol (Oxf), 2008, 192(2): 273-285. |
| [22] |
Purkiss JR, Friis LM, Doward S, et al. Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells[J]. Neurotoxicology, 2001, 22(4): 447-453. DOI:10.1016/S0161-813X(01)00042-0 |
| [23] |
Eguiagaray JG, Egea J, Bravo-Cordero JJ, et al. [Neurotransmitters, calcium signalling and neuronal communication][J]. Neurocirugia (Astur), 2004, 15(2): 109-118. DOI:10.1016/S1130-1473(04)70489-3 |
| [24] |
Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion[J]. Nature, 1993, 362(6418): 318-324. DOI:10.1038/362318a0 |
| [25] |
Quintana Castanedo L, Feito Rodríguez M, Maseda Pedrero R, et al. Ischemic ulcers of the toes secondary to Raynaud's phenomenon in a child successfully treated with botulinum toxin[J]. Pediatr Dermatol, 2020, 37(4): 681-683. DOI:10.1111/pde.14160 |
| [26] |
Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A[J]. Neurotoxicology, 2005, 26(5): 785-793. DOI:10.1016/j.neuro.2005.01.017 |
| [27] |
Durham PL, Cady R, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A:implications for migraine therapy[J]. Headache, 2004, 44(1): 35-42. DOI:10.1111/j.1526-4610.2004.04007.x |
| [28] |
Carmichael NM, Dostrovsky JO, Charlton MP. Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin[J]. Pain, 2010, 149(2): 316-324. DOI:10.1016/j.pain.2010.02.024 |
| [29] |
Cui ML, Khanijou S, Rubino J, et al. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain[J]. Pain, 2004, 107(1/2): 125-133. |
| [30] |
Neumeister MW, Chambers CB, Herron MS, et al. Botox therapy for ischemic digits[J]. Plast Reconstr Surg, 2009, 124(1): 191-201. DOI:10.1097/PRS.0b013e3181a80576 |
| [31] |
Park J, Park HJ. Botulinum toxin for the treatment of neuropathic pain[J]. Toxins (Basel), 2017, 9(9): 260. DOI:10.3390/toxins9090260 |
| [32] |
Flavahan NA. A vascular mechanistic approach to understanding Raynaud phenomenon[J]. Nat Rev Rheumatol, 2015, 11(3): 146-158. DOI:10.1038/nrrheum.2014.195 |
| [33] |
Kim YS, Roh TS, Lee WJ, et al. The effect of botulinum toxin A on skin flap survival in rats[J]. Wound Repair Regen, 2009, 17(3): 411-417. DOI:10.1111/j.1524-475X.2009.00477.x |
| [34] |
Haubner F, Ohmann E, Müller-Vogt U, et al. Effects of botulinum toxin a on cytokine synthesis in a cell culture model of cutaneous scarring[J]. Arch Facial Plast Surg, 2012, 14(2): 122-126. DOI:10.1001/archfacial.2011.734 |
| [35] |
Park TH, Rah DK, Chong Y, et al. The effects of botulinum toxin A on survival of rat TRAM flap with vertical midline scar[J]. Ann Plast Surg, 2015, 74(1): 100-106. DOI:10.1097/SAP.0b013e31828d706f |
| [36] |
Wigley FM. Clinical practice. Raynaud's phenomenon[J]. N Engl J Med, 2002, 347(13): 1001-1008. DOI:10.1056/NEJMcp013013 |
| [37] |
Uchiyama A, Yamada K, Perera B, et al. Protective effect of botulinum toxin A after cutaneous ischemia-reperfusion injury[J]. Sci Rep, 2015, 5: 9072. DOI:10.1038/srep09072 |
2020, Vol. 47



