广东工业大学学报  2019, Vol. 36Issue (5): 20-24.  DOI: 10.12052/gdutxb.180189.
0

引用本文 

熊旋, 荣丰梅, 文元美. 一种基于超表面的超宽带THz吸波体[J]. 广东工业大学学报, 2019, 36(5): 20-24. DOI: 10.12052/gdutxb.180189.
Xiong Xuan, Rong Feng-mei, Wen Yuan-mei. A Metasurface Broadband THz Absorber[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2019, 36(5): 20-24. DOI: 10.12052/gdutxb.180189.

基金项目:

2017年中央财政支持地方高校建设项目“通信工程专业主干课程教学团队”

作者简介:

熊旋(1976−),女,讲师,博士,主要研究方向为超材料、新材料传感等. E-mail:xxiong@gdut.edu.cn

文章历史

收稿日期:2018-12-31
一种基于超表面的超宽带THz吸波体
熊旋1, 荣丰梅2, 文元美1     
1. 广东工业大学 信息工程学院,广东 广州 510006;
2. 广州京信通信有限公司,广东 广州 510000
摘要: 设计了一种超表面宽带太赫兹(THz)吸波体, 吸波单元由开裂的椭圆金属环组成, 其地板和椭圆环都是金, 两层金之间是介质层. 椭圆环由两个轴比不同的椭圆相减而成. 结果表明, 当设定吸波体的最低吸收率为90%, 垂直入射时, 该吸波体的吸收相对带宽达到了91.7%(0.98~2.64 THz), 在f=1.74 THz, 其最大吸收率达99.99%. 讨论了用干涉模型计算的结果, 两种方法所得结果吻合较好. 此外, 该吸波体对TE和TM两种极化都具有广角吸收特性. 与已发表的各吸波体相比较, 所提出的THz吸波体几何形状简单, 具有超宽带特性以及极化不敏感性. 因此可用于许多应用, 如太赫兹成像系统、辐射计和隐身技术等.
关键词: 太赫兹(THz)    超表面    超宽带    吸收    两端开裂的不规则椭圆环    
A Metasurface Broadband THz Absorber
Xiong Xuan1, Rong Feng-mei2, Wen Yuan-mei1     
1. School of Information Engineering in Guangdong University of Technology, Guangzhou 510006, China;
2. Guangzhou Jingxin Communications Co., Ltd., Guangzhou 510000, China
Abstract: A metasurface broadband Terahertz (THz) absorber is presented, of which the unit cell is made up of a split elliptical irregular ring, a dielectric substrate and a metallic ground. The elliptical irregular ring is composed of a smaller ellipse eroded from a bigger ellipse, and the two ellipses have different ratio of the long axis and the short axis. The simulation results show that the absorber achieves a broadband absorption from 0.98 THz to 2.64 THz, with the absorptivity over 90% at normal incidence, the maximum absorptivity being 99.99%, which are in agreement with the calculated result by using an interference model. The bandwidth is 91.7% with respect to the central frequency. Besides, the proposed absorber has property of wide angle absorptivity for both TE and TM polarizations. Compared with published designs, the proposed THz absorber has a simple geometry but a broadband and polarization insensitivity, and hence it can be used in many applications, such as THz imaging system, radiometer and stealthy technology.
Key words: Terahertz (THz)    metasurface    broadband    absorption    split elliptical irregular ring    

超材料(metamaterials,MM)是一种设计的人工结构化材料. MM奇特的电磁特性主要源于其亚波长结构,而不是它们所组成的材料的固有电磁特性[1-2],引起了人们的广泛关注. 通过选择合适的MM的单元结构,可以实现负介电常数、负磁导率、负折射率等[3-5]. 除了更薄的厚度与更轻的重量以外,超材料还具有参数与频段可设计,因此有很好的应用前景.

自从Landy等[6]提出了一种理想的超材料吸波体(Metamaterial Absorber,MA),具有良好吸收性能的MA就得到了大量的研究. 然而,刚开始大多数报道的吸波体工作在单频并且具有窄的吸收带宽. 双频段[7-8]、多频段[9]、宽带吸波体[10-11] 和不同频段尤其是高频段的超材料[12-15]相继被提出. 对于吸收带宽较窄的MA,增加共振点个数[16-18],采用多层结构[19-20]都是拓宽吸收带宽的有效途径,但是这两种方法在制造工艺、尺寸或工作频率等方面都有局限性. 因此,MA的简化和小型化,特别是在THz频带的吸波体研制仍是一项具有挑战性的工作.

本文设计了一种超表面THz超宽带吸波体,该吸波体的单元主要由开裂的椭圆金环组成,其地板为金,两层金属中间是介质层. 其表面积只有72 μm×72 μm,该尺寸相对该吸波体的吸收中心频率(1.81 THz)为0.188 7 λ2,相对该吸波体的吸收最低频率(0.98 THz)仅为0.055 3 λ2. 在垂直入射条件下,设定最低吸收率为90%,得到该吸波体的吸波频段为0.98~2.64 THz,相对带宽为91.7. 同时,对于TE和TM极化,所提出的MA具有3个近乎完美的吸收点,频率分别为1.08,1.74和2.56THz,吸收率分别为99.8%,99.99%和99.37%. 与上述文献中的结构相比,该吸波体只用了一个开裂的椭圆形不规则环,就实现了超宽带吸收,同时实现了小型化和高吸收率.

1 结构设计

吸波体的单元大小为72 μm×72 μm. 介质基板的参数为 ${\varepsilon _{\rm{r}}} = 3$ $\tan \delta = 0.06$ ,厚度为 $H$ ,金属层为Au,厚度t为0.4 μm,电导率σ为4.56×107S/m. 单元结构与尺寸参数分别如图1表1所示.

图 1 吸波体结构 Figure 1 Schematic diagram of the absorber
表 1 单元参数表 Table 1 Size of the cell
2 仿真及参数分析

采用HFSS(High Frequency Structure Simulator)对该材料结构进行仿真,吸波体上下两层Au的厚度 $t$ 与介质板的厚度 $H$ 相比,远小于介质板的厚度( $t/H = 0.4/26 \approx 0.015 < < 1$ )且远大于电磁波的趋肤深度,设反射率 $R(\omega ){\rm{ = }}{\left| {{S_{11}}} \right|^2}$ ,透射率 $T(\omega )= $ ${\left| {{S_{21}}} \right|^2}$ ,吸收率可以表示为 $A(\omega ) = 1 - R(\omega ){\rm{ - }}T(\omega )$ . 而底层是Au,所以透射率 $T(\omega )$ 约为零,因此 $A(\omega ) = $ $ 1 - R(\omega )$ .

图2给出了该吸波体在电磁波垂直入射时的吸收图. 当垂直入射时,TE和TM的吸收曲线几乎一致,这是吸波体结构的对称性引起的.

图 2 TE、TM入射波吸收图 Figure 2 The simulated absorption of TE & TM waves

该吸波结构可以利用基于等效电路的理论[21-23],将其近似等效为均匀介质,其相对介电常数、相对磁导率和相对阻抗可近似计算为:

$\varepsilon \approx \frac{2}{{kd}}\cdot\frac{{1 - {\upsilon _1}}}{{1 + {\upsilon _1}}},$ (1)
$\mu \approx \frac{2}{{kd}}\cdot\frac{{1 - {\upsilon _2}}}{{1 + {\upsilon _2}}},$ (2)
$z = \sqrt {\frac{\mu }{\varepsilon }} .\quad\quad$ (3)

其中, ${\upsilon _1} = {S_{21}} + {S_{11}}$ , ${\upsilon _2} = {S_{21}} - {S_{11}}$ , $k = \omega /c$ , $S$ 参数为散射参数, $\omega $ $d$ $c$ 分别是电磁波的频率、吸波体的厚度及真空中的光速. 因为 $T\left( \omega \right) = 0$ ,即 ${S_{21}} = 0$ ,通过式(1)~(3)可以计算出来该吸波体的等效相对介电常数、等效相对磁导率和等效阻抗的实部和虚部,如图3所示.

图 3 基于等效电路的计算值 Figure 3 The calculated values

3个吸收峰的频率点(f = 1.08,1.74和2.56 THz)的电场和磁场分布见图4图5. 在 $1.08\;{\rm{THz}}$ ,电场主要分布在环的裂开处;在 $1.74\;{\rm{THz}}$ ,电场分布较均匀;在 $2.56\;{\rm{THz}}$ ,电场聚集在两处——环开裂处与环的最薄处.

图 4 3个峰值点的电场分布 Figure 4 The electric field distributions
图 5 3个峰值点的磁场分布 Figure 5 The magnetic field distributions

根据等效电路理论[24],电场主要在间隙之间,可等效为电容 $C$ ;磁场主要在环的最薄处,可等效为电感 $L$ ;表面电流或磁场集中的地方,可等效为电感 $L$ 和电阻 $R$ . 该超材料谐振单元的等效电路模型见图6.

图 6 等效电路模型 Figure 6 Equivalent circuit moded

图6中,C1C2分别表示两个开口处的等效电容,L1R1是吸波体表面的等效电感与等效电阻,而L2R2是吸波体底面的等效电感与等效电阻. 在不同的频率,吸波体分别表现为磁性超材料或电性超材料性质,为了分析图6中的等效电路模型,表2是3个吸收峰所在频率点的等效相对介电常数、磁导率和阻抗计算值. 在1.74 THz,由于该频率点磁导率的实部为负,故吸波体在该频率点表现为磁性,同时,在1.08 THz和2.56 THz,其相对介电常数的实部为负,故吸波体在这两个频率点表现为电性. 在3个频率点的有效阻抗的实部都接近于1,虚部都接近于0,说明该结构在宽带频率范围内与自由空间阻抗匹配.

表 2 3个吸收峰的参数相对值 Table 2 The simulated values of three absorption peaks

图7是TE和 TM波分别在不同频率、不同入射角( $\theta $ )的仿真吸收率. 从图2可以看出对于TE波和TM波,在吸收率为80%时,可获得30°的宽带吸收,但随着入射角的增大,吸收率明显下降,在2.56 THz附近更为明显.

图 7 不同入射角( $\theta $ )的吸收率 Figure 7 The simulated absorption rates at different angles ( $\theta $ ) of incidence

此外,图8 $f = 1.08$ , $1.74$ 和2.56 THz3个频率点的吸收率和入射角变化的曲线图. 图9显示当吸收率超过80%,在1.08、1.74和2.56 THz,其入射角分别可以达到50°,45°和17°,从而实现了宽角度入射.

图 8 入射角对3个频点吸收率影响机制 Figure 8 The absorption and the incident angles at three peak points
图 9 不同基片厚度和不同椭圆轴取值的吸收率 Figure 9 The influences of substrate thickness and different lengths of the axis

为了研究介质基板厚度对吸波性能的影响,取H分别为24,25,26,27和28 µm,结果如图9(a)所示,在较低频段和较高频段,吸收率和吸收频带宽度变化不大. 此外,图9(b)还给出了椭圆的轴比对该吸波体吸波性能的影响.

用干涉模型[25-26]计算了当电磁波垂直入射时,所得的反射率和吸收率,如图10所示. 用图10图2比较,吸收率较为吻合.

图 10 反射率和吸收率(干涉模型) Figure 10 The reflection and absorption rates (interference model)

与所列文献[12-15]中的结构相比,本文设计的吸波体结构简单、小型、且实现了高吸收率宽带吸收和极化不敏感. 表3是不同介质板材料及厚度以及不同单元尺寸的吸波体的对比.

表 3 与其他吸波体的比较结果 Table 3 Comparison with other materials
3 结论

本文设计了一种基于两端开裂的椭圆不规则环的超表面宽带吸收THz超材料. 该结构在垂直入射时,吸收率大于90%的相对带宽高达91.7%(0.98~2.64 THz). 所提出的吸波体对TE和TM极化都具有广角吸收特性. 本文讨论了宽入射角下的仿真模型,并对吸波体的参数进行了探讨. 所设计的吸波体是THz成像系统、辐射计和隐身技术的良好选择.

参考文献
[1]
ZHANG L, ZHOU P, LU H, et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances[J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 1157-1160.
[2]
SMITH D R, PENDRY J B, WILSHIRE M C. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. DOI: 10.1126/science.1096796.
[3]
SCHURIG D, MOCK J J, SMITH D R. Electric-field-coupled resonators for negative permittivity metamaterials[J]. Applied Physics Letters, 2006, 88(4): 041109. DOI: 10.1063/1.2166681.
[4]
SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 20008, 4(189): 4184-4187.
[5]
PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. DOI: 10.1103/PhysRevLett.85.3966.
[6]
LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. DOI: 10.1103/PhysRevLett.100.207402.
[7]
高军, 张浩, 曹祥玉, 等. 一种双频超薄吸波结构在微带天线中的应用[J]. 西安电子科技大学学报, 2015, 42(1): 130-135.
GAO J, ZHANG H, CAO X Y, et al. Dual-band ultra-thin metamaterail absorber and its application in reducing RCS of the microstrip antenna[J]. Journal of Xidian University, 2015, 42(1): 130-135. DOI: 10.3969/j.issn.1001-2400.2015.01.021.
[8]
JIANG H, XUE Z, LI W, et al. Multiband polarisation insensitive metamaterial absorber based on circular fractal structure[J]. Iet Microwaves Antennas & Propagation, 2016, 10(11): 1141-1145.
[9]
LIU Y, CHENG Y, GAO Y, et al. Multi-band terahertz two-handed metamaterial based on the combined ring and cross pairs[J]. Optik—International Journal for Light and Electron Optics, 2014, 125(9): 2129-2133. DOI: 10.1016/j.ijleo.2013.10.062.
[10]
ZUO W, YANG Y, XIAOXI H E, et al. An ultra-wideband miniaturized metamaterial absorber in the ultrahigh frequency range[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 928-931.
[11]
CHEN J, HU Z, WANG G, et al. High-impedance surface-based broadband absorbers with interference theory[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(10): 4367-4374.
[12]
WEN Y, MA W, BAILEY J, et al. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption[J]. IEEE Transactions on Terahertz Science & Technology, 2015, 5(3): 406-411.
[13]
WANG L, JIANG Y, WANG J, et al. An ultra-broadband THz absorber based on graphene[C]// International Symposium on Antennas, Propagation and Em Theory, 2017, [S. l.]: IEEE, 699-702.
[14]
WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114. DOI: 10.1109/LPT.2013.2289299.
[15]
PAN W, YU X, ZHANG J, et al. A broadband terahertz metamaterial absorber based on two circular split rings[J]. IEEE Journal of Quantum Electronics, 2017, 53(1): 1-6.
[16]
SIM D U, KWON J H, CHONG Y J, et al. Design of electromagnetic wave absorber using periodic structure and method to broaden its bandwidth based on equivalent circuit-based analysis[J]. IET Microwaves Antennas & Propagation, 2015, 9(2): 142-150.
[17]
FAN Y, ZHANG H C, YIN J Y, et al. An active wideband and wide-angle electromagnetic absorber at microwave frequencies[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15: 1913-1916.
[18]
HUANG L. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optical Letter, 2012, 37(2): 154-156. DOI: 10.1364/OL.37.000154.
[19]
LIU S, CHEN H, CUI T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 2015, 106(15): 151601. DOI: 10.1063/1.4918289.
[20]
YOO M, LIM S. Polarization-independent and broadband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer, IEEE Transaction[J]. Antennas & Propagation, 2014, 62(5): 2652-2658.
[21]
WANG B X, WANG G Z, WANG L L. Design of a novel dualband terahertz metamaterial absorber[J]. Plasmonics, 2016, 11(2): 523-530. DOI: 10.1007/s11468-015-0076-2.
[22]
RAHIM M K A, IBRAHIM N, MAJID H A, et al. Left-handed metamaterial structure incorporated with microstrip antenna[J]. Microwave & Optical Technology Letters, 2012, 54(12): 2828-2832.
[23]
ZHOU J, KOSCHNY T, KAFESAKI M, et al. Size dependenceand convergence of the retrieval parameters of metamaterials[J]. Photon Nanostruct-Fundam Appl, 2008, 6(1): 96-101. DOI: 10.1016/j.photonics.2007.10.003.
[24]
COSTA F, MONORCHIO A. A frequency selective radome with wideband absorbing properties[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(6): 2740-2747.
[25]
HUANG L, CHOWDHURY D R, RAMANI S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers[J]. Applied Physics Letters, 2012, 101(10): 101102. DOI: 10.1063/1.4749823.
[26]
WANG H T, CHEN W, HUANG Y, et al. Analysis of metamaterial absorber in normal and oblique incidence by using interference theory[J]. Aip Advances, 2013, 3(10): 207402.