国际神经病学神经外科学杂志  2020, Vol. 47 Issue (3): 325-329  DOI: 10.16636/j.cnki.jinn.2020.03.022

扩展功能

文章信息

王彬茹, 马英
WANG Bin-Ru, MA Ying
miRNA靶基因3'-UTR单核苷酸多态性在缺血性脑卒中的研究进展
Research progress in single nucleotide polymorphisms in the 3'-UTR of miRNA target gene in ischemic stroke
国际神经病学神经外科学杂志, 2020, 47(3): 325-329
Journal of International Neurology and Neurosurgery, 2020, 47(3): 325-329

文章历史

收稿日期: 2020-01-10
修回日期: 2020-04-13
miRNA靶基因3'-UTR单核苷酸多态性在缺血性脑卒中的研究进展
王彬茹, 马英    
川北医学院附属医院神经内科, 四川 南充 637000
摘要:缺血性脑卒中(IS)是脑组织缺血坏死引起的神经功能障碍性疾病,其发生发展是遗传因素和环境危险因素共同作用的结果。微小RNA(miRNA)通过与靶基因mRNA 3'端非编码区(3'-UTR)碱基配对,引起靶基因mRNA的降解或翻译抑制,在转录后水平调控基因表达。IS相关基因miRNA靶区存在的单核苷酸多态性(SNPs)与IS的遗传易感性和预后有关。该文拟对miRNAs靶基因(VEGF、IL-1、NLRP3、MTHFR、PON1、BDNF、CRP、HDAC9)3'-UTR SNPs与IS遗传易感性和预后的关联做一综述。
关键词缺血性脑卒中    微小RNA    单核苷酸多态性    3'端非编码区    
Research progress in single nucleotide polymorphisms in the 3'-UTR of miRNA target gene in ischemic stroke
WANG Bin-Ru, MA Ying    
Department of Neurology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
Abstract: Ischemic stroke (IS) is a neurological dysfunction caused by the avascular necrosis of brain tissues, and its development and progression are the result of both genetic and environmental factors. MicroRNA (miRNA) regulates gene expression at the post-transcriptional level through pairing with the 3'-untranslated region (3'-UTR) of the target gene mRNA, which leads to degradation or translation inhibition of the target gene mRNA. Single nucleotide polymorphisms (SNPs) in the miRNA target regions of IS-related genes are associated with genetic susceptibility and prognosis of IS. This article reviews the association between the SNPs in the 3'-UTRs of miRNA target genes (VEGF, IL-1, NLRP3, MTHFR, PON1, BDNF, CRP, and HDAC9) and genetic susceptibility and prognosis of IS.
Key words: ischemic stroke    microRNA    single nucleotide polymorphisms    3'-untranslated region    

缺血性脑卒中(ischemic stroke, IS)是最常见的卒中类型,具有发病率高、死亡率高、致残率高、复发率高等特点,其发病受多基因遗传因素影响[1]。中枢神经系统存在大量微小RNAs(microRNAs, miRNAs),参与神经细胞的发育、分化和生理功能调控[2]。miRNAs的表达失调与IS的炎症、兴奋性毒性、氧化应激、凋亡、血脑屏障损伤、血管生成等病理生理过程相关[3]。单核苷酸多态性(single nucleotide polymorphisms, SNPs)是基因组水平上因单个核苷酸的变异/突变所引起的DNA序列多态性,是人类基因组最普遍的基因突变。IS相关基因3'端非编码区(3'-untranslated region, 3'-UTR)的SNPs影响miRNAs与靶基因相互作用,这些SNPs与IS易感性及预后存在关联。因此,对IS相关基因3'-UTR的SNPs进行研究,探索其在IS发生、发展过程的作用以及其对治疗和预后影响,对明确IS遗传分子学机制、制定防治策略具有重要意义。

1 miRNA靶位点的SNPs

miRNAs是一组内源性非编码小分子单链RNA,其生物合成过程包括微处理复合物的加工、核输出和Dicer酶处理,成熟的miRNA与AGO(Argonaute)蛋白形成RNA诱导的沉默复合物(RNA induced silencing complex, RISC)。miRNAs可与基因启动子区域结合,对组蛋白进行修饰,在转录水平上调控基因表达;通过RISC与靶mRNA 3'-UTR区完全或不完全互补配对,使靶mRNA降解,从而引起靶基因翻译抑制,最终参与调控下游分子信号通路。已有研究证实靶基因3'-UTR存在SNPs,这些SNPs通过改变原有miRNAs的结合位点或产生新结合位点,影响miRNAs对基因的转录后调控, 导致相关基因的表型改变[4]

2 IS相关基因3'-UTR的SNPs

随着生物遗传信息学的发展及全新的检测手段,目前已有许多关于IS相关基因编码区SNPs的功能性研究,但位于miRNAs结合位点3'-UTR SNPs与IS关联性及功能性研究相对较少。现已报道与IS相关且3'-UTR存在SNPs的基因有血管内皮生长因子(vascular endothelial growth factor, VEGF)、白细胞介素-1(interleukin-1, IL-1)、NOD样受体家族蛋白3(nod-like receptor protein 3, NLRP3)、亚甲基四氢叶酸还原酶(methylenetetrahydrofolate reductase, MTHFR)、对氧磷酶1(paraoxonase1, PON1)、脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)、C反应蛋白(C-reaction protein, CRP)和组蛋白去乙酰化酶9(recombinant histone deacetylase9, HDAC9)。

2.1 VEGF

VEGF是血管生成和内皮细胞增殖的主要调节因子,参与神经保护、神经发生、血管生成、血管修复[5-6]。VEGF基因3'-UTR存在多个SNPs,包括rs3025040、rs3025039、rs10434、rs3025053,其中rs3025040、rs3025039已被证实与IS相关。有研究表明,rs3025039与VEGF的表达水平相关[7],Binod等[8]的病例对照研究发现rs3025039与IS风险增加相关。而Zhao等[9]的研究结果表明,rs3025039基因型与IS的易感性及卒中严重程度无显著关联,但rs3025039 TC+TT基因型与CC基因型相比预后不良的风险增加1.99倍。该研究观察到rs3025040与rs3025039表现出很强的连锁不平衡(r2=1.0)。进一步荧光素酶分析发现,rs3025040 T等位基因显著降低4种细胞的荧光素酶活性,表明rs3025039影响miR-199a和miR-199b与rs3025040多态位点VEGF mRNA的结合,导致VEGF的低水平表达,从而增加IS预后不良的风险。

2.2 IL-1

IL-1是脑缺血损伤后关键的炎症调节因子,主要通过IL-1α和IL-1β两种亚型起作用[10]。Wang等[11]的病例对照研究发现年龄、高血压、血清总胆固醇、甘油三酯、低密度脂蛋白、rs3783553 ins/ins基因型是IS的独立危险因素。进一步实验证明,rs3783553影响miR-122与IL-1α mRNA的结合,导致IL-1α水平升高,最终增加IS的患病风险。Yang等[12]通过病例对照研究和体外细胞实验发现,IL-1β-511 TT/CC基因型通过调节NF-κB miRNA、iNOS、MMP-2和Bax蛋白表达影响IS的发病风险。

2.3 NLRP3

NLRP3炎症体在小胶质细胞、星形胶质细胞、神经元、内皮细胞等细胞中多样性表达,可通过激活免疫炎症反应参与动脉粥样硬化、心肌梗死和IS的病理生理过程[13-14]。据报道NLRP3 mRNA 3'-UTR中含有miR-223结合位点,在小胶质细胞激活过程中miR-223可下调NLRP3表达,通过Caspase-1和IL-1抑制炎症反应、减轻脑水肿及改善神经功能[15]。rs10754558多态性位于NLRP3的3'-UTR,Zhu等[16]发现,NLRP3 rs10754558 G等位基因可能干扰miR-223主要的结合位点,影响mRNA与miR-223结合,从而上调NLRP3的转录。该实验结果表明,NLRP3 rs10754558可能影响中国汉族人群的IS的患病风险,但缺乏在其他人群复制研究和体内功能学实验验证。

2.4 MTHFR

MTHFR是同型半胱氨酸(homocysteine, Hcy)和叶酸代谢的关键酶,降低MTHFR酶活性可增加血浆Hcy水平,降低血浆叶酸水平,促进卒中的发展。Jung等[17]通过病例对照研究发现,MTHFR 3'-UTR rs4846049和rs4846048与心源型IS的患病风险显著相关(MTHFR rs4846049 CC vs CA+AA: OR=2.145, 95%CI=1.203~3.827, P=0.010; MTHFR rs4846048 TT vs CC: OR=10.146, 95%CI=1.297~79.336, P=0.027)。He等[18]以500名IS患者和600名健康对照者为研究对象,检测MTHFR 3'-UTR五个SNPs,发现其中rs868014 TC/CC基因型与IS的患病风险和短期不良预后显著相关。进一步实验证明,MTHFR rs868014 TC/CC基因型可促进miR-1203结合,导致MTHFR在细胞中低水平表达,增加罹患IS的风险。Shi等[19]研究发现,MTHFR rs141884651 GA/AA基因型与IS的患病风险显著相关(GA基因型OR=0.68,95%CI=0.22~0.87,P=0.02;AA基因型OR=0.45,95%CI=0.29~0.58,P=0.001),A等位基因为IS保护因素(OR=0.57, 95%CI=0.29~0.69, P=0.002)。根据双荧光素酶测定,rs141884651减弱let-7f和miR-196a与靶基因mRNA的结合,从而负向调节MTHFR表达。

2.5 PON1

PONs是钙依赖性水解酶家族,主要由PON1、PON2和PON3基因组成,PON1基因多态性占个体间变异的60%以上[20],PON1的SNPs与冠状动脉疾病、糖尿病、IS等多种疾病相关[21-22]。Liu等[23]研究发现,PON1 rs3735590不同基因型(CC、CT、TT)的miR-616和PON1的结合存在差异,C等位基因通过干扰mRNA-miRNA结合导致PON1的低表达,从而增加IS的患病风险。

2.6 BDNF

BDNF是神经营养蛋白家族成员,参与调节正常神经元活性和卒中后恢复,包括细胞增殖和分化、轴突和树突生长、突触可塑性、血管生成以及周围和中枢神经元的发生[24]。Liu等[25]通过病例对照研究发现,BDNF 3'-UTR rs712442与IS的短期预后相关,利用荧光素酶测定证实,rs712442多态性改变miR-922与BDNF mRNA的结合,使得TC或CC基因型患者相对TT基因型的BDNF的表达水平升高,从而帮助神经功能的恢复,其结果表明rs712442可能是IS短期预后的保护因素。

2.7 CRP

CRP是由肝脏合成的血浆蛋白,通常被认为是一种炎性标记物,是IS功能预后的独立预测因子[26]。Elena等[27]通过生物信息学分析选取了30个炎症相关基因的68个SNPs,在1987例IS患者和698例健康对照中进行筛查,发现,包括CRP 3'-UTR rs1205在内的3个SNPs与心源型卒中相关。而Wu等[28]实验表明,rs1205杂合子携带者的IS患病风险显著低于野生纯合基因型。Zhang等[29]纳入378例IS患者和613例健康对照组进行研究,检测包括rs1205在内的4个CRP SNPs,结果显示其中3个SNPs(rs876537、rs1205和rs3093059)与血浆CRP水平显著相关。以上实验均对CRP rs1205做了人群的基因分型研究,但缺乏其机制的实验证据。

2.8 HDAC9

HDAC9主要介导调节乙酰化和去乙酰化,通常在脑和骨骼肌中高水平表达,可通过增加炎症反应、细胞凋亡、内皮细胞通透性障碍以及降低紧密连接蛋白的表达,导致氧―葡萄糖剥夺,从而诱导脑微血管内皮细胞功能障碍[30]。最近的几项全基因组关联分析(genome-wide association study, GWAS)数据已经确定,HDAC9基因多态性与大血管IS密切相关[31]。Rainer等[32]通过分析来自欧洲、澳大利亚和南亚共3127例IS患者和9778例正常对照的基因,确认HDAC9是大动脉粥样硬化型脑梗死(large-artery atherosclerosis stroke, LAS)的主要危险基因,并发现3'-UTR rs2023938与LAS相关。

3 其他IS相关基因miRNAs靶位点的SNPs

目前仍有许多卒中相关基因待确定,最近一项GWAS研究共总结了214个基因,其中包括120个卒中相关基因,62个可能导致卒中但暂无卒中患者人群研究的相关基因以及来自GWAS最新报道的32个卒中相关的基因可用于临床表型描述[33]。国际卒中遗传学联盟发起一项超过52万人的队列研究,该研究鉴定了32个与卒中发病机制密切相关的基因,其中10个在国际研究中曾被报道,而其余22个是既往未经报道的卒中相关的基因区域[34]。但目前的研究重点多放在全基因组测序和对外显子的检测,非编码区(包括3'-UTR)的多态性尚未被重视,卒中相关基因3'-UTR SNPs与IS易感功能性研究也有待进一步探索。

4 miRNAs及其结合位点SNPs在IS的治疗

miRNA与靶基因结合可能改变药物反应蛋白的表达,影响药物的吸收、代谢以及分布,miRNAs结合位点的SNPs可能导致耐药或药物敏感[35]。Sennblad等[36]利用计算机模拟预测工具设计了4个FXI 3'-UTR SNPs单倍型,探索miR-145或miR-181对FXI调节机制,其实验结果显示miR-145或miR-181的过表达可显著降低含有FXI 3'-UTR质粒转染细胞的荧光素酶活性,表明miR-145或miR-181通过靶向F11 mRNA的3'-UTR调节FXI的表达水平,但未发现这些SNPs对miRNA-mRNA的结合具有功能性作用。该研究结果为预防血栓提供新的治疗方向,使miRNAs拮抗剂治疗IS成为可能。

5 结语与展望

目前对miRNAs靶基因3'-UTR的SNPs与IS的研究主要包括关联性分析和功能验证两方面,通过将人群研究与体内外实验研究相结合,以期发现SNPs与IS关联的同时探索其分子生物学机制。但是一个miRNA可以调控多个靶基因,一个基因也可受到多个miRNAs的调控;miRNAs靶基因可参与IS的不同信号通路,形成复杂的调控网络。目前有关miRNAs的研究主要集中在单个miRNA与其靶基因及SNPs之间的功能验证上,然而对miRNAs的调控网络进行探索才能详细了解其复杂的转录后调控机制,以期为IS的诊断、治疗、预后提供更有价值的科学依据。

参考文献
[1]
Wu S, Wu B, Liu M, et al. Stroke in China:advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. DOI:10.1016/S1474-4422(18)30500-3
[2]
Quinlan S, Kenny A, Medina M, et al. MicroRNAs in Neurodegenerative Diseases[J]. Int Rev Cell Mol Biol, 2017, 334: 309-343. DOI:10.1016/bs.ircmb.2017.04.002
[3]
Li G, Morris-Blanco KC, Lopez MS, et al. Impact of microRNAs on ischemic stroke:From pre-to post-disease[J]. Progr Neurobiol, 2017, 163-164: 59-78.
[4]
Mullany LE, Herrick JS, Wolff RK, et al. Single nucleotide polymorphisms within MicroRNAs, MicroRNA targets, and MicroRNA biogenesis genes and their impact on colorectal cancer survival[J]. Genes Chrom Cancer, 2017, 56(4): 285-295. DOI:10.1002/gcc.22434
[5]
Jean Leblanc N, Guruswamy R, Elali A. Vascular Endothelial Growth Factor Isoform-B Stimulates Neurovascular Repair After Ischemic Stroke by Promoting the Function of Pericytes via Vascular Endothelial Growth Factor Receptor-1[J]. Mol Neurobiol, 2018, 55(5): 3611-3626.
[6]
Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke[J]. Int J Mol Sci, 2018, 19(5): 1362. DOI:10.3390/ijms19051362
[7]
Klimontov VV, Tyan NV, Orlov NB, et al. Association of Serum Levels and Gene Polymorphism of Vascular Endothelium Growth Factor With Ischemic Heart Disease in Type 2 Diabetic Patients[J]. Kardiologiia, 2017, 57(5): 17-22.
[8]
Yadav BK, Yadav R, Chang H, et al. Genetic Polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF Gene Are Correlated with Extracranial Internal Carotid Artery Stenosis and Ischemic Stroke[J]. Ann Clin Lab Sci, 2017, 47(2): 144-155.
[9]
Zhao J, Bai Y, Jin L, et al. A functional variant in the 3'-UTR of VEGF predicts the 90-day outcome of ischemic stroke in Chinese patients[J]. PLoS One, 2017, 12(2): :e0172709. DOI:10.1371/journal.pone.0172709
[10]
Salmeron K, Aihara T, Redondo-castro E, et al. IL-1alpha induces angiogenesis in brain endothelial cells in vitro:implications for brain angiogenesis after acute injury[J]. J Neurochem, 2016, 136(3): 573-580. DOI:10.1111/jnc.13422
[11]
Wang P, He Q, Liu C, et al. Functional polymorphism rs3783553 in the 3'-untranslated region of IL-1A increased the risk of ischemic stroke:A case-control study[J]. Medicine, 2017, 96(46): e8522. DOI:10.1097/MD.0000000000008522
[12]
Yang B, Zhao H, Bin X, et al. Influence of interleukin-1 beta gene polymorphisms on the risk of myocardial infarction and ischemic stroke at young age in vivo and in vitro[J]. Int J Clin Exp Pathol, 2015, 8(11): 13806-13813.
[13]
曹赠, 李亚培, 陈瑞芳, 等. NLRP3炎症体在血管疾病中的作用[J]. 中南大学学报(医学版), 2016, 41(11): 1232-1236. DOI:10.11817/j.issn.1672-7347.2016.11.020
[14]
Tong Y, Ding ZH, Zhan FX, et al. The NLRP3 inflammasome and stroke[J]. Int J Clin Exp Med, 2015, 8(4): 4787-4794.
[15]
Yang Z, Zhong L, Xian R, et al. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage[J]. Mol Immunol, 2015, 65(2): 267-276.
[16]
Zhu Z, Yan J, Geng C, et al. A Polymorphism Within the 3'UTR of NLRP3 is Associated with Susceptibility for Ischemic Stroke in Chinese Population[J]. Cell Mol Neurobiol, 2016, 36(6): 981-988. DOI:10.1007/s10571-015-0288-1
[17]
Kim JO, Park HS, Ryu CS, et al. Interplay between 3'-UTR polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and the risk of ischemic stroke[J]. 2017, 7(1): 12464.
[18]
He W, Lu M, Li G, et al. Methylene Tetrahydrofolate Reductase (MTHFR) rs868014 Polymorphism Regulated by miR-1203 Associates with Risk and Short Term Outcome of Ischemic Stroke[J]. Cell Physiol Biochem, 2017, 41(2): 701-710.
[19]
Shi J, He W, Wang Y, et al. Tagging Functional Polymorphism in 3' Untranslated Region of Methylene Tetrahydrofolate Reductase and Risk of Ischemic Stroke[J]. Cell Physiol Biochem, 2018, 46(3): 1019-1026.
[20]
Wei LK, Au A, Menon S, et al. Polymorphisms of MTHFR, eNOS, ACE, AGT, ApoE, PON1, PDE4D, and Ischemic Stroke:Meta-Analysis[J]. J Stroke Cerebrov Dis, 2017, 26(11): 2482-2493. DOI:10.1016/j.jstrokecerebrovasdis.2017.05.048
[21]
Szpakowicz A, Pepinski W, Waszkiewicz E, et al. The influence of renal function on the association of rs854560 polymorphism of paraoxonase 1 gene with long-term prognosis in patients after myocardial infarction[J]. Heart Vessels, 2016, 31(1): 15-22. DOI:10.1007/s00380-014-0574-8
[22]
Emami A, Tajadini M, Zeinalian M, et al. Paraoxonase 1 activities and its gene promoter single nucleotide polymorphisms (-108, -126, and-162) in diabetes mellitus[J]. Interv Med Appl Sci, 2018, 10(1): 27-32.
[23]
Liu ME, Liao YC, Lin RT, et al. A functional polymorphism of PON1 interferes with microRNA binding to increase the risk of ischemic stroke and carotid atherosclerosis[J]. Atherosclerosis, 2013, 228(1): 161-167.
[24]
Berretta A, Tzeng YC, Clarkson AN. Post-stroke recovery:the role of activity-dependent release of brain-derived neurotrophic factor[J]. Exp Rev Neurother, 2014, 14(11): 1335-1344. DOI:10.1586/14737175.2014.969242
[25]
Liu BH, He W, Liu DH. Functional BDNF rs7124442 Variant Regulated by miR-922 is Associated with Better Short-Term Recovery of Ischemic Stroke[J]. Ther Clin Risk Manag, 2019, 15: 1369-1375. DOI:10.2147/TCRM.S225536
[26]
Ye Z, Zhang H, Sun L, et al. GWAS-Supported CRP Gene Polymorphisms and Functional Outcome of Large Artery Atherosclerotic Stroke in Han Chinese[J]. Neuromolecular Med, 2018, 20(2): 225-232. DOI:10.1007/s12017-018-8485-y
[27]
Elena M, Jurek K, Caty C, et al. An Inflammatory Polymorphisms Risk Scoring System for the Differentiation of Ischemic Stroke Subtypes[J]. Med Inflamm, 2015, 2015: 1-7.
[28]
Wu Z, Huang Y, Huang J, et al. Impact of CRP gene and additional gene-smoking interaction on ischemic stroke in a Chinese Han population[J]. Neurol Res, 2017, 39(5): 442-447. DOI:10.1080/01616412.2017.1297905
[29]
Zhang X, Wang A, Zhang J, et al. Association of plasma C-reactive protein with ischaemic stroke:a Mendelian randomization study[J]. Eur J Neurol, 2020, 27(3): 565-571. DOI:10.1111/ene.14113
[30]
Guo QG, Zhang Y, Xu JN, et al. Association Between the Gene Polymorphisms of HDAC9 and the Risk of Atherosclerosis and Ischemic Stroke[J]. Pathol Oncol Res, 2016, 22(1): 103-107. DOI:10.1007/s12253-015-9978-8
[31]
Zhou X, Guan T, Li S, et al. The association between HDAC9 gene polymorphisms and stroke risk in the Chinese population:A meta-analysis[J]. Scientific reports, 2017, 7(1): 2095-2128. DOI:10.1038/s41598-017-02013-7
[32]
Malik R, Dau T, Gonik M, et al. Common coding variant in SERPINA1 increases the risk for large artery stroke[J]. Proc Natl Acad, 2017, 114(14): 3613-3618. DOI:10.1073/pnas.1616301114
[33]
Llinca A, Samuelsson S, Piccinellip, et al. A stroke gene panel for whole-exome sequencing[J]. Eur J Hum Genet, 2018, 27(2): 317-324.
[34]
Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520, 000 subjects identifies 32 loci associated with stroke and stroke subtypes[J]. Nat Genet, 2018, 50(4): 524-537. DOI:10.1038/s41588-018-0058-3
[35]
Swart M, Dandara C. Genetic variation in the 3'-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7:potential effects on regulation by microRNA and pharmacogenomics relevance[J]. Front Genet, 2014, 4(5): 167.
[36]
Sennblad B, Basu S, Mazur J, et al. Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels[J]. Human Mol Genet, 2017, 26(3): 637-649.