2. 广州京信通信有限公司,广东 广州 510000
2. Guangzhou Jingxin Communications Co., Ltd., Guangzhou 510000, China
超材料(metamaterials,MM)是一种设计的人工结构化材料. MM奇特的电磁特性主要源于其亚波长结构,而不是它们所组成的材料的固有电磁特性[1-2],引起了人们的广泛关注. 通过选择合适的MM的单元结构,可以实现负介电常数、负磁导率、负折射率等[3-5]. 除了更薄的厚度与更轻的重量以外,超材料还具有参数与频段可设计,因此有很好的应用前景.
自从Landy等[6]提出了一种理想的超材料吸波体(Metamaterial Absorber,MA),具有良好吸收性能的MA就得到了大量的研究. 然而,刚开始大多数报道的吸波体工作在单频并且具有窄的吸收带宽. 双频段[7-8]、多频段[9]、宽带吸波体[10-11] 和不同频段尤其是高频段的超材料[12-15]相继被提出. 对于吸收带宽较窄的MA,增加共振点个数[16-18],采用多层结构[19-20]都是拓宽吸收带宽的有效途径,但是这两种方法在制造工艺、尺寸或工作频率等方面都有局限性. 因此,MA的简化和小型化,特别是在THz频带的吸波体研制仍是一项具有挑战性的工作.
本文设计了一种超表面THz超宽带吸波体,该吸波体的单元主要由开裂的椭圆金环组成,其地板为金,两层金属中间是介质层. 其表面积只有72 μm×72 μm,该尺寸相对该吸波体的吸收中心频率(1.81 THz)为0.188 7 λ2,相对该吸波体的吸收最低频率(0.98 THz)仅为0.055 3 λ2. 在垂直入射条件下,设定最低吸收率为90%,得到该吸波体的吸波频段为0.98~2.64 THz,相对带宽为91.7. 同时,对于TE和TM极化,所提出的MA具有3个近乎完美的吸收点,频率分别为1.08,1.74和2.56THz,吸收率分别为99.8%,99.99%和99.37%. 与上述文献中的结构相比,该吸波体只用了一个开裂的椭圆形不规则环,就实现了超宽带吸收,同时实现了小型化和高吸收率.
1 结构设计吸波体的单元大小为72 μm×72 μm. 介质基板的参数为
![]() |
图 1 吸波体结构 Figure 1 Schematic diagram of the absorber |
![]() |
表 1 单元参数表 Table 1 Size of the cell |
采用HFSS(High Frequency Structure Simulator)对该材料结构进行仿真,吸波体上下两层Au的厚度
图2给出了该吸波体在电磁波垂直入射时的吸收图. 当垂直入射时,TE和TM的吸收曲线几乎一致,这是吸波体结构的对称性引起的.
![]() |
图 2 TE、TM入射波吸收图 Figure 2 The simulated absorption of TE & TM waves |
该吸波结构可以利用基于等效电路的理论[21-23],将其近似等效为均匀介质,其相对介电常数、相对磁导率和相对阻抗可近似计算为:
$\varepsilon \approx \frac{2}{{kd}}\cdot\frac{{1 - {\upsilon _1}}}{{1 + {\upsilon _1}}},$ | (1) |
$\mu \approx \frac{2}{{kd}}\cdot\frac{{1 - {\upsilon _2}}}{{1 + {\upsilon _2}}},$ | (2) |
$z = \sqrt {\frac{\mu }{\varepsilon }} .\quad\quad$ | (3) |
其中,
![]() |
图 3 基于等效电路的计算值 Figure 3 The calculated values |
3个吸收峰的频率点(f = 1.08,1.74和2.56 THz)的电场和磁场分布见图4、图5. 在
![]() |
图 4 3个峰值点的电场分布 Figure 4 The electric field distributions |
![]() |
图 5 3个峰值点的磁场分布 Figure 5 The magnetic field distributions |
根据等效电路理论[24],电场主要在间隙之间,可等效为电容
![]() |
图 6 等效电路模型 Figure 6 Equivalent circuit moded |
在图6中,C1与C2分别表示两个开口处的等效电容,L1与R1是吸波体表面的等效电感与等效电阻,而L2与R2是吸波体底面的等效电感与等效电阻. 在不同的频率,吸波体分别表现为磁性超材料或电性超材料性质,为了分析图6中的等效电路模型,表2是3个吸收峰所在频率点的等效相对介电常数、磁导率和阻抗计算值. 在1.74 THz,由于该频率点磁导率的实部为负,故吸波体在该频率点表现为磁性,同时,在1.08 THz和2.56 THz,其相对介电常数的实部为负,故吸波体在这两个频率点表现为电性. 在3个频率点的有效阻抗的实部都接近于1,虚部都接近于0,说明该结构在宽带频率范围内与自由空间阻抗匹配.
![]() |
表 2 3个吸收峰的参数相对值 Table 2 The simulated values of three absorption peaks |
图7是TE和 TM波分别在不同频率、不同入射角(
![]() |
图 7 不同入射角(
|
此外,图8为
![]() |
图 8 入射角对3个频点吸收率影响机制 Figure 8 The absorption and the incident angles at three peak points |
![]() |
图 9 不同基片厚度和不同椭圆轴取值的吸收率 Figure 9 The influences of substrate thickness and different lengths of the axis |
为了研究介质基板厚度对吸波性能的影响,取H分别为24,25,26,27和28 µm,结果如图9(a)所示,在较低频段和较高频段,吸收率和吸收频带宽度变化不大. 此外,图9(b)还给出了椭圆的轴比对该吸波体吸波性能的影响.
用干涉模型[25-26]计算了当电磁波垂直入射时,所得的反射率和吸收率,如图10所示. 用图10与图2比较,吸收率较为吻合.
![]() |
图 10 反射率和吸收率(干涉模型) Figure 10 The reflection and absorption rates (interference model) |
与所列文献[12-15]中的结构相比,本文设计的吸波体结构简单、小型、且实现了高吸收率宽带吸收和极化不敏感. 表3是不同介质板材料及厚度以及不同单元尺寸的吸波体的对比.
![]() |
表 3 与其他吸波体的比较结果 Table 3 Comparison with other materials |
本文设计了一种基于两端开裂的椭圆不规则环的超表面宽带吸收THz超材料. 该结构在垂直入射时,吸收率大于90%的相对带宽高达91.7%(0.98~2.64 THz). 所提出的吸波体对TE和TM极化都具有广角吸收特性. 本文讨论了宽入射角下的仿真模型,并对吸波体的参数进行了探讨. 所设计的吸波体是THz成像系统、辐射计和隐身技术的良好选择.
[1] |
ZHANG L, ZHOU P, LU H, et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances[J].
IEEE Antennas & Wireless Propagation Letters, 2015, 14: 1157-1160.
|
[2] |
SMITH D R, PENDRY J B, WILSHIRE M C. Metamaterials and negative refractive index[J].
Science, 2004, 305(5685): 788-792.
DOI: 10.1126/science.1096796. |
[3] |
SCHURIG D, MOCK J J, SMITH D R. Electric-field-coupled resonators for negative permittivity metamaterials[J].
Applied Physics Letters, 2006, 88(4): 041109.
DOI: 10.1063/1.2166681. |
[4] |
SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J].
Physical Review Letters, 20008, 4(189): 4184-4187.
|
[5] |
PENDRY J B. Negative refraction makes a perfect lens[J].
Physical Review Letters, 2000, 85(18): 3966-3969.
DOI: 10.1103/PhysRevLett.85.3966. |
[6] |
LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J].
Physical Review Letters, 2008, 100(20): 207402.
DOI: 10.1103/PhysRevLett.100.207402. |
[7] |
高军, 张浩, 曹祥玉, 等. 一种双频超薄吸波结构在微带天线中的应用[J].
西安电子科技大学学报, 2015, 42(1): 130-135.
GAO J, ZHANG H, CAO X Y, et al. Dual-band ultra-thin metamaterail absorber and its application in reducing RCS of the microstrip antenna[J]. Journal of Xidian University, 2015, 42(1): 130-135. DOI: 10.3969/j.issn.1001-2400.2015.01.021. |
[8] |
JIANG H, XUE Z, LI W, et al. Multiband polarisation insensitive metamaterial absorber based on circular fractal structure[J].
Iet Microwaves Antennas & Propagation, 2016, 10(11): 1141-1145.
|
[9] |
LIU Y, CHENG Y, GAO Y, et al. Multi-band terahertz two-handed metamaterial based on the combined ring and cross pairs[J].
Optik—International Journal for Light and Electron Optics, 2014, 125(9): 2129-2133.
DOI: 10.1016/j.ijleo.2013.10.062. |
[10] |
ZUO W, YANG Y, XIAOXI H E, et al. An ultra-wideband miniaturized metamaterial absorber in the ultrahigh frequency range[J].
IEEE Antennas & Wireless Propagation Letters, 2017, 16: 928-931.
|
[11] |
CHEN J, HU Z, WANG G, et al. High-impedance surface-based broadband absorbers with interference theory[J].
IEEE Transactions on Antennas & Propagation, 2015, 63(10): 4367-4374.
|
[12] |
WEN Y, MA W, BAILEY J, et al. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption[J].
IEEE Transactions on Terahertz Science & Technology, 2015, 5(3): 406-411.
|
[13] |
WANG L, JIANG Y, WANG J, et al. An ultra-broadband THz absorber based on graphene[C]// International Symposium on Antennas, Propagation and Em Theory, 2017, [S. l.]: IEEE, 699-702.
|
[14] |
WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J].
IEEE Photonics Technology Letters, 2014, 26(2): 111-114.
DOI: 10.1109/LPT.2013.2289299. |
[15] |
PAN W, YU X, ZHANG J, et al. A broadband terahertz metamaterial absorber based on two circular split rings[J].
IEEE Journal of Quantum Electronics, 2017, 53(1): 1-6.
|
[16] |
SIM D U, KWON J H, CHONG Y J, et al. Design of electromagnetic wave absorber using periodic structure and method to broaden its bandwidth based on equivalent circuit-based analysis[J].
IET Microwaves Antennas & Propagation, 2015, 9(2): 142-150.
|
[17] |
FAN Y, ZHANG H C, YIN J Y, et al. An active wideband and wide-angle electromagnetic absorber at microwave frequencies[J].
IEEE Antennas & Wireless Propagation Letters, 2016, 15: 1913-1916.
|
[18] |
HUANG L. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J].
Optical Letter, 2012, 37(2): 154-156.
DOI: 10.1364/OL.37.000154. |
[19] |
LIU S, CHEN H, CUI T J. A broadband terahertz absorber using multi-layer stacked bars[J].
Applied Physics Letters, 2015, 106(15): 151601.
DOI: 10.1063/1.4918289. |
[20] |
YOO M, LIM S. Polarization-independent and broadband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer, IEEE Transaction[J].
Antennas & Propagation, 2014, 62(5): 2652-2658.
|
[21] |
WANG B X, WANG G Z, WANG L L. Design of a novel dualband terahertz metamaterial absorber[J].
Plasmonics, 2016, 11(2): 523-530.
DOI: 10.1007/s11468-015-0076-2. |
[22] |
RAHIM M K A, IBRAHIM N, MAJID H A, et al. Left-handed metamaterial structure incorporated with microstrip antenna[J].
Microwave & Optical Technology Letters, 2012, 54(12): 2828-2832.
|
[23] |
ZHOU J, KOSCHNY T, KAFESAKI M, et al. Size dependenceand convergence of the retrieval parameters of metamaterials[J].
Photon Nanostruct-Fundam Appl, 2008, 6(1): 96-101.
DOI: 10.1016/j.photonics.2007.10.003. |
[24] |
COSTA F, MONORCHIO A. A frequency selective radome with wideband absorbing properties[J].
IEEE Transactions on Antennas & Propagation, 2012, 60(6): 2740-2747.
|
[25] |
HUANG L, CHOWDHURY D R, RAMANI S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers[J].
Applied Physics Letters, 2012, 101(10): 101102.
DOI: 10.1063/1.4749823. |
[26] |
WANG H T, CHEN W, HUANG Y, et al. Analysis of metamaterial absorber in normal and oblique incidence by using interference theory[J].
Aip Advances, 2013, 3(10): 207402.
|