近年来,随着分数阶偏微分方程(FDEs)的研究受到越来越多的关注,证实了带分数阶导数的模型比传统的整数阶导数模型能更精确地描述科学与工程领域中的系统现象. 目前 FDEs已应用于许多方面,如电磁学[1]、经济学[2]、资产期权[3]、物理学[4]等. 求解FDEs有多种方法,对于具有简单边界条件的偏微分方程,解析解可以通过分离变量法[5]或Laplace[6]变换得到. 但因问题的复杂性,多数解析解难以求出,因此研究FDEs数值解显得非常必要.
对于时间分数阶微分方程的数值计算,目前已有不少研究成果. 其中L1式是时间Caputo分数阶导数的一个常用近似,具体可以参见文献[7-12]了解更多关于L1近似的应用信息. 文献[8]中利用时间有限差分方法和空间勒让德光谱法,建立了有限分差格式. Cui[9]给出了方程的一个具有
然而,上述工作均涉及常系数分数阶方程,通常为复杂模型的简化模型,而很多实际问题常用变系数方程来描述,如文献[17-20]. 因此研究变系数问题显得非常重要. 基于
| $\begin{split}& {}_o^CD_t^\gamma u(x,t) = K(x)u_{xx}^{} + P(x)u_{xxx}^{} + Q(x)u_{xxxx}^{} + \\ &{\rm{ }}f(x,t),{\rm{ }}x \in {\bf{R}},{\rm{ }}t \in (0,T],{\rm{ }}0 < \gamma < 1. \end{split} $ | (1) |
方程(1)为满足如下周期边界条件的解:
| $\left\{ \begin{split} & u(x,0) = \varphi (x),{\rm{ }}x \in {\bf{R}}; \\ & u(x,t) = u(x + L,t),{\rm{ }}x \in {\bf{R}},{\rm{ }}t \in (0,T]. \end{split} \right.$ | (2) |
其中
| ${}_o^CD_t^\gamma u(x,t) = \frac{1}{{\Gamma (1 - \gamma )}}\int\nolimits_0^t {\frac{{{\text{∂}} u(x,s)}}{{{\text{∂}} s}}\frac{{{\rm d}s}}{{{{(t - s)}^\gamma }}}} .$ |
本文构局如下:第2节,基于文献[15]中所提出的
给定正整数
本文给出了一个序列
| $\begin{gathered} {a_0} = {\sigma ^{1 - \gamma }},{\rm{ }}{a_l} = {\left( {l + \sigma } \right)^{1 - \gamma }} - {\left( {l - 1 + \sigma } \right)^{1 - \gamma }},{\rm{ }}l \geqslant 1 ; \\ {b_l} = \frac{1}{{2 - \gamma }}\left[ {{{\left( {l + \sigma } \right)}^{2 - \gamma }} - {{\left( {l - 1 + \sigma } \right)}^{2 - \gamma }}} \right]- \\ \frac{1}{2}\left[ {{{\left( {l + \sigma } \right)}^{1 - \gamma }} - {{\left( {l - 1 + \sigma } \right)}^{1 - \gamma }}} \right],{\rm{ }}l \geqslant 1. \end{gathered} $ |
当
| $c_m^{\left( k \right)} = \left\{ \begin{array}{l} {a_0} + {b_1},{\rm{ }}m = 0; \\ {a_m} + {b_{m + 1}} - {b_m},{\rm{ }}1 \leqslant m \leqslant k - 1; \\ {a_k} - {b_k},{\rm{ }}m = k. \\ \end{array} \right.$ |
它的定义符合
| $\left\{ \begin{split} & c_m^{\left( k \right)} < \displaystyle\frac{{1 - \gamma }}{2}{\left( {m + \sigma } \right)^{ - \gamma }}, \\ & c_0^{\left( k \right)} > c_2^{\left( k \right)} > c_2^{\left( k \right)} > \cdots > c_k^{\left( k \right)}. \end{split} \right.$ | (3) |
当
| ${}_0^CD_t^\gamma u({t_{n + \sigma }}) - \Delta _t^\gamma u({t_{n + \sigma }}) = O({\tau ^{3 - \gamma }}),$ |
其中
| $\Delta _t^\gamma u({t_{n + \sigma }}) = \frac{{{\tau ^{ - \gamma }}}}{{\Gamma (2 - \gamma )}}\sum\limits_{k = 0}^n {c_k^{(n + 1)}} [u({t_{n - k}}) - u({t_{n - k + 1}})].$ |
引理1 假设
| $\left\{\begin{array}{l} {{\rm{\mathcal{H}}}_1}{U_i} = \displaystyle\frac{1}{{{h^2}}}({U_{i - 1}} - 2{U_i} + {U_{i + 1}}), \\ {{\rm{\mathcal{H}}}_2}{U_i} = \displaystyle\frac{1}{{{h^3}}}(\frac{1}{2}{U_{i - 2}} + {U_{i - 1}} - {U_{i + 1}} + \frac{1}{2}{U_{i + 2}}),{\rm{ }} \\ {{\rm{\mathcal{H}}}_3}{U_i} = \displaystyle\frac{1}{{{h^4}}}({U_{i - 2}} - 4{U_{i - 1}} + 6{U_i} - 4{U_{i + 1}} + {U_{i + 2}}). \end{array}\right. $ | (4) |
| $\left\{\begin{gathered} \left| {{u_{xx}}({x_i}) - {{\rm{\mathcal{H}}}_1}{U_i}} \right| \leqslant \frac{1}{{12}}\mathop {\max }\limits_{{x_{i - 2}} \leqslant x \leqslant {x_{i + 2}}} \left| {u_x^{(4)}(x)} \right|{h^2}, \\ \left| {{u_{xxx}}({x_i}) - {{\rm{\mathcal{H}}}_2}{U_i}} \right| \leqslant \frac{1}{4}\mathop {\max }\limits_{{x_{i - 2}} \leqslant x \leqslant {x_{i + 2}}} \left| {u_x^{(5)}(x)} \right|{h^2}, \\ \left| {{u_{xxxx}}({x_i}) - {{\rm{\mathcal{H}}}_3}{U_i}} \right| \leqslant \frac{1}{6}\mathop {\max }\limits_{{x_{i - 2}} \leqslant x \leqslant {x_{i + 2}}} \left| {u_x^{(6)}(x)} \right|{h^2}. \end{gathered} \quad\quad\right.$ | (5) |
引理2 根据文献[17-19],假设
| $u({t_{n + \sigma }}) = \sigma u({t_{n + 1}}) + (1 - \sigma )u({t_n}) + O({\tau ^2}).$ | (6) |
定义
| $\left\{\begin{array}{l} \Delta _t^\gamma u_i^{n + \sigma } = {K_i}{{\rm{\mathcal{H}}}_1}u_i^{({\sigma _{n + 1}})} + {P_i}{{\rm{\mathcal{H}}}_2}u_i^{({\sigma _{n + 1}})} + \\ {\rm{ }}{Q_i}{{\rm{\mathcal{H}}}_3}u_i^{({\sigma _{n + 1}})} + f_i^{n + \sigma },{\rm{ }}0 \leqslant n \leqslant N,{\rm{ }}1 \leqslant i \leqslant M; \\ u_i^0 = \varphi ({x_i}),{\rm{ }}1 \leqslant i \leqslant M; \\ u_i^{n + 1} = u_{i \pm M}^{n + 1},{\rm{ }}1 \leqslant i \leqslant M,{\rm{ }}0 \leqslant n \leqslant N. \end{array}\quad\quad\right. $ | (7) |
基于式(5)和(6),可以很容易得到该差分格式的截断误差为
在这一部分,用Fourier方法讨论差分格式(7)是唯一可解的. 首先给出一些Fourier的定义,定义
| ${\nu ^{n + 1}}(x) = \left\{ \begin{array}{l} u_0^{n + 1},x \in [{x_0},{x_{1/2}}]; \\ u_i^{n + 1},x \in ({x_{i - 1/2}},{x_{i + 1/2}}],{\rm{ }}i = 1,2, \cdots ,M - 1; \\ u_M^{n + 1},x \in [{x_{M - 1}},{x_M}]. \end{array} \right.$ |
| ${z^{n + \sigma }}(x) = \left\{ \begin{array}{l} f_0^{n + \sigma },x \in [{x_0},{x_{1/2}}]; \\ f_i^{n + \sigma },x \in ({x_{i - 1/2}},{x_{i + 1/2}}],{\rm{ }}i = 1,2, \cdots ,M - 1;\\ f_M^{n + \sigma },x \in [{x_{M - 1}},{x_M}]. \end{array}\right.$ |
由Fourier 级数,定义
| ${\nu ^{n + 1}}(x) = \sum\limits_{l = - \infty }^\infty {\tilde v_l^{n + 1}} {{\rm e}^{\beta x{\rm j}}},$ |
| ${z^{n + \sigma }}(x) = \sum\limits_{l = - \infty }^\infty {\tilde z_l^{n + \sigma }} {{\rm e}^{\beta x{\rm j}}}.$ |
其中
| ${\rm{ }}{{\rm j}^2} = - 1,{\rm{ }}\beta = \frac{{2{\text{π}} l}}{L},$ |
| $\tilde v_l^{n + 1}(x) = \frac{1}{L}\int_0^L {{v^{n + 1}}(x)} {\rm{ }}{{\rm e}^{ - \beta x{\rm j}}}{\rm d}x,$ |
| $\tilde z_l^{n + \sigma }(x) = \frac{1}{L}\int_0^L {{z^{n + \sigma }}(x){\rm{ }}} {{\rm e}^{ - \beta x{\rm j}}}{\rm d}x.$ |
定义
| ${\left\| {{u^k}} \right\|_2} = {\left( {h\sum\limits_{i = 1}^M {{{\left| {u_i^k} \right|}^2}} } \right)^{\frac{1}{2}}}.$ |
根据 Parseval 等式可以得到如下等式:
| ${\left\| {{u^k}} \right\|_2} = {\left( {\int_0^L {{{\left| {{v^k}(x)} \right|}^2}{\rm d}x} } \right)^{\frac{1}{2}}} = {\left( {\sum\limits_{l = - \infty }^\infty {{{\left| {\tilde v_l^k(x)} \right|}^2}} } \right)^{\frac{1}{2}}},$ |
| ${\left\| {{f^{n + \sigma }}} \right\|_2} = {\left( {\int_0^L {{{\left| {{z^{n + \sigma }}(x)} \right|}^2}{\rm d}x} } \right)^{\frac{1}{2}}} = {\left( {\sum\limits_{l = - \infty }^\infty {{{\left| {\tilde z_l^{n + \sigma }(x)} \right|}^2}} } \right)^{\frac{1}{2}}}.$ |
现开始证明差分格式(7)的唯一可解性,先不考虑周期边界问题,通过计算,差分格式(7)可以等价为如下形式:
| $\begin{split} & \left[ {sc_0^{\left( {n + 1} \right)} - \sigma {\rm{\mathcal{H}}}} \right]u_i^{n + 1} = \\ & \sum\limits_{k = 0}^N {g_k^{n + 1}u_i^k + 2{h^4}f_i^{n + \sigma } + } (1 - \sigma ){\rm{\mathcal{H}}}u_i^n,{\rm{ }} \\ & {\rm{ }}1 \leqslant i \leqslant M,{\rm{ }}0 \leqslant n \leqslant N. \end{split} $ | (8) |
其中定义
| $\begin{split} & sc_0^{\left( {n + 1} \right)} = \frac{{2{h^4}{\tau ^{ - \gamma }}}}{{\Gamma (2 - \gamma )}},{\rm{ }}g_0^{n + 1} = sc_n^{(n + 1)},{\rm{ }} \\ & g_k^{n + 1} = s\left[ {c_{n - k}^{(n + 1)} - c_{n - k + 1}^{(n + 1)}} \right],{\rm{ }}k = 0,1,2, \cdots ,n. \end{split} $ |
| $\begin{split} &{\rm{\mathcal{H}}}u_i^{n + 1} = 2{h^4}({K_i}{{\rm{\mathcal{H}}}_1} + {P_i}{{\rm{\mathcal{H}}}_2} + {Q_i}{{\rm{\mathcal{H}}}_3})u_i^{n + 1} = \\ & \left[ {{\lambda _{i.i - 2}}u_{i - 2}^{n + 1} + {\lambda _{i.i - 1}}u_{i - 1}^{n + 1} + {\lambda _{i.i}}u_i^{n + 1}} \right. + \left. { {\lambda _{i.i + 1}}u_{i + 1}^{n + 1} + {\lambda _{i.i + 2}}u_{i + 2}^{n + 1}} \right]. \end{split} $ | (9) |
将通过Taylor展式运算得到的式(4)代入式(9)中,通过计算,可以得到:
| $\left\{ \begin{split} &{\lambda _{i,i}} = - 4{h^2}{K_i} + 12{Q_i}, \\ &{\lambda _{i,i + 1}} = 2{h^2}{K_i} - 2h{P_i} - 8{Q_i}, \\ & {\lambda _{i,i + 2}} = h{P_i} + 2{Q_i}, \\ & {\lambda _{i,i - 1}} = 2{h^2}{K_i} + 2h{P_i} - 8{Q_i}, \\ & {\lambda _{i,i - 2}} = - h{P_i} + 2{Q_i}. \end{split} \right.$ |
由Fourier 级数的定义和式(8),得到如下方程:
| $\begin{split} & \sum\limits_{l = - \infty }^\infty {\left\{\left( {sc_0^{(n + 1)} - \sigma {\rm{\mathcal{H}}}} \right) {{{\rm e}^{\beta x{\rm j}}}} \right\}\tilde v_l^{n + 1}} = \\ & \sum\limits_{l = - \infty }^\infty {\left[ {\sum\limits_{k = 0}^n {g_k^{n + 1}\tilde v_l^n{{\rm e}^{\beta x{\rm j}}} + 12{h^4}\tilde z_l^{n + \sigma }{{\rm e}^{\beta x{\rm j}}}} } \right]} + \\ & \sum\limits_{l = - \infty }^\infty {(1 - \sigma ){\rm{\mathcal{H}}}{{\rm e}^{\beta x{\rm j}}}\tilde v_l^n}.\end{split} $ | (10) |
其中定义
| $\begin{split} & {\rm{\mathcal{H}}}{{\rm e}^{\beta x{\rm j}}} = {{\rm e}^{\beta x{\rm j}}}\left[ {{\lambda _{i,i - 2}}{{\rm e}^{ - 2\beta x{\rm j}}} + {\lambda _{i,i - 1}}{{\rm e}^{ - \beta x{\rm j}}} + {\lambda _{i,i}}} \right. + \\ & \left. {{\lambda _{i,i + 1}}{{\rm e}^{\beta x{\rm j}}} + {\lambda _{i,i + 2}}{{\rm e}^{2\beta x{\rm j}}}} \right] = {{\rm e}^{\beta x{\rm j}}}({y_1} + {y_2}{\rm j}). \end{split} $ | (11) |
通过进一步计算求出
| $\begin{split} &{y_1} = 4{h^2}[\cos (\beta h) - 1]{K_i} + {\rm{8}}[{\cos ^2}(\beta h) - 2\cos (\beta h) + 1]{Q_i}. \\ &{y_2} = 2h\left[ { - 2\sin (\beta h) + \sin (2\beta h)} \right]{P_i}{\rm j}. \end{split}$ |
由式(10)和式(11)可以推算得到
| $\begin{split} &\sum\limits_{l = - \infty }^\infty {\left[ {sc_0^{(n + 1)} - \sigma ({y_1} + {y_2}{\rm j})} \right]} {\rm{ }}\tilde v_l^{n + 1}{{\rm e}^{\beta x{\rm j}}} = \\ & \sum\limits_{l = - \infty }^\infty {\left[ {\sum\limits_{k = 0}^n {g_k^{n + 1}\tilde v_l^k + 2{h^4}} \tilde z_l^{n + \sigma }} \right]} {\rm{ }}{{\rm e}^{\beta x{\rm j}}} + \\ & \sum\limits_{l = - \infty }^\infty {(1 - \sigma )({y_1} + {y_2}{\rm j})} {\rm{ }}\tilde v_l^n{{\rm e}^{\beta x{\rm j}}}. \end{split} $ | (12) |
将式(12)的两边同时乘以
| $\begin{split} & \left[ {sc_0^{(n + 1)} - \sigma ({y_1} + {y_2}{\rm j})} \right]{\rm{ }}\tilde v_l^{n + 1} = \\ & \sum\limits_{k = 0}^n {g_k^{n + 1}\tilde v_l^k + 2{h^4}} \tilde z_l^{n + \sigma } + (1 - \sigma )({y_1} + {y_2}{\rm j})\tilde v_l^n, \\ & l = 0, \pm 1, \pm 2, \cdots , \pm \infty . \end{split} $ | (13) |
为了证明差分格式(7)是唯一可解的,只需要证明下面方程是唯一可解即可:
| $\left\{ \begin{split}& \left( {sc_0^{(n + 1)} - \sigma {\rm{\mathcal{H}}}} \right)u_i^{n + 1} = 0,{\rm{ }}0 \leqslant n \leqslant N; \\ & u_i^0 = \varphi ({x_i}),{\rm{ }}1 \leqslant i \leqslant M; \\ & u_i^{n + 1} = u_{i \pm M}^{n + 1},{\rm{ }}1 \leqslant i \leqslant M,{\rm{ }}0 \leqslant n \leqslant N. \end{split} \right.$ | (14) |
因为
| $\begin{split} & \left( {sc_0^{(n + 1)} - \sigma ({y_1} + {y_2}{\rm j}} \right)\tilde v_l^{n + 1} = 0,{\rm{ }} \\ &l = 0, \pm 1, \pm 2, \cdots , \pm \infty. \end{split} $ | (15) |
由上面证明,结合式(15),可知
这一部分分析差分格式
定理1 对于方程
| $\left| {\tilde v_l^{n + 1}} \right| \leqslant \left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n} \left| {\tilde z_l^{m + \sigma }} \right|.$ | (16) |
证明 用数学归纳法证明方程(16):当
| $\begin{split} &{\rm{ }}\left( {sc_0^{(1)} - \sigma ({y_1} + {y_2}{\rm j}} \right)\tilde v_l^1 = \\ & g_0^1\tilde v_l^0 + 2{h^4}\tilde z_l^\sigma + (1 - \sigma )({y_1} + {y_2}{\rm j})\tilde v_l^0 = \\ & sc_0^{\left( 1 \right)}\tilde v_l^0 + 2{h^4}\tilde z_l^\sigma + (1 - \sigma )({y_1} + {y_2}{\rm j})\tilde v_l^0. \end{split} $ |
注意到
| $\begin{split} & \left| {\tilde v_l^1} \right| = \left| {\frac{{sc_0^{\left( 1 \right)}\tilde v_l^0 + 2{h^4}\tilde z_l^\sigma + (1 - \sigma )({y_1} + {y_2}{\rm j})\tilde v_l^0}}{{sc_0^{(1)} - \sigma ({y_1} + {y_2}){\rm j}}}} \right| \leqslant\\ & \sqrt {\frac{{{{\left[ {sc_0^{\left( 1 \right)} + (1 - \sigma ){y_1}} \right]}^2} + {{(1 - \sigma )}^2}{y_2}^2}}{{{{\left( {sc_0^{(1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} \left| {\tilde v_l^0} \right| + \\ & {\rm{ }}\frac{{2{h^4}}}{{\sqrt {{{\left( {sc_0^{(1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2} }}\left| {\tilde z_l^\sigma } \right| = \\ & \sqrt {\frac{{{{\left( {sc_0^{(1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}{{{{\left( {sc_0^{(1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} \left| {\tilde v_l^0} \right| + \\ & \sqrt {\frac{{\left[ {2sc_0^{(1)} + (1 - 2\sigma ){y_1}} \right]{y_1} + (1 - 2\sigma ){y_2}^2}}{{{{\left( {sc_0^{(1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} \left| {\tilde v_l^0} \right| + \\ & \frac{{\Gamma (2 - \gamma ){\tau ^\gamma }}}{{c_0^{(1)}}}\left| {\tilde z_l^\sigma } \right|{\rm{ }} = \sqrt {1 + \frac{{2sc_0^{\left( 1 \right)}{y_1} + (1 - 2\sigma )({y_1}^2 + {y_2}^2)}}{{{{\left( {sc_0^{(1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} {\rm{ }}\left| {\tilde v_l^0} \right| +\\ & \frac{{\Gamma (2 - \gamma ){\tau ^\gamma }}}{{c_0^{(1)}}}\left| {\tilde z_l^\sigma } \right|{\rm{ }} {\rm{ }} \leqslant \left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\left| {\tilde z_l^\sigma } \right|. \end{split} $ |
因此
| $\begin{split} &\left| {\tilde v_l^{n + 1}} \right| = \left| {\displaystyle\frac{{\sum\limits_{k = 0}^n {g_k^{n + 1}} \tilde v_l^k + 2{h^4}\tilde z_l^{n + \sigma } + (1 - \sigma )({y_1} + {y_2}{\rm j})\tilde v_l^n}}{{sc_0^{(n + 1)} - \sigma ({y_1} + {y_2}){\rm j}}}} \right|\leqslant\\ & \sqrt {\displaystyle\frac{{{{\left[ {\sum\limits_{k = 0}^n {\left| {g_k^{n + 1}} \right|} + (1 - \sigma ){y_1}} \right]}^2} + {{(1 - \sigma )}^2}{y_2}^2}}{{{{\left( {sc_0^{(n + 1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} \times \\ &\left[ {\left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n - 1} \left| {\tilde z_l^{m + \sigma }} \right|} \right] + \\ &\displaystyle\frac{{2{h^4}\left| {\tilde z_l^{n + \sigma }} \right|}}{{\sqrt {{{\left( {sc_0^{(n + 1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2} }}. \end{split}$ |
因为
| $\begin{split} &\left| {\tilde v_l^{n + 1}} \right| \leqslant \sqrt {\displaystyle\frac{{{{\left[ {sc_0^{\left( {n + 1} \right)} + (1 - \sigma ){y_1}} \right]}^2} + {{(1 - \sigma )}^2}{y_2}^2}}{{{{\left( {sc_0^{(n + 1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} \times \\ &{\rm{ }}\left[ {\left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n - 1} \left| {\tilde z_l^{m + \sigma }} \right|} \right] + \\ &{\rm{ }}\displaystyle\frac{{2{h^4}\left| {\tilde z_l^{n + \sigma }} \right|}}{{\sqrt {{{\left( {sc_0^{(n + 1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2} }}=\\ &{\rm{ }} \sqrt {1 + \displaystyle\frac{{2sc_0^{\left( {n + 1} \right)}{y_1} + (1 - 2\sigma )({y_1}^2 + {y_2}^2)}}{{{{\left( {sc_0^{(n + 1)} - \sigma {y_1}} \right)}^2} + {\sigma ^2}{y_2}^2}}} \times \\ &{\rm{ }}\left[ {\left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n - 1} \left| {\tilde z_l^{m + \sigma }} \right|} \right] + \\ &{\rm{ }}\displaystyle\frac{{\Gamma (2 - \gamma ){\tau ^\gamma }}}{{c_0^{(n + 1)}}}\left| {\tilde z_l^{n + \sigma }} \right|\leqslant \\ &{\rm{ }} \left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n} \left| {\tilde z_l^{m + \sigma }} \right|. \end{split}$ |
定理1证毕.
定理2 结合方程(16),可证差分格式收敛,即式(17)的估计成立.
| ${\left\| {{u^{n + 1}}} \right\|_2} \leqslant {\left\| {{u^0}} \right\|_2} + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n} {\left\| {{f^{m + \sigma }}} \right\|_2}.$ | (17) |
证明 根据定理1和 Minkowski 不等式可以推测:
| $\begin{split}& {\rm{ }}{\left[ {\sum\limits_{l = - \infty }^\infty {{{\left| {\tilde v_l^{n + 1}} \right|}^2}} } \right]^{\frac{1}{2}}}\leqslant\\ & {\left[ {\sum\limits_{l = - \infty }^\infty {{{\left( {\left| {\tilde v_l^0} \right| + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n} \left| {\tilde z_l^{m + \sigma }} \right|} \right)}^2}} } \right]^{\frac{1}{2}}} \leqslant \\ & {\left( {\sum\limits_{l = - \infty }^\infty {{{\left| {\tilde v_l^0} \right|}^2}} } \right)^{\frac{1}{2}}} + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n} {\left( {\sum\limits_{l = - \infty }^\infty {{{\left| {\tilde z_l^{m + \sigma }} \right|}^2}} } \right)^{\frac{1}{2}}}. \end{split} $ |
结合Parseval等式,证明
定理3 记
| $\left\| {{{\rm e}^{n + 1}}} \right\| \leqslant {c_1}{\tau ^2} + {c_2}{h^2},{\rm{ }}0 \leqslant n \leqslant N.$ |
证明 由误差方程可以得到
| $\begin{split} &\left[ {sc_0^{\left( {n + 1} \right)} - \sigma {\rm{\mathcal{H}}}} \right]{\rm e}_i^{n + 1} = \\ & \sum\limits_{k = 0}^n {g_k^{n + 1}{\rm e}_i^k} + 2{h^4}R_i^{n + \sigma } + (1 - \sigma ){\rm{\mathcal{H}}}{\rm e}_i^{n - 1}, \\ &1 \leqslant i \leqslant M,{\rm{ }}0 \leqslant n \leqslant N. \\ \end{split} $ |
其中
根据之前的分析和定理3可以得到:
| $\begin{split} & {\left\| {{{\rm e}^{n + 1}}} \right\|_2} \leqslant {\left\| {{{\rm e}^0}} \right\|_2} + 2\Gamma (1 - \gamma ){T^\gamma }\mathop {\max }\limits_{0 \leqslant m \leqslant n} {\left\| {{R^{m + \sigma }}} \right\|_2} \leqslant \\ & {c_1}{\tau ^2} + {c_2}{h^2},{\rm{ }}0 \leqslant n \leqslant N. \\ \end{split} $ |
其中
| ${c_1} = \frac{{(1 - \sigma )\sigma }}{2}\mathop {\max }\limits_{{t_0} \leqslant t \leqslant {t_n}} \left| {u_t^{(2)}(x,t)} \right|,$ |
| $\begin{gathered} {c_2} = 2\Gamma (1 - \gamma ){T^\gamma }\left( {\frac{1}{{12}}\mathop {\max }\limits_{{x_{i - 2}} \leqslant x \leqslant {x_{i + 2}}} \left| {u_x^{(4)}(x,t)} \right|{h^2}} \right. + \\ \left. {{\rm{ }}\frac{1}{4}\mathop {\max }\limits_{{x_{i - 2}} \leqslant x \leqslant {x_{i + 2}}} \left| {u_x^{(5)}(x,t)} \right|{h^2} + \frac{1}{6}\mathop {\max }\limits_{{x_{i - 2}} \leqslant x \leqslant {x_{i + 2}}} \left| {u_x^{(6)}(x,t)} \right|{h^2}} \right). \\ \end{gathered} $ |
定理2证毕.
4 数值实验本节考虑了带空间变系数的时间分数阶偏微分方程的周期函数问题,算例验证了差分格式
| ${E_2}(\tau ,h) = {\left\| {U_i^{n + 1} - u_i^{n + 1}} \right\|_2},$ |
时间方向和空间方向的收敛阶分别为
| $\begin{gathered} {{\rm Rate}_\tau } = {\log _2}\left( {\frac{{{E_2}(h,2\tau )}}{{{E_2}(h,\tau )}}} \right), \\ {\rm Rate}_h = {\log _2}\left( {\frac{{{E_2}(2h,\tau )}}{{{E_2}(h,\tau )}}} \right). \\ \end{gathered} $ |
当计算时间方向的收敛阶
首先用差分格式(7)计算有已知精确解的问题(1)~(3)以验证理论结果.
例1 在
| $u(x,t) = ({t^2} + 1)\sin (2{\text{π}} x),{\rm{ }}x \in {\bf{R}}.$ |
系数
| $K(x) = {x^4} + 0.01,{\rm{ }}P(x) = - {x^4},{\rm{ }}Q(x) = - ({x^4} + 0.01),$ |
源项
| $\begin{split} & f(x,t) = - 8{{\text{π}} ^3}{x^4}({t^2} + 1)\cos 2{\text{π}} x + \\ & \left[ {4{{\text{π}} ^2}({t^2} + 1)({x^4} + 0.01)(1 + 4{{\text{π}} ^2}) + \frac{{2{t^{2 - \gamma }}}}{{\Gamma (3 - \gamma )}}} \right]\sin 2{\text{π}} x. \end{split} $ |
表1中列出了当空间步长
| 表 1 h=1/1 500时间方向上的数值收敛阶 Table 1 Numerical convergence orders in temporal direction with h=1/1 500 |
当固定时间步长
| 表 2 当h=1/1 500, γ=0.5时,空间方向上的数值收敛阶 Table 2 Numerical convergence orders in spatial direction with h=1/1 500, γ=0.5 |
本文主要研究带空间变系数的时间分数阶扩散方程的差分方法. 时间方面应用
| [1] |
NIGMATULLIN R R. To the theoretical explanation of the "universal response"[J].
Physica Status Solidi, 1984, 123(2): 739-745.
DOI: 10.1002/(ISSN)1521-3951. |
| [2] |
GORENFLO R, MAINARDI F, SCALAS E, et al. Fractional calculus and continuous-time finance III: the diffusion limit[J].
Physica A Statistical Mechanics & Its Applications, 2000, 284(1-4): 376-384.
|
| [3] |
梅立泉, 李瑞, 李智. 三元期权定价问题的偏微分方程数值解[J].
西安交通大学学报, 2006, 40(4): 484-487.
MEI L Q, LI R, LI Z. Numerical solutions of partial differential equations for trivariate option pricing[J]. Journal of Xi'an Jiaotong University, 2006, 40(4): 484-487. DOI: 10.3321/j.issn:0253-987X.2006.04.027. |
| [4] |
ZHANG H, LIU F, PHANIKUMAR M S, et al. A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model[J].
Computers & Mathematics with Applications, 2013, 66(5): 693-701.
|
| [5] |
CAIN G, MEYER G H. Separation of variables for partial differential equations[M]. New York: Chapman and Hall, 2006.
|
| [6] |
PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
|
| [7] |
SUN Z, WU X. A fully discrete difference scheme for a diffusion-wave system[J].
Applied Numerical Mathematics, 2006, 56(2): 193-209.
DOI: 10.1016/j.apnum.2005.03.003. |
| [8] |
LIN Y, XU C. Finite difference/spectral approximations for the time-fractional diffusion equation[J].
Journal of Computational Physics, 2007, 225(2): 1533-1552.
DOI: 10.1016/j.jcp.2007.02.001. |
| [9] |
CUI M. Compact finite difference method for the fractional diffusion equation[J].
Journal of Comp-utational Physics, 2009, 228(20): 7792-7804.
DOI: 10.1016/j.jcp.2009.07.021. |
| [10] |
REN J, SUN Z, ZHAO X. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions[J].
Journal of Computational Physics, 2013, 232(1): 456-467.
DOI: 10.1016/j.jcp.2012.08.026. |
| [11] |
WANG Z, VONG S. A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates[J].
Computers & Mathematics with Applications, 2016, 71(12): 2524-2540.
|
| [12] |
FENG Q, MENG F. Finite difference scheme with spatial fourth-order accuracy for a class of time fractional parabolic equations with variable coefficient[J].
Advances in Difference Equations, 2016, 2016(1): 305.
DOI: 10.1186/s13662-016-1035-8. |
| [13] |
YUSTE S B, ACEDO L. An explicit finite difference method and a new von neumann-type stability analysis for fractional diffusion equations[J].
SIAM Journal on Numerical Analysis, 2005, 42(5): 1862-1874.
DOI: 10.1137/030602666. |
| [14] |
ZHUANG P, LIU F, ANH V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous sub-diffusion equation[J].
SIAM Journal on Numerical Analysis, 2008, 46(2): 1079-1095.
DOI: 10.1137/060673114. |
| [15] |
ALIKHANOV A A. A new difference scheme for the time fractional diffusion equation[J].
Journal of Computational Physics, 2015, 280(C): 424-438.
|
| [16] |
VONG S, LYU P, CHEN X, et al. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives[J].
Numerical Algorithms, 2016, 72(1): 195-210.
DOI: 10.1007/s11075-015-0041-3. |
| [17] |
ZHAO X, XU Q. Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient[J].
Applied Mathematical Modelling, 2014, 38(15-16): 3848-3859.
DOI: 10.1016/j.apm.2013.10.037. |
| [18] |
VONG S, WANG Z. A high order compact finite difference scheme for time fractional Fokker-Planck equations[J].
Applied Mathematics Letters, 2015, 43: 38-43.
DOI: 10.1016/j.aml.2014.11.007. |
| [19] |
CUI M. Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients[J].
Journal of Computational Physics, 2015, 280(2): 143-163.
|
| [20] |
杜瑞连, 梁宗旗. 右侧Caputo分数阶导数的L2-1插值逼近[J].
集美大学学报(自然科学版), 2017, 22(4): 68-74.
DU R L, LIANG Z Q. Interpolation approximation of the right side of the caputo fractional derivative[J]. Journal of Jimei University (Natural Science), 2017, 22(4): 68-74. DOI: 10.3969/j.issn.1007-7405.2017.04.010. |
2019, Vol. 36

