扩展功能
文章信息
- 田昊, 李扬
- TIAN Hao, LI Yang
- Klotho参与阿尔兹海默病发病的研究进展
- Research progress on the role of Klotho in the pathogenesis of Alzheimer's disease
- 国际神经病学神经外科学杂志, 2020, 47(6): 618-622
- Journal of International Neurology and Neurosurgery, 2020, 47(6): 618-622
-
文章历史
收稿日期: 2020-06-18
修回日期: 2020-09-24
2. 南方医科大学珠江医院老年病科, 广东 广州 510282
2. Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
阿尔兹海默病(Alzheimer’s disease, AD)具有多种典型的神经病理和分子表现,如β淀粉样蛋白(amyloid β-protein, Aβ)的胞外沉积,过度磷酸化的tau蛋白胞内积聚,线粒体结构和功能的紊乱,氧化应激,金属离子代谢紊乱,N-甲基-D-天冬氨酸受体(NMDAR)信号传导途径的损伤,脂质代谢异常等[1]。AD的病因尚不明确,但可以肯定环境因素和表观遗传改变发挥了重要作用,此外,APOE、BIN1等基因与之关系密切[2]。近年来抗衰老基因Klotho与AD相关性的研究备受关注,已有的研究证实Klotho可通过抑制Aβ沉积、调控NMDAR亚单位GluN2B、抗氧化应激、调节胰岛素样生长因子-1(insulin like growth factor-1, IGF-1)等多种机制来改善认知功能。本文就Klotho的分子结构、分布、功能特点以及其与AD发病相关的机制进行综述,并简要展望未来与Klotho相关的AD研究的方向及意义。
1 Klotho概况 1.1 概述Klotho(KL)基因是Kuro[3]于1997年发现的一种与抗衰老密切相关的基因,敲除KL基因的小鼠可表现出一系列与人类衰老类似的症状。KL基因高度保守,人类和小鼠的Klotho蛋白中有98%氨基酸序列相同。人类KL基因定位于染色体13q12,其包含5个外显子和4个内含子,编码Ⅰ型单次跨膜糖蛋白,也称膜结合型Klotho (membrane Klotho),其结构包括细胞内段、跨膜区段及细胞外段3部分[4]。细胞内段较短,无生物学功能,细胞外段则由两个内部重复序列KL1、KL2组成,金属蛋白酶10和金属蛋白酶17可酶切连接KL1和KL2的特定氨基酸序列,形成可溶型Klotho蛋白(soluble Klotho)[5]。
为区别Klotho家族中后来发现的两种I型单次跨膜蛋白:β-Klotho及γ-Klotho,Klotho也被称为α-Klotho,本文所指的Klotho均为α-Klotho。KL基因主要在肾脏的远曲小管上皮细胞表达[6],在大脑、脉络膜等也有少量表达[7]。膜结合型Klotho作为成纤维细胞生长因子23(fibroblast growth factor-23, FGF-23)的共受体参与体内的磷代谢[8]。可溶型Klotho则主要释放到血、尿、脑脊液等体液中,以内分泌、自分泌或旁分泌的形式作用于靶细胞,参与离子通道调控、能量代谢、抗炎、抗氧化应激、抑制TGF-β及Wnt信号通路等过程[5, 9]。
β-Klotho主要在肝脏及白色脂肪表达[10-11],其主要通过与成纤维细胞生长因子受体(FGF receptor,FGFR)形成复合物,转导FGF-19、FGF-21信号,调节胆汁的产生和能量代谢[12]。γ-Klotho主要表达于棕色脂肪、眼部和皮肤,其具体的功能尚不清楚[13]。
1.2 Klotho参与AD发病多项研究证实,KL的异常表达与认知相关,过表达KL可延长寿命并明显提高认知功能。研究发现[14]恒河猴的正常脑老化与KL表达的下调有关,KL的丢失可加速认知缺陷的发展。也有临床研究[15]显示,与未患AD的老年人相比,AD患者的脑脊液中Klotho蛋白水平明显降低。而Paroni[16]团队则发现提高Klotho蛋白水平可以改善早期AD患者的轻度认知障碍(mild cognitive impairment, MCI)并延缓病情进展。Dubal等[17]的研究发现与未携带功能性的Klotho-Variants(KL-VS)等位基因的人APOE群相比,KL-VS携带者拥有更好的认知功能,且与性别、年龄及载脂蛋白ε4(ε4)基因携带与否无关;动物实验进一步证明,KL转基因小鼠在空间学习与记忆功能、工作与工具记忆能力上强于野生型小鼠,且与小鼠的月龄无关。可见Klotho对认知的影响与其抗衰老作用无关。Dubal[18]团队的另一项实验结果显示,过表达KL在增强AD小鼠的空间学习与记忆功能的同时,还可明显降低其死亡率。Kuang等[19]也发现过表达KL的AD小鼠能在各种学习和记忆测试中获得更好的成绩。
上述的研究均证实了Klotho可延缓AD认知障碍的进展,但其具体的作用机制还有待进一步探索。
2 Klotho参与AD发病的机制 2.1 抑制Aβ沉积Aβ沉积是AD所具有的典型病理特征,减少Aβ沉积是延缓AD进展的重要途径。Zeng等[20]向淀粉样蛋白前体/早老素1(APP/PS1)转基因小鼠的侧脑室注射慢病毒载体编码的小鼠Klotho基因(LV-KL)后,发现LV-KL可诱导KL的过表达,从而促进Aβ的自噬清除,有效改善AD小鼠的认知缺陷。Erickson等[21]通过采集309名中年晚期志愿者的脑脊液并进行11C-匹兹堡化合物B-PET成像,结合基因测序结果发现在KL-VS非携带者中,APOEε4等位基因的存在导致Aβ的积聚增加,而在KL-VS杂合子中,APOEε4阳性个体的Aβ负荷显著减少,提示KL-VS可减轻APOEε4基因型患者脑内Aβ积聚,但其具体机制尚不明确。另一项以581名Aβ成像与认知功能均正常的老年人为研究对象的前瞻性研究则显示,AD的临床前阶段尚未观察到KL-VS与认知衰退之间存在关联,也未显示KL-VS能改善Aβ沉积或改善APOEε4基因相关的认知障碍[22]。
2.2 作为FGF-23共受体FGF-23由骨细胞分泌,其N端有FGFR的结合位点,C端则可与Klotho蛋白相结合。作为FGF-23的共受体,Klotho蛋白是介导FGFR活化的必要条件,当Klotho蛋白与FGFR结合后,FGFR才能与FGF-23结合发挥相应信号通路的作用[23]。Chen等[24]为进一步揭示这种共受体的作用与机制还提出了一种由Klotho的胞外脱落域、FGFR1c配体结合区和FGF-23所共同组成的蛋白结构,目前认为FGF-23的升高抑制了Klotho蛋白的表达[25]。McGrath[26]的团队对1537名无痴呆的老年志愿者进行佛明罕后代研究,经过为期12年的随访,该研究发现血清FGF-23水平的升高与痴呆发生的风险增加有关。此外FGF-23和Klotho在炎症中或为代偿机制相互抵抗,在一项特发性肺纤维化的研究中,Barnes等[27]认为Klotho的下调参与了肺的炎症反应,而FGF-23可能通过抑制TGF-β信号传导发挥了抗炎的作用,在神经炎症中其是否发挥了同样的作用还有待探究。
2.3 激活insulin/IGF-1信号通路Klotho或可直接调控insulin/IGF-1相关通路,Kuang等[28]提出KL表达产物可能通过调节insulin/IGF-1信号传导和氧化应激从而充当潜在的神经保护因子,insulin/IGF-1信号通路可能作用于蛋白激酶B(Akt)或FoxO转录因子,从而诱导锰超氧化物歧化酶(MnSOD)和过氧化氢酶(CAT)等抗氧化酶的转录,清除体内过多的活性氧(ROS),减轻氧化应激而参与神经保护,他们还发现天然藁本内酯(ligustilide, LIG)可使APP和Klotho蛋白上调,进而抑制了IGF-1/Akt/mTOR信号传导,显著改善记忆障碍和Aβ负担[19]。而Xuan等[29]的研究显示insulin/IGF-1通过PI3K/Akt信号调节小鼠Klotho敏感的骨髓来源树突状细胞(BMDC)的功能,但insulin/IGF-1并未影响到BMDC的ROS产生。
2.4 作用于NMDAR相关信号通路突触后膜上的NMDAR在维持突触可塑性和神经元存活中起到关键作用,被视为学习和记忆的基础。NMDAR介导的氧化应激及与其他分子的相互作用可能驱动了tau蛋白过度磷酸化和突触的功能障碍,过量激活NMDAR会导致谷氨酸和Ca2+的大量积聚、Ca2+内流增加、自由基或线粒体超载、Caspase活化和凋亡诱导因子的释放从而产生兴奋毒性或导致细胞死亡[30-32]。Leon等[33]通过外周注射α-Klotho蛋白片段(αKL-F),诱导了NMDAR的GluN2B亚基表达,从而提升认知和神经可塑性;Dubal等[18]也观察到了Klotho可防止海马中NMDAR亚基的消耗,并会增强淀粉样蛋白前体蛋白(hAPP)转基因小鼠的空间学习和记忆能力。他们认为hAPP转基因小鼠的Klotho升高可增加突触后密度和NMDAR的GluN2B亚基丰度。
2.5 抗氧化应激AD的发生发展与氧化应激所造成的神经损伤密切相关,Perrotte等[34]认为氧化应激在AD发病的早期即起到了关键的作用,他们的研究结果显示MCI患者总抗氧化能力降低,而应激反应蛋白、载脂蛋白J(ApoJ)和Klotho蛋白水平升高。此外,Zeldich等[35]的实验显示Klotho显著增强了硫氧还蛋白/过氧还蛋白(Trx/Prx)系统的表达,其中主要是通过诱导PI3K/Akt途径磷酸化与转录因子FoxO3a的持续抑制性磷酸化来增强了具神经保护作用的抗氧化酶Prx-2的表达。
2.6 其他除上述机制外,有研究提到Klotho可上调兴奋性谷氨酸转运蛋白EAAT1和EAAT2,从而参与神经元兴奋的调节[36]。Klotho缺乏会影响树突棘头部的直径、长度以及神经网络的活动,通过改变神经元结构和突触功能影响认知功能[37]。另外,Berridge等[38-39]的研究提出,Vit D缺乏会启动淀粉样蛋白的形成,并且会提升Ca2+的静息水平,从而导致神经细胞死亡和痴呆,这与Vit D/Klotho/Nrf2调节网络调节维持Ca2+信号系统和活性氧(ROS)低静息水平表达密切相关。
3 展望目前国内外研究均已证实KL的表达与AD发病密切相关,这些发现对临床工作具有重要的指导意义。首先,血液或脑脊液中Klotho蛋白水平或可成为认知障碍的预测或诊断重要生物标志物;其次,利用药物、基因编辑等方式上调KL的表达,或直接外周注射体外重组的Klotho蛋白制剂等有望成为治疗AD的新方案,所以今后还应进一步探索与KL表达相关的信号通路及其影响因素,发现和制备可以上调KL表达的新型药物并开发相关的多靶点联合治疗方案。最后,对KL及其表达产物的研究或对其他神经退行性病变的发生机制和临床治疗均可起到一定的启示作用。
[1] |
Kozlov S, Afonin A, Evsyukov I, et al. Alzheimer's disease:as it was in the beginning[J]. Rev Neurosci, 2017, 28(8): 825-843. |
[2] |
Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer's disease:focus on epigenetic factors and histone deacetylase[J]. Rev Neurosci, 2018, 29(3): 241-260. DOI:10.1515/revneuro-2017-0049 |
[3] |
Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing[J]. Nature, 1997, 390(6655): 45-51. DOI:10.1038/36285 |
[4] |
Matsumura Y, Aizawa H, Shiraki-Iida T, et al. Identification of the human Klotho gene and its two transcripts encoding membrane and secreted Klotho protein[J]. Biochem Biophys Res Commun, 1998, 242(3): 626-630. DOI:10.1006/bbrc.1997.8019 |
[5] |
Kim JH, Hwang KH, Park KS, et al. Biological role of anti-aging protein Klotho[J]. J Lifestyle Med, 2015, 5(1): 1-6. DOI:10.15280/jlm.2015.5.1.1 |
[6] |
Kato Y, Arakawa E, Kinoshita S, et al. Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys[J]. Biochem Biophys Res Commun, 2000, 267(2): 597-602. DOI:10.1006/bbrc.1999.2009 |
[7] |
Li SA, Watanabe M, Yamada H, et al. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice[J]. Cell Struct Funct, 2004, 29(4): 91-99. DOI:10.1247/csf.29.91 |
[8] |
Hu MC, Shiizaki K, Kuro-o M, et al. Fibroblast growth factor 23 and Klotho:physiology and pathophysiology of an endocrine network of mineral metabolism[J]. Annu Rev Physiol, 2013, 75: 503-533. DOI:10.1146/annurev-physiol-030212-183727 |
[9] |
Gołembiewska E, Stępniewska J, Kabat-Koperska J, et al. The role of Klotho protein in chronic kidney disease:studies in animals and humans[J]. Curr Protein Pept Sci, 2016, 17(8): 821-826. DOI:10.2174/1389203717666160526123646 |
[10] |
Ito S, Kinoshita S, Shiraishi N, et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein[J]. Mech Dev, 2000, 98(1/2): 115-119. |
[11] |
Yahata K, Mori K, Arai H, et al. Molecular cloning and expression of a novel Klotho-related protein[J]. J Mol Med (Berl), 2000, 78(7): 389-394. DOI:10.1007/s001090000131 |
[12] |
Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21[J]. J Biol Chem, 2007, 282(37): 26687-26695. DOI:10.1074/jbc.M704165200 |
[13] |
Fon Tacer K, Bookout AL, Ding XS, et al. Research resource:comprehensive expression atlas of the fibroblast growth factor system in adult mouse[J]. Mol Endocrinol, 2010, 24(10): 2050-2064. DOI:10.1210/me.2010-0142 |
[14] |
Abraham CR, Mullen PC, Tucker-Zhou T, et al. Klotho is a neuroprotective and cognition-enhancing protein[J]. Vitam Horm, 2016, 101: 215-238. |
[15] |
Semba RD, Moghekar AR, Hu J, et al. Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease[J]. Neurosci Lett, 2014, 558: 37-40. DOI:10.1016/j.neulet.2013.10.058 |
[16] |
Paroni G, Panza F, De Cosmo S, et al. Klotho at the edge of Alzheimer's disease and senile depression[J]. Mol Neurobiol, 2019, 56(3): 1908-1920. DOI:10.1007/s12035-018-1200-z |
[17] |
Dubal DB, Yokoyama JS, Zhu L, et al. Life extension factor Klotho enhances cognition[J]. Cell Rep, 2014, 7(4): 1065-1076. DOI:10.1016/j.celrep.2014.03.076 |
[18] |
Dubal DB, Zhu L, Sanchez PE, et al. Life extension factor Klotho prevents mortality and enhances cognition in hAPP transgenic mice[J]. J Neurosci, 2015, 35(6): 2358-2371. DOI:10.1523/JNEUROSCI.5791-12.2015 |
[19] |
Kuang X, Chen YS, Wang LF, et al. Klotho upregulation contributes to the neuroprotection of ligustilide in an Alzheimer's disease mouse model[J]. Neurobiol Aging, 2014, 35(1): 169-178. DOI:10.1016/j.neurobiolaging.2013.07.019 |
[20] |
Zeng CY, Yang TT, Zhou HJ, et al. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer's disease-like pathology and cognitive deficits in mice[J]. Neurobiol Aging, 2019, 78: 18-28. DOI:10.1016/j.neurobiolaging.2019.02.003 |
[21] |
Erickson CM, Schultz SA, Oh JM, et al. Klotho heterozygosity attenuates APOE4-related amyloid burden in preclinical AD[J]. Neurology, 2019, 92(16): e1878-e1889. DOI:10.1212/WNL.0000000000007323 |
[22] |
Porter T, Burnham SC, Milicic L, et al. Klotho allele status is not associated with Aβ and APOE ε4-related cognitive decline in preclinical Alzheimer's disease[J]. Neurobiol Aging, 2019, 76: 162-165. DOI:10.1016/j.neurobiolaging.2018.12.014 |
[23] |
Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23[J]. Nature, 2006, 444(7120): 770-774. DOI:10.1038/nature05315 |
[24] |
Chen GZ, Liu Y, Goetz R, et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling[J]. Nature, 2018, 553(7689): 461-466. DOI:10.1038/nature25451 |
[25] |
Razzaque MS. The FGF23-Klotho axis:endocrine regulation of phosphate homeostasis[J]. Nat Rev Endocrinol, 2009, 5(11): 611-619. DOI:10.1038/nrendo.2009.196 |
[26] |
McGrath ER, Himali JJ, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia:the Framingham heart study[J]. PLoS One, 2019, 14(3): e0213321. DOI:10.1371/journal.pone.0213321 |
[27] |
Barnes JW, Duncan D, Helton S, et al. Role of fibroblast growth factor 23 and Klotho cross talk in idiopathic pulmonary fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 317(1): L141-L154. DOI:10.1152/ajplung.00246.2018 |
[28] |
Kuang X, Zhou HJ, Thorne AH, et al. Neuroprotective effect of ligustilide through induction of α-secretase processing of both APP and Klotho in a mouse model of Alzheimer's disease[J]. Front Aging Neurosci, 2017, 9: 353. DOI:10.3389/fnagi.2017.00353 |
[29] |
Xuan NT, Hoang NH, Nhung VP, et al. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through Klotho expression[J]. J Recept Signal Transduct Res, 2017, 37(3): 297-303. DOI:10.1080/10799893.2016.1247862 |
[30] |
Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer's disease[J]. J Alzheimers Dis, 2017, 57(4): 1041-1048. DOI:10.3233/JAD-160763 |
[31] |
Zhang Y, Li PY, Feng JB, et al. Dysfunction of NMDA receptors in Alzheimer's disease[J]. Neurol Sci, 2016, 37(7): 1039-1047. DOI:10.1007/s10072-016-2546-5 |
[32] |
Kamat PK, Kalani A, Rai S, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease:understanding the therapeutics strategies[J]. Mol Neurobiol, 2016, 53(1): 648-661. DOI:10.1007/s12035-014-9053-6 |
[33] |
Leon J, Moreno AJ, Garay BI, et al. Peripheral elevation of a Klotho fragment enhances brain function and resilience in young, aging, and α-synuclein transgenic mice[J]. Cell Rep, 2017, 20(6): 1360-1371. DOI:10.1016/j.celrep.2017.07.024 |
[34] |
Perrotte M, Le Page A, Fournet M, et al. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer's disease patients[J]. Free Radic Biol Med, 2019, 130: 499-511. DOI:10.1016/j.freeradbiomed.2018.10.452 |
[35] |
Zeldich E, Chen CD, Colvin TA, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system[J]. J Biol Chem, 2014, 289(35): 24700-24715. DOI:10.1074/jbc.M114.567321 |
[36] |
Warsi J, Abousaab A, Lang F. Up-regulation of excitatory amino acid transporters EAAT1 and EAAT2 by β-Klotho[J]. Neurosignals, 2015, 23(1): 59-70. DOI:10.1159/000442604 |
[37] |
Vo HT, Phillips ML, Herskowitz JH, et al. Klotho deficiency affects the spine morphology and network synchronization of neurons[J]. Mol Cell Neurosci, 2019, 98: 1-11. DOI:10.1016/j.mcn.2019.04.002 |
[38] |
Berridge MJ. Vitamin D:a custodian of cell signalling stability in health and disease[J]. Biochem Soc Trans, 2015, 43(3): 349-358. DOI:10.1042/BST20140279 |
[39] |
Berridge MJ. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150434. DOI:10.1098/rstb.2015.0434 |