国际神经病学神经外科学杂志  2020, Vol. 47 Issue (5): 564-568  DOI: 10.16636/j.cnki.jinn.2020.05.021

扩展功能

文章信息

温咪咪, 覃媛媛, 张旻
WEN Mi-Mi, QIN Yuan-Yuan, ZHANG Min
早发性与晚发性阿尔茨海默病的多模态影像学研究进展
Advances in multimodal imaging studies of early-onset and late-onset Alzheimer's disease
国际神经病学神经外科学杂志, 2020, 47(5): 564-568
Journal of International Neurology and Neurosurgery, 2020, 47(5): 564-568

文章历史

收稿日期: 2020-07-14
修回日期: 2020-09-24
早发性与晚发性阿尔茨海默病的多模态影像学研究进展
温咪咪1, 覃媛媛2, 张旻1    
1. 华中科技大学同济医学院附属同济医院神经内科, 湖北 武汉 430030;
2. 华中科技大学同济医学院附属同济医院放射科, 湖北 武汉 430030
摘要:阿尔茨海默病(AD)是最常见的神经系统退行性疾病,其特征是以记忆为主的进行性认知功能损害。根据发病年龄可分为早发性AD(EOAD)和晚发性AD(LOAD),二者在临床进程和神经病理学方面存在差异。近年来,多种影像学技术和新型示踪剂的开发促进了AD影像学生物标志物的出现,为深入了解EOAD和LOAD的影像学特征提供了依据。该文旨在对EOAD和LOAD的磁共振成像、单光子发射计算机断层扫描、正电子发射断层扫描的多模态影像学研究进展进行总结,探讨两种类型AD的影像学特征与区别。
关键词早发性阿尔茨海默病    晚发性阿尔茨海默病    磁共振成像    单光子发射计算机断层扫描    正电子发射断层扫描    
Advances in multimodal imaging studies of early-onset and late-onset Alzheimer's disease
WEN Mi-Mi1, QIN Yuan-Yuan2, ZHANG Min1    
1. Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China;
2. Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
Abstract: Alzheimer's disease (AD) is the most common form of neurodegenerative disease, which is characterized by progressive impairment of cognitive functions, especially memory. According to the age of onset, AD is further classified into early-onset AD (EOAD) and late-onset AD (LOAD), between which there are substantial differences in clinical progression and neuropathology. In recent years, the development of multimodal imaging technology and various new tracers has promoted the identification of imaging biomarkers of AD, which provides a basis for further understanding of imaging features of EOAD and LOAD. This article provides an overview of research advances in multimodal imaging studies of EOAD and LOAD by magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography, and also explores potential differences in imaging features between the two types of AD.
Key words: early-onset Alzheimer's disease    late-onset Alzheimer's disease    magnetic resonance imaging    single-photon emission computed tomography    positron emission tomography    

阿尔茨海默病(Alzheimer’s disease, AD)是最常见的神经系统退行性疾病,也是老年期痴呆最常见的原因,其发病率随着年龄的增长而增加,已成为一个日益严重的健康问题[1]。AD与年龄显著相关,绝大多数AD患者在65岁以后出现症状,称为晚发性AD(late-onset AD, LOAD);大约5%的患者在65岁之前第一次出现症状,属于早发性AD(early-onset AD, EOAD)[2]。EOAD和LOAD在遗传背景、临床表现、进程和神经病理方面存在显著差异。EOAD临床进展更快,非记忆的认知领域如注意力、语言、视空间能力、执行功能等受累更明显,而LOAD的主要表现为记忆功能减退[2]。近年来,多模态影像技术的应用和各种新型示踪剂的开发为AD影像生物标志物的研究提供了更多新的视角。本文将对EOAD和LOAD的影像学研究进展进行综述,探讨两者的影像学特征,以期为临床早期诊断与精准治疗提供帮助。

1 磁共振成像 1.1 结构磁共振

结构磁共振(structural magnetic resonance imaging, sMRI)在AD的辅助诊断及病情监测中应用最为广泛。虽然部分研究表明海马萎缩是EOAD和LOAD共同具备的主要特征[3],但EOAD和LOAD在典型的脑萎缩模式上仍具有显著差异。多个研究证实,EOAD的灰质萎缩范围更为广泛,且累及大部分新皮质区,而LOAD患者的内侧颞叶萎缩则更为严重[4-6]。有研究[7]追踪AD患者灰质萎缩进展的动态变化,发现基线时,EOAD患者的额叶、颞叶、顶叶和枕叶皮质已出现广泛萎缩,而LOAD患者仅在内侧颞区出现明显萎缩。广泛的皮质萎缩作为EOAD的一个关键特征,被认为与广泛的认知功能损害密切相关[8]

目前,通过运用基于体素的形态学测量(voxel-based morphometry, VBM)、皮质厚度测量可以在AD疾病早期就明确新皮质的形态学变化。众多影像学指标,如脑沟宽度、海马体积(hippocampal volumes, HV)、内侧颞叶萎缩(medial temporal atrophy, MTA)等被用来对AD的影像学特征进行定量分析。Hamelin等[9]探讨了脑沟宽度和HV在AD诊断中的应用,结果发现对EOAD而言,颞顶叶皮质的脑沟宽度具备区分患者与年龄匹配对照组的最佳能力;而对LOAD来说,HV是区别患者和年龄匹配对照组的最佳指标。这与EOAD的广泛皮质萎缩,LOAD的内侧颞叶萎缩模式是一致的。Falgàs等[10]试图通过MTA、HV等指标阐明LOAD、EOAD之间的差异,结果发现,LOAD与其他组相比HV明显减小;与非遗忘型EOAD及健康组相比,遗忘型EOAD患者的HV较小,HV在区分LOAD、遗忘型EOAD与健康对照组之间具有优势。

1.2 弥散张量成像

弥散张量成像(diffusion tensor imaging, DTI)利用水分子弥散的各向异性对脑白质纤维束进行成像[11],已经被广泛应用于AD的脑白质(white matter, WM)病变研究。目前认为AD患者多个脑区白质完整性发生变化[12-13]。AD患者的DTI研究提示,WM出现了遵循皮质萎缩解剖分布的弥散特性改变[14],但目前关于EOAD和LOAD的WM病变模式差异的探讨较少。Migliaccio等[15]研究发现,EOAD患者WM萎缩集中在扣带回后部及楔前叶区域,而LOAD显示内侧颞区WM损伤。Canu等[16]发现,LOAD患者多表现为选择性的海马旁WM丢失;而EOAD患者则表现出更广泛、更严重的脑后部WM损伤模式[17-18],提示EOAD是一种进展更快的疾病形式。

1.3 静息状态功能磁共振成像

静息状态功能磁共振成像(resting-state functional magnetic resonance imaging, rsfMRI)通过检测血氧水平依赖信号间接反映神经元及神经网络活动,可在AD症状出现前检测到静息态脑网络的早期变化。Adriaanse等[19]发现,LOAD在默认网络中的功能连接(functional connectivity, FC)减少,而EOAD在所有网络中的FC都有减低。与LOAD相比,EOAD的脑组织FC破坏更广泛[18-19]。不仅如此,Pini等[20]研究者发现,pLOAD(prodromal LOAD)与记忆网络中的异常连接相关,而pEOAD(prodromal EOAD)与执行和视空间功能网络受累相关。

此外,EOAD和LOAD患者在海马与其他脑区的连接特征上也有所区别[21]:LOAD海马与多处皮质区域的FC降低,而EOAD患者双侧海马的FC则相对保留,EOAD和LOAD海马连接的差异为疾病早期观察到的临床表现的差异提供了进一步证据。

1.4 动脉自旋标记

动脉自旋标记(arterial spin labeling, ASL)是一种无创性磁共振灌注技术,可在不使用静脉对比剂的情况下对脑血流量进行定量分析。Verclytte研究团队首次利用ASL技术评估EOAD患者脑灌注改变,研究发现EOAD低灌注区位于顶叶、楔前叶、右侧后扣带皮质及额叶,但是该研究缺乏对照组[22]。Verclytte等[23]近期研究发现,与LOAD相比,EOAD的低灌注趋势更明显,而遗忘型EOAD和非遗忘型EOAD的低灌注模式也存在显著差异,其中非遗忘型EOAD具有更加严重和广泛的低灌注模式。

2 单光子发射计算机断层扫描

99mTc-六甲基丙胺肟(99mTc-hexamethyl propyleneamine oxime, HMPAO)是一种同位素标记的脂溶性化合物,可以自由通过血脑屏障,它在脑组织中的分布被认为与脑血流一致[24]。目前,HMPAO-单光子发射计算机断层扫描(single-photon emission computed tomography, SPECT)脑灌注在AD中的研究结果并不一致。Caffarra等[25]在准确匹配病程和认知障碍等条件后却发现EOAD和LOAD在HMPAO-SPECT上并无显著的灌注差异。Hanyu等[26]对灌注模式的定性评估提示双侧颞顶叶低灌注在EOAD患者中更常见。Kemp等[27]发现EOAD患者有明显的后部皮质关联区受累,而LOAD患者则表现为明显的内侧颞叶低灌注。

3 正电子发射断层扫描(positron emission tomography, PET) 3.1 2-氟-2-脱氧-D-葡萄糖(18F-Fluorodeoxyglucose, 18F-FDG)

EOAD和LOAD的脑葡萄糖代谢变化的分布特点不同。EOAD患者总葡萄糖代谢降低的范围和程度均大于LOAD:EOAD组在顶叶、额叶、楔前叶、扣带回皮质区域均表现出更严重的低代谢,而LOAD的代谢降低则在颞叶和边缘叶更为明显[22, 28-31]。Kim等[28]使用统计参数图(statistical parametric mapping, SPM)分析EOAD和LOAD中的葡萄糖代谢模式,结果发现随着认知障碍加重,EOAD脑代谢降低的更迅速;但当EOAD和LOAD患者处于同样严重程度的痴呆时,前者的低代谢更严重,提示EOAD可能具有比LOAD患者更多的功能储备。

3.2 [11C]-匹兹堡复合物B

[11C]-匹兹堡复合物B([11C]-the Pittsburgh compound B, [11C]-PIB)可以与脑内β淀粉样蛋白(amyloid β, Aβ)特异性结合,是目前广泛用于反映脑内Aβ负荷的生物标志物。Choo等[32]研究发现,EOAD患者[11C]-PIB滞留率明显高于LOAD患者,但是该研究中45%的LOAD患者是PIB阴性的,这影响了结果的准确性。但也有研究认为EOAD和LOAD的全脑皮质[11C]-PIB结合率无显著差异[33-34]。Cho[35]等研究者为了最大限度体现发病年龄的影响效应,将发病年龄小于60岁的患者定义为EOAD,发病年龄大于70岁的为LOAD,虽然全脑平均PIB指数无显著差异,但通过SPM与感兴趣区进一步分析发现EOAD患者在双侧基底节区、双侧丘脑、左颞上皮质和左楔叶中有较高的PIB指数。但是,Ortner等[36]研究者使用与之同样的年龄界限,却未能在全脑或局部的PIB摄取率方面发现显著差异。上述研究结果的异质性,可能与研究设计、数据处理方法等因素相关,有待今后进一步验证。

3.3 18F-AV-1451, Flortaucipir

18F-AV-1451是一种具有高亲和力的PET示踪剂,用于检测成对螺旋细丝状tau蛋白,可以显示体内神经原纤维缠结的负荷[37]。研究发现:EOAD在包括额叶、顶叶、枕叶、扣带回、楔前叶在内的新皮质中出现了弥漫性的示踪剂滞留,而LOAD患者的异常tau蛋白聚集主要局限在颞叶[38-40]。tau蛋白的不同脑地形图分布可能对EOAD患者的认知障碍形式产生影响。与LOAD相比,EOAD在顶枕叶皮质中的摄取更高,与患者的视空间功能障碍有关,而LOAD颞叶皮质的造影剂滞留则与语言记忆功能障碍有关[39]

3.4 [11C]4-乙酰氧基-N-甲基哌啶

[11C]4-乙酰氧基-N-甲基哌啶(N-[11C]methylpiperidinyl-4-acetate, [11C]-MP4A)是乙酰胆碱类似物的PET放射示踪记,用于评估局部脑组织内的乙酰胆碱酯酶(acetylcholinesterase, AChE)活性。研究认为AD患者的新皮质及海马中AChE活性显著且广泛降低[41-42]。Hirano等[43]研究发现与健康对照组相比,EOAD和LOAD在顶叶、颞叶和枕叶皮质的AChE均有下降,但EOAD组皮质受累范围更广。EOAD与LOAD之间皮质胆碱能功能障碍的差异可能对AD的胆碱能药物疗效评估有一定的指导意义。

4 小结

本文从多模态影像技术应用的角度较为全面的阐述了EOAD与LOAD两种亚型AD的影像学特征,两者虽然在病理上均以淀粉样斑块沉积和神经原纤维缠结形成为共同特点,但MRI、SPECT和PET等影像学研究提示两者在脑皮质萎缩、白质改变、脑血流灌注、葡萄糖代谢、淀粉样蛋白和神经原纤维缠结形成的脑区分布等诸多方面表现出不同的特征。随着新型示踪剂的不断的开发,影像数据分析方法的逐步优化,比如纹理分析在AD影像中的应用,将会为不同亚型AD的早期诊断和临床个体化治疗提供更多线索。

参考文献
[1]
Chiaravalloti A, Barbagallo G, Castellano AE, et al. [18F] FBB cortical uptake is not related to the age of onset of Alzheimer's disease[J]. Nucl Med Commun, 2020, 41(2): 175-180. DOI:10.1097/MNM.0000000000001131
[2]
Mendez MF. Early-onset Alzheimer disease and its variants[J]. Continuum (Minneap Minn), 2019, 25(1): 34-51. DOI:10.1212/CON.0000000000000687
[3]
Eckerström C, Klasson N, Olsson E, et al. Similar pattern of atrophy in early- and late-onset Alzheimer's disease[J]. Alzheimers Dement (Amst), 2018, 10: 253-259. DOI:10.1016/j.dadm.2018.02.001
[4]
Frisoni GB, Pievani M, Testa C, et al. The topography of grey matter involvement in early and late onset Alzheimer's disease[J]. Brain, 2007, 130(Pt 3): 720-730. DOI:10.1093/brain/awl377
[5]
Möller C, Vrenken H, Jiskoot L, et al. Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease[J]. Neurobiol Aging, 2013, 34(8): 2014-2022. DOI:10.1016/j.neurobiolaging.2013.02.013
[6]
Dickerson BC, Brickhouse M, McGinnis S, et al. Alzheimer's disease:the influence of age on clinical heterogeneity through the human brain connectome[J]. Alzheimers Dement (Amst), 2017, 6: 122-135. DOI:10.1016/j.dadm.2016.12.007
[7]
Migliaccio R, Agosta F, Possin KL, et al. Mapping the progression of atrophy in early- and late-onset Alzheimer's disease[J]. J Alzheimers Dis, 2015, 46(2): 351-364. DOI:10.3233/JAD-142292
[8]
van der Vlies AE, Staekenborg SS, Admiraal-Behloul F, et al. Associations between magnetic resonance imaging measures and neuropsychological impairment in early and late onset Alzheimer's disease[J]. J Alzheimers Dis, 2013, 35(1): 169-178. DOI:10.3233/JAD-121291
[9]
Hamelin L, Bertoux M, Bottlaender M, et al. Sulcal morphology as a new imaging marker for the diagnosis of early onset Alzheimer's disease[J]. Neurobiol Aging, 2015, 36(11): 2932-2939. DOI:10.1016/j.neurobiolaging.2015.04.019
[10]
Falgàs N, Sánchez-Valle R, Bargalló N, et al. Hippocampal atrophy has limited usefulness as a diagnostic biomarker on the early onset Alzheimer's disease patients:A comparison between visual and quantitative assessment[J]. Neuroimage Clin, 2019, 23: 101927. DOI:10.1016/j.nicl.2019.101927
[11]
Meoded A, Huisman TAGM. Diffusion tensor imaging of brain malformations:exploring the internal architecture[J]. Neuroimaging Clin N Am, 2019, 29(3): 423-434. DOI:10.1016/j.nic.2019.03.004
[12]
Sexton CE, Kalu UG, Filippini N, et al. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease[J]. Neurobiol Aging, 2011, 32(12): 2322. DOI:10.1016/j.neurobiolaging.2010.05.019
[13]
Teipel SJ, Walter M, Likitjaroen Y, et al. Diffusion tensor imaging in Alzheimer's disease and affective disorders[J]. Eur Arch Psychiatry Clin Neurosci, 2014, 264(6): 467-483. DOI:10.1007/s00406-014-0496-6
[14]
Agosta F, Pievani M, Sala S, et al. White matter damage in Alzheimer disease and its relationship to gray matter atrophy[J]. Radiology, 2011, 258(3): 853-863. DOI:10.1148/radiol.10101284
[15]
Migliaccio R, Agosta F, Possin KL, et al. White matter atrophy in Alzheimer's disease variants[J]. Alzheimers Dement, 2012, 8: S78-e2. DOI:10.1016/j.jalz.2012.04.010
[16]
Canu E, Frisoni GB, Agosta F, et al. Early and late onset Alzheimer's disease patients have distinct patterns of white matter damage[J]. Neurobiol Aging, 2012, 33(6): 1023-1033. DOI:10.1016/j.neurobiolaging.2010.09.021
[17]
Canu E, Agosta F, Spinelli EG, et al. White matter microstructural damage in Alzheimer's disease at different ages of onset[J]. Neurobiol Aging, 2013, 34(10): 2331-2340. DOI:10.1016/j.neurobiolaging.2013.03.026
[18]
Li KC, Luo X, Zeng QZ, et al. Distinct patterns of interhemispheric connectivity in patients with early- and late-onset Alzheimer's disease[J]. Front Aging Neurosci, 2018, 10: 261. DOI:10.3389/fnagi.2018.00261
[19]
Adriaanse SM, Binnewijzend MA, Ossenkoppele R, et al. Widespread disruption of functional brain organization in early-onset Alzheimer's disease[J]. PLoS One, 2014, 9(7): e102995. DOI:10.1371/journal.pone.0102995
[20]
Pini L, Geroldi C, Galluzzi S, et al. Age at onset reveals different functional connectivity abnormalities in prodromal Alzheimer's disease[J]. Brain Imaging Behav, 2020. DOI:10.1007/s11682-019-00212-6.Epubaheadofprint
[21]
Park KH, Noh Y, Choi EJ, et al. Functional connectivity of the hippocampus in early- and vs. late-onset Alzheimer's disease[J]. J Clin Neurol, 2017, 13(4): 387-393. DOI:10.3988/jcn.2017.13.4.387
[22]
Verclytte S, Lopes R, Lenfant P, et al. Cerebral hypoperfusion and hypometabolism detected by arterial spin labeling MRI and FDG-PET in early-onset Alzheimer's disease[J]. J Neuroimaging, 2016, 26(2): 207-212. DOI:10.1111/jon.12264
[23]
Verclytte S, Lopes R, Viard R, et al. Differences in cortical perfusion detected by arterial spin labeling in nonamnestic and amnestic subtypes of early-onset Alzheimer's disease[J]. J Neuroradiol, 2020, 47(4): 284-291. DOI:10.1016/j.neurad.2019.03.017
[24]
Swan A, Waddell B, Holloway G, et al. The diagnostic utility of 99mTc-HMPAO SPECT imaging:a retrospective case series from a tertiary referral early-onset cognitive disorders clinic[J]. Dement Geriatr Cogn Disord, 2015, 39(3-4): 186-193. DOI:10.1159/000369551
[25]
Caffarra P, Scaglioni A, Malvezzi L, et al. Age at onset and SPECT imaging in Alzheimer's disease[J]. Dementia, 1993, 4(6): 342-346. DOI:10.1159/000107343
[26]
Hanyu H, Nakano S, Abe S, et al. Differences of neuroimaging between early-onset and late-onset Alzheimer-type dementia[J]. Rinsho Shinkeigaku, 1995, 35(10): 1104-1109.
[27]
Kemp PM, Holmes C, Hoffmann SM, et al. Alzheimer's disease:differences in technetium-99m HMPAO SPECT scan findings between early onset and late onset dementia[J]. J Neurol Neurosurg Psychiatry, 2003, 74(6): 715-719. DOI:10.1136/jnnp.74.6.715
[28]
Kim EJ, Cho SS, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer's disease:an SPM analysis of 120 patients[J]. Brain, 2005, 128(Pt 8): 1790-1801. DOI:10.1093/brain/awh539
[29]
Chiaravalloti A, Koch G, Toniolo S, et al. Comparison between early-onset and late-onset Alzheimer's disease patients with amnestic presentation:CSF and (18)F-FDG PET study[J]. Dement Geriatr Cogn Dis Extra, 2016, 6(1): 108-119. DOI:10.1159/000441776
[30]
Aziz AL, Giusiano B, Joubert S, et al. Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer's disease[J]. Neurobiol Aging, 2017, 54: 22-30. DOI:10.1016/j.neurobiolaging.2017.02.010
[31]
Tondo G, Iaccarino L, Caminiti SP, et al. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer's disease[J]. Alzheimers Res Ther, 2020, 12(1): 50. DOI:10.1186/s13195-020-00619-0
[32]
Choo IH, Lee DY, Kim JW, et al. Relationship of amyloid-β burden with age-at-onset in Alzheimer disease[J]. Am J Geriatr Psychiatry, 2011, 19(7): 627-634. DOI:10.1097/JGP.0b013e318202bf3a
[33]
Rabinovici GD, Furst AJ, Alkalay A, et al. Increased metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid burden[J]. Brain, 2010, 133(Pt 2): 512-528. DOI:10.1093/brain/awp326
[34]
Ossenkoppele R, Zwan MD, Tolboom N, et al. Amyloid burden and metabolic function in early-onset Alzheimer's disease:parietal lobe involvement[J]. Brain, 2012, 135(Pt 7): 2115-2125. DOI:10.1093/brain/aws113
[35]
Cho H, Seo SW, Kim JH, et al. Amyloid deposition in early onset versus late onset Alzheimer's disease[J]. J Alzheimers Dis, 2013, 35(4): 813-821. DOI:10.3233/JAD-121927
[36]
Ortner M, Kurz A, Alexopoulos P, et al. Small vessel disease, but neither amyloid load nor metabolic deficit, is dependent on age at onset in Alzheimer's disease[J]. Biol Psychiatry, 2015, 77(8): 704-710. DOI:10.1016/j.biopsych.2014.01.019
[37]
Malpetti M, Kievit RA, Passamonti L, et al. Microglial activation and tau burden predict cognitive decline in Alzheimer's disease[J]. Brain, 2020, 143(5): 1588-1602. DOI:10.1093/brain/awaa088
[38]
Schöll M, Ossenkoppele R, Strandberg O, et al. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer's disease[J]. Brain, 2017, 140(9): 2286-2294. DOI:10.1093/brain/awx171
[39]
Cho H, Choi JY, Lee SH, et al. Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer's disease[J]. Neurobiol Aging, 2017, 53: 103-111. DOI:10.1016/j.neurobiolaging.2017.01.024
[40]
Smith R, Wibom M, Olsson T, et al. Posterior accumulation of tau and concordant hypometabolism in an early-onset Alzheimer's disease patient with presenilin-1 mutation[J]. J Alzheimers Dis, 2016, 51(2): 339-343. DOI:10.3233/JAD-151004
[41]
Marcone A, Garibotto V, Moresco RM, et al. [11C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer's disease, and dementia with Lewy bodies:a Bayesian method and voxel-based analysis[J]. J Alzheimers Dis, 2012, 31(2): 387-399. DOI:10.3233/JAD-2012-111748
[42]
Gabr MT, Brogi S. MicroRNA-Based multitarget approach for Alzheimer's disease:discovery of the First-In-Class dual inhibitor of acetylcholinesterase and MicroRNA-15b biogenesis[J]. J Med Chem, 2020, 63(17): 9695-9704. DOI:10.1021/acs.jmedchem.0c00756
[43]
Hirano S, Shinotoh H, Shimada H, et al. Voxel-Based acetylcholinesterase PET study in early and late onset Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62(4): 1539-1548. DOI:10.3233/JAD-170749