国际神经病学神经外科学杂志  2016, Vol. 43 Issue (3): 283-286

扩展功能

文章信息

袁挺, 卢明
低氧预处理间充质干细胞治疗缺血缺氧性脑损伤的研究进展
国际神经病学神经外科学杂志, 2016, 43(3): 283-286

文章历史

收稿日期: 2016-03-08
修回日期: 2016-07-18
低氧预处理间充质干细胞治疗缺血缺氧性脑损伤的研究进展
袁挺, 卢明     
湖南师范大学第二附属医院/解放军163医院神经外科, 湖南省长沙市 410003
摘要: 间充质干细胞(MSCs)是一类具有多向分化潜能的成体干细胞,它能促进损伤区域脑组织的功能恢复。MSCs在生理条件下生长的氧浓度低于传统实验条件下21%氧浓度,低氧预处理MSCs能增强它对低氧的耐受能力,增加它的增殖活性,减少它的凋亡,促进损伤区域的血管形成。移植低氧预处理后的间充质干细胞治疗缺血缺氧性脑损伤,能减轻损伤区域的炎症反应,减少神经细胞的凋亡,促进神经功能的恢复,达到治疗缺血缺氧性脑损伤的目的。
关键词间充质干细胞     低氧预处理     缺血缺氧性脑损伤     细胞移植    

当脑部组织氧供不足,会导致缺血缺氧性脑损伤的发生。表现为兴奋或迟钝,肌张力正常或减低,严重的会出现昏迷、肌张力松软、惊厥等,甚至导致患者死亡,多伴有严重的后遗症,如肢体活动障碍、脑瘫、癫痫等。缺血缺氧性脑损伤的发病机理是一系列的复杂过程,通过单一因素的干预达到有效的治疗是困难的,目前除了常规的内科治疗及外科手术治疗外,细胞移植成为治疗缺血缺氧性脑损伤的一种新的治疗方法。随着对间充质干细胞(mesenchymal stem cells,MSCs)研究的认识,MSCs移植成为治疗缺血缺氧性脑损伤的研究热点。有研究表明MSCs移植治疗缺血缺氧性脑损伤是有效的[1-3]

1 间充质干细胞的特性

MSCs属于多能干细胞,来源于发育早期的外胚层和中胚层,存在于人体的多种组织中,具有多向分化潜能,在适宜的培养条件下能分化为神经细胞、脂肪细胞、肌细胞、成骨细胞、软骨细胞、血管内皮细胞等[4, 5]。MSCs除了具有多向分化潜能外,还具有免疫调控、造血支持等生物学特性,能明显减轻组织的炎症反应[6, 7]。MSCs具有治疗缺血缺氧性脑损伤的潜力,它不仅可以通过旁分泌作用减轻损伤区域的炎症反应,也可以分化替代已经凋亡的神经细胞[8, 9]。MSCs具有其它干细胞所没有的特性:①来源丰富;②在体外容易扩增,安全性高;③在特定条件下可向其它胚层细胞分化[10-13]。目前国际上有以下三个标准定义MSCs[14]:①在标准组织培养基培养条件下MSCs能贴壁生长;②MSCs表达特定的细胞表面标记物CD73、CD90和CD105,阴性表达CD45、CD34、CD14、CD11b、CD79α、CD19 和HLA-DR表面分子;③在体外培养条件下,MSCs能分化为其它细胞,如成骨细胞、脂肪细胞、软骨母细胞等。

2 低氧预处理后间充质干细胞的变化

MSCs在体内生理条件下的氧浓度低于21%的氧浓度,如在骨髓微环境中氧浓度为1%~7%[15-17],人体血液中氧浓度为10%~13%[18],脑组织氧浓度为3%~14%[19]。当组织发生损伤时,如血管梗死、组织坏死、炎症、水肿等,局部组织的氧浓度远远低于外界正常的氧浓度[18-21]。低氧预处理是指对MSCs进行短暂的非致命性低氧适应,使其对随后的低氧环境具有良好的耐受性[22]

2.1 低氧预处理后MSCs的免疫表型及染色体组型未发生改变

Bader等[23]研究证明在低氧预处理MSCs后,检测它的免疫表型和染色体组型,免疫表型阳性标记物CD73、CD90与CD105,阴性标记物CD14、CD34、CD45以及可检测水平克隆结构的染色体均未发生改变。这表明在低氧预处理MSCs后,没有改变MSCs基本特性的稳定性,当它移植到损伤组织时,致瘤性低,是一种较为安全的细胞。

2.2 低氧预处理提高了MSCs的增殖能力

低氧预处理提高了MSCs的增殖能力,增加了对低氧的耐受,减少了在低氧环境中的凋亡[15]。Boyette等[24]在研究中证明低氧预处理后的MSCs比常氧条件下培养的MSCs具有更强的集落形成能力和增殖能力,其细胞的凋亡率没有明显变化。另有实验证明,低氧预处理MSCs能起到稳定线粒体膜电位的作用,通过上调抗凋亡蛋白Bcl2 和血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达、促进Akt 磷酸化来起到抑制MSCs 凋亡的作用[25, 26]。Berniakovich等[27]通过对MSCs的细胞周期进行分析,在培养4 d后,3%氧浓度培养条件下的MSCs比21%氧浓度培养条件下的MSCs在S-G2/M分裂期的细胞数量多,表明在3%氧浓度培养条件下,MSCs的增殖能力得到增强。

2.3 低氧预处理提高了MSCs促进血管形成的能力

低氧预处理MSCs可提高其促进血管生成的能力[28]。在局部组织缺血的微环境下,MSCs能分泌一些具有促进血管生成的细胞因子,如VEGF和表皮生长因子(epidermal growth factor,EGF)[29]。低氧预处理MSCs能诱导促进血管生成的细胞因子的表达。Bader等[23]的研究表明低氧预处理后MSCs的VEGF mRNA的表达明显增加,VEGF的分泌在低氧预处理后的MSCs中增多;在低氧预处理后的MSCs与血管内皮细胞缺血共培养模型中,血管内皮细胞的增殖能力与迁徙能力均得到增强。Wang等[25]在实验中证实,将MSCs分别暴露在20%氧浓度和1%氧浓度下培养24 h,RT-PCR分析表明一些促进血管生成的细胞因子,如bFGF、VEGF、VEGF受体Flk-1和Ang-1等在1%氧浓度培养条件下的MSCs中均表达上调。这表明低氧预处理后的MSCs分泌的促进血管生成的细胞因子表达上调,具有更强的促进局部组织血管生成的能力。

2.4 低氧预处理提高了MSCs促进神经修复的能力

Wei等[31]的研究中,MSCs在20%氧浓度培养条件下可检测到胶质源性神经生长因子(glial cell line-derived neurotrophic factor,GDNF)、脑源性神经生长因子(brain derived neurotrophic factor,BDNF)、VEGF、VEGF受体Flk-1和Ang-1的表达;而在低氧预处理后的MSCs中,这些因子的表达均明显增加;在移植低氧预处理后的MSCs的小鼠缺血缺氧脑损伤模型中,通过NeuN染色,在缺血损伤皮质中,观测到更多的神经元细胞,并且一部分NeuN阳性细胞同时eGFP阳性,表明这些神经元由MSCs分化而来,低氧预处理后的MSCs分化为神经元的能力得到增强。有研究表明,分别在20%氧浓度和1%氧浓度下培养MSCs 24 h后,经RT-PCR检测神经营养因子的表达,GDNF与BDNF的mRNA表达水平在低氧预处理后的MSCs中升高[30],说明低氧预处理后的MSCs具有更强的神经修复能力。

3 间充质干细胞治疗缺血缺氧性脑损伤

一般认为,尽快的恢复损伤脑组织的血供,是治疗缺血缺氧性脑损伤的关键,但目前的治疗手段很难及时恢复缺血缺氧脑组织的血供。脑组织一旦长时间缺血缺氧,即会造成不可逆转的神经损伤,给患者留下后遗症,严重的甚至造成患者死亡。MSCs移植治疗缺血缺氧性脑损伤有望改善这一情况,减少后遗症发生几率,提高患者的生活质量。

目前治疗缺血缺氧性脑损伤采用的MSCs移植途径是:颅内注射、静脉注射与鼻腔给药三种方式。对于缺血缺氧性脑损伤的治疗,三种MSCs移植途径均能促进神经功能恢复,减少组织损伤面积[32-34]。静脉注射MSCs会有大量细胞滞留在肺部,表明静脉注射比其它两种方式需要更多的移植细胞才能达到治疗效果[35]。对于鼻腔内给药途径,不仅没有创伤性操作,而且MSCs能直接通过筛板迁徙到损伤脑组织[36]。虽然没有MSCs三种移植途径疗效的直接比较,但鼻腔内给药也许是一种更加高效的移植途径。

移植的MSCs与损伤脑组织内的低氧环境相互作用,分泌神经营养因子,影响微环境,促进神经元的增殖和神经干细胞向神经元分化,损伤区域可观察到明显的神经轴突再生[37-39]。在小鼠缺血缺氧性脑损伤模型中,MSCs滴鼻治疗能减少脑组织的损伤体积,改善小鼠的运动和行为认知[40]。损伤脑组织中TLR2的表达上调,当MSCs移植治疗后,抑制了TLR2/NFκB信号通路,TLR2的表达减少,IL-10的释放增加,小鼠的学习记忆能力得到恢复 [41]。MSCs移植能减轻损伤区域胶质瘢痕的形成,减少反应性星型胶质细胞、少突胶质细胞的产生,促使损伤区域皮质和海马结构的再生,促进神经功能的恢复[42]。有研究报道,移植到宿主内的MSCs只能存活约3~4 d[43],而经低氧预处理后的MSCs具有更强的增殖、促进血管形成和促进神经修复的能力,在损伤脑组织中的存活时间明显延长[44, 45]。低氧预处理后的MSCs能下调炎性基因的表达,减少炎性因子的产生及降低脑组织损伤区域的炎症反应[46]。其作用机制是多方面的,涉及神经营养因子的表达与释放增加、移植细胞的自分泌与旁分泌作用、损伤局部微环境的改变等,这表明低氧预处理后的MSCs治疗缺血缺氧性脑损伤,能取得更好的治疗效果。

4 前景与展望

对于MSCs移植治疗缺血缺氧性脑损伤,低氧预处理后的MSCs能增强其疗效,这为细胞移植治疗缺血缺氧性脑损伤提供了一条新的途径。MSCs治疗缺血缺氧性脑损伤的研究取得了一些进展,但仍需解决一些实质性的问题。其中 MSCs治疗缺血缺氧性脑损伤的细胞来源、培养条件、低氧预处理时间、脑损伤发生后的治疗时机、细胞扩增后的评价体系、细胞移植治疗后的疗效评估等应制定标准化的流程,从而为患者带来更多的福音。

参考文献
[1] Lee JA, Kim BI, Jo CH, et al. Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res , 2010, 67 (1) : 42–46. DOI:10.1203/PDR.0b013e3181bf594b
[2] Tate CC, Fonck C, McGrogan M, et al. Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant , 2010, 19 (8) : 973–984. DOI:10.3727/096368910X494885
[3] van Velthoven CT, Kavelaars A, van Bel F, et al. Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci , 2010, 30 (28) : 9603–9611. DOI:10.1523/JNEUROSCI.1835-10.2010
[4] Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J , 2004, 18 (9) : 980–982.
[5] Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther , 2003, 5 (1) : 32–45. DOI:10.1186/ar614
[6] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature , 2002, 418 (6893) : 41–49. DOI:10.1038/nature00870
[7] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science , 1999, 284 (5411) : 143–147. DOI:10.1126/science.284.5411.143
[8] Gu Y, Zhang Y, Bi Y, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain , 2015, 8 (1) : 65. DOI:10.1186/s13041-015-0157-3
[9] 葛丽特, 卢明. 嗅黏膜间充质干细胞在神经修复中的研究进展. 国际神经病学神经外科学杂志 , 2014, 41 (1) : 66–69.
[10] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cellsmigrate throughout forebrain and cerebellum and they differentiate into astrocytes after injection into neonatalmouse brains. Proc Natl Acad Sci USA , 1999, 96 (11) : 199–204.
[11] Hwang SH, Park SH, Choi J, et al. Characteristics of mesenchymal stem cells originating from the bilateral inferior turbinate in humans with nasal septal deviation. PLoS One , 2014, 9 (6) : e100219. DOI:10.1371/journal.pone.0100219
[12] Huang SJ, Fu RH, Shyu WC, et al. Adipose-derived stem cells:isolation,characterization, and differentiation potential. Cell Transplant , 2013, 22 (4) : 701–709. DOI:10.3727/096368912X655127
[13] Lee M, Jeong SY, Ha J, et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun , 2014, 446 : 983–989. DOI:10.1016/j.bbrc.2014.03.051
[14] Dominici M, Le BK, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy , 2016, 8 (4) : 315–317.
[15] Fehrer C, Brunauer R, Laschober G, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell , 2007, 6 (6) : 745–757. DOI:10.1111/j.1474-9726.2007.00336.x
[16] Guitart AV, Debeissat C, Hermitte F, et al. Very low oxygen concentration (0.1%) reveals two FDCP-Mix cell subpopulations that differ by their cell cycling, differentiation and p27KIP1 expression. Cell Death Differ , 2011, 18 (1) : 174–182. DOI:10.1038/cdd.2010.85
[17] Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension:effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol , 2001, 187 (3) : 345–355. DOI:10.1002/(ISSN)1097-4652
[18] Sullivan M, Galea P, Latif S. What is the appropriate oxygen tension for in vitro culture. Mol Hum Reprod , 2006, 12 (11) : 653. DOI:10.1093/molehr/gal081
[19] Lee JH, Kemp DM. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun , 2006, 341 (3) : 882–888. DOI:10.1016/j.bbrc.2006.01.038
[20] White R, Gibson JS. The effect of oxygen tension on calcium homeostasis in bovine articular chondrocytes. J Orthop Surg Res , 2010, 5 : 27. DOI:10.1186/1749-799X-5-27
[21] Kino-Oka M, Kagita S, Nadzir MM, et al. Direct measurement of oxygen concentration inside cultured cartilage for relating to spatial growth of rabbit chondrocytes. J Biosci Bioeng , 2010, 110 (3) : 363–366. DOI:10.1016/j.jbiosc.2010.03.009
[22] Ma T, Grayson WL, Frohlich M, et al. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog , 2009, 25 (1) : 32–42. DOI:10.1002/btpr.v25:1
[23] Bader AM, Klose K, Bieback K, et al. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One , 2015, 10 (9) : e0138477. DOI:10.1371/journal.pone.0138477
[24] Boyette LB, Creasey OA, Guzik L, et al. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med , 2014, 3 (2) : 241–254. DOI:10.5966/sctm.2013-0079
[25] Wang JA, Chen TL, Jiang J, et al. Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin , 2008, 29 : 74–82. DOI:10.1111/j.1745-7254.2008.00716.x
[26] Liu H, Xue W, Ge G, et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun , 2010, 401 (4) : 509–515. DOI:10.1016/j.bbrc.2010.09.076
[27] Berniakovich I, Giorgio M. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int J Mol Sci , 2013, 14 (1) : 2119–2134. DOI:10.3390/ijms14012119
[28] Zhu H, Sun A, Zou Y, Ge J. Inducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia:a hypoxia-induced and glycogen-based energy prestorage strategy. Arterioscler Thromb Vasc Biol , 2014, 34 (4) : 870–876. DOI:10.1161/ATVBAHA.114.303194
[29] Bader AM, Brodarac A, Klose K, et al. Mechanisms of paracrine cardioprotection by cord blood mesenchymal stromal cells. Eur J Cardiothorac Surg , 2014, 45 (6) : 983–992. DOI:10.1093/ejcts/ezt576
[30] Wang X, Liu C, Li S, et al. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection. PLoS One , 2015, 10 (3) : e0118951. DOI:10.1371/journal.pone.0118951
[31] Wei L, Fraser JL, Lu ZY, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis , 2012, 46 (3) : 635–645. DOI:10.1016/j.nbd.2012.03.002
[32] van Velthoven CT, Kavelaars A, van Bel F, et al. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun , 2010, 24 (3) : 387–393. DOI:10.1016/j.bbi.2009.10.017
[33] Yasuhara T, Hara K, Maki M, et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab , 2008, 28 (11) : 1804–1810. DOI:10.1038/jcbfm.2008.68
[34] Oppliger B, Jorger-Messerli M, Mueller M, et al. Intranasal Delivery of Umbilical Cord-derived Mesenchymal Stem Cells Preserves Myelination in Perinatal Brain Damage. Stem Cells Dev , 2016 .
[35] Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs):controversies, myths, and changing paradigms. Mol Ther , 2009, 17 (6) : 939–946. DOI:10.1038/mt.2009.62
[36] van Velthoven CT, Kavelaars A, van Bel F, et al. Nasal administration of stem cells:a promising novel route to treat neonatal ischemic brain damage. Pediatr Res , 2010, 68 (5) : 419–422.
[37] van Velthoven CT, van de Looij Y, Kavelaars A, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol , 2012, 71 (6) : 785–796. DOI:10.1002/ana.v71.6
[38] Yasuhara T, Hara K, Maki M, et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab , 2008, 28 (11) : 1804–1810. DOI:10.1038/jcbfm.2008.68
[39] 周成芳, 黄春兰, 汤永红. 干细胞移植对大脑中动脉闭塞模型鼠脑组织miR-34a及survivin表达的影响. 国际神经病学神经外科学杂志 , 2016, 43 (2) : 103–107.
[40] Donega V, Nijboer CH, Braccioli L, et al. Intranasal administration of human MSC for ischemic brain injury in the mouse:in vitro and in vivo neuroregenerative functions. PLoS One , 2014, 9 (11) : e112339. DOI:10.1371/journal.pone.0112339
[41] Gu Y, Zhang Y, Bi Y, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain , 2015, 8 (1) : 65. DOI:10.1186/s13041-015-0157-3
[42] Donega V, Nijboer CH, van Tilborg G2, et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp Neurol , 2014, 261 : 53–64. DOI:10.1016/j.expneurol.2014.06.009
[43] Das R, Jahr H, van Osch GJ, et al. The role of hypoxia in bone marrow-derived mesenchymal stem cells:considerations for regenerative medicine approaches. Tissue Eng Part B Rev , 2010, 16 (2) : 159–168. DOI:10.1089/ten.teb.2009.0296
[44] Ogle ME, Yu SP, Wei L. Primed for lethal battle:a step forward to enhance the efficacy and efficiency of stem cell transplantation therapy. J Thorac Cardiovasc Surg , 2009, 138 (3) : 527. DOI:10.1016/j.jtcvs.2009.06.003
[45] Theus MH, Wei L, Cui L, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol , 2008, 210 (2) : 656–670. DOI:10.1016/j.expneurol.2007.12.020
[46] van Velthoven CT, Kavelaars A, van Bel F, et al. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun , 2011, 25 (7) : 1342–1348. DOI:10.1016/j.bbi.2011.03.021