广东工业大学学报  2017, Vol. 34Issue (1): 78-83, 89.  DOI: 10.12052/gdutxb.150151.
0

引用本文 

彭诗友, 彭世国. 不确定时滞神经网络的无源性分析[J]. 武汉大学学报(医学版), 2017, 34(1): 78-83, 89. DOI: 10.12052/gdutxb.150151.
Peng Shi-you, Peng Shi-guo. Passivity Analysis for Uncertain Neural Networks with Time-Varying Delay[J]. Journal of Guangdong University of Technology, 2017, 34(1): 78-83, 89. DOI: 10.12052/gdutxb.150151.

基金项目:

国家自然科学基金资助项目(61374081);广东省自然科学基金资助项目(S2013010013034,2015A030313485)

作者简介:

彭诗友(1989-), 男, 硕士研究生, 主要研究方向为神经网络无源性分析。

文章历史

收稿日期:2015-12-28
不确定时滞神经网络的无源性分析
彭诗友, 彭世国     
广东工业大学 自动化学院, 广东 广州 510006
摘要: 对神经网络系统的无源性进行了研究,根据无源性网络理论,得出神经网络满足无源保守性更弱的条件.另外研究了参数不确定时滞神经网络的鲁棒无源性.根据李雅普诺夫稳定性理论、Jensen不等式、Schur补及自由权矩阵等方法,研究表明,从构造一个新颖李雅普诺夫泛函并化简李雅普诺夫泛函导数的二次积分项,能够得到神经网络保守性更小的无源条件.同时,得到了满足神经网络无源条件的李雅普诺夫泛函的所有二次项对称矩阵可非正定.实验仿真证明了本文方法的有效性.
关键词: 神经网络    李雅普诺夫泛函    时滞    无源    
Passivity Analysis for Uncertain Neural Networks with Time-Varying Delay
Peng Shi-you, Peng Shi-guo     
School of Automation, Guangdong University of Technology, Guangzhou 510006, China
The passivity of neural networks of neural network systems is studied. Based on the passive network theory, it the less conservative conditions of the neural network can be obtained. Additionally, the robust passivity of the parameters uncertainties' neural networks with time-delay is analyzed. According to theories and approaches of Lyapunov stability, Jensen integral inequality, Schur complement lemma and free weighting matrices, the research shows that the less conservative passive condition of the neural network can be obtained from constructing a new Lyapunov-Krasovskii functional and simplifying the quadratic terms of the Lyapunov-Krasovskii functional's inverse. Meanwhile, the passivity condition is obtained not requiring all the symmetric involved in the employed quadratic Lyapunov-Krasovskii functional matrices to be positive definite. The results show that the method is effective.
Key words: neural networks    Lyapunov-Krasovskii functional    time delay    passivity    

在近几十年,神经网络在信号处理、联想记忆、模式识别、定点计算等科学领域有着广泛的用途[1-2].在神经网络的应用方面,由于其信号传输和有限运算放大器切换速度的影响,可能导致神经网络失去稳定或者振动.因此,时滞神经网络的稳定性得到了广泛研究,并取得了重大成果[3-7].众所周知,耗散性理论在动态系统、非线性控制等领域的稳定性分析有着重要的地位[8-9].作为耗散性特例的无源性,不仅仅是系统稳定性的体现,还涉及系统的输入输出存储函数,在分析电子电路、机械系统、非线性系统有着重要的作用[10-11].同时,时滞系统的无源性问题引起了大家的广泛关注,以及时滞神经网络的无源性分析也取得了重大发展.最初时滞独立神经网络的无源性得到了研究,并取得了成果[12-13].相比时滞依赖神经网络,时滞独立神经网络的无源性结果具有更大的保守性,探讨时滞依赖神经网络的无源已成为当代主流,且得到的神经网络无源性的结果保守性也越来越小[14-16].

传统的李雅普诺夫泛函构造方法要求李雅普诺夫泛函中的每个对称矩阵是正定的.文献[17]构造了不需要所有的对阵矩阵是正定的李雅普诺夫泛函,证明了时滞神经网络的无源性.受文献[17]的启发,本文构造一个不需要所有二次项对称矩阵全都正定的李雅普诺夫泛函,通过引入Jensen不等式、Schur补引理及自由权矩阵等方法,证明了李雅普诺夫泛函正定性与李雅普诺夫泛函导数的负定性.通过实验结果的对比,本文得到了比文献[17]保守性更小且满足神经网络无源的结果.

1 问题描述和预备知识

考虑时滞和参数不确定的神经网络系统:

$ \left\{ {\begin{array}{*{20}{l}} {\boldsymbol{\dot x}(t) = - \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{W}(t)\boldsymbol{f}(\boldsymbol{x}(t))}+ \\ {\;\;\;\;\;\;\;\;\; {\boldsymbol{W}_1}(t)\boldsymbol{f}(\boldsymbol{x}(t - \tau (t))) + \boldsymbol{u}(t), {\rm{ }}}\\ {\boldsymbol{y}(t) = \boldsymbol{f}(\boldsymbol{x}(t)), }\\ {\boldsymbol{x}(t) = \boldsymbol{\phi} (t), t \in [\bar \tau, 0].} \end{array}} \right. $ (1)

其中$\boldsymbol{x}(t) = {[{x_1}(t){\rm{ }}{x_2}(t) \ldots {x_n}(t)]^{\rm{T}}} \in {R^n}$表示状态向量,$\boldsymbol{f}(t) = {[{f_1}(t){\rm{ }}{f_2}(t) \ldots {f_n}(t)]^{\rm{T}}} \in {R^n}$表示激活函数$\boldsymbol{u}(t) = {[{u_1}(t){\rm{ }}{{\rm{u}}_2}(t) \ldots {u_n}(t)]^{\rm{T}}}$$\boldsymbol{y}(t) = {[{y_1}(t){\rm{ }}{{\rm{y}}_2}(t) \ldots {y_n}(t)]^{\rm{T}}}$分别表示神经网络的输入和输出向量,连续函数$\boldsymbol{\phi} (t) \in {R^n}$是初始条件.时变时滞τ(t)是时变连续函数,满足

$ 0 < \tau (t) \leqslant \bar \tau, \dot \tau (t) \leqslant \mu, $ (2)

其中$\bar \tau $μ是正的常量.不确定矩阵A(t),W(t),W1(t)满足:

$ \left\{ \begin{array}{l} \boldsymbol{A}(t) = \boldsymbol{A} + \Delta \boldsymbol{A}(t), \\ \boldsymbol{W}(t) = \boldsymbol{W} + \Delta \boldsymbol{W}(t), \\ {\boldsymbol{W}_1}(t) = {\boldsymbol{W}_1} + \Delta {\boldsymbol{W}_1}(t), \end{array} \right. $ (3)

其中$\boldsymbol{A} = {\rm{diag}}\{ {a_1}, {a_2}, \ldots, {a_n}\} $是正定的对角矩阵,$\boldsymbol{W} = ({w_{ij}}) \in {R^{n \times n}}$${\boldsymbol{W}_1} = (w_{ij}^1) \in {R^{n \times n}}$是已知的连接权值矩阵.ΔA(t)、ΔW(t)、ΔW1(t)是未知矩阵,表示时变参数的不确定性,具有以下形式:

$ \left\{ \begin{array}{l} \Delta \boldsymbol{A}(t) = {\boldsymbol{H}_1}{\boldsymbol{F}_1}(t){\boldsymbol{E}_1}{\rm{, }}\\ \Delta \boldsymbol{W}(t) = {\boldsymbol{H}_2}{\boldsymbol{F}_2}(t){\boldsymbol{E}_3}, \\ \Delta {\boldsymbol{W}_1}(t) = {\boldsymbol{H}_3}{\boldsymbol{F}_3}(t){\boldsymbol{E}_3}{\rm{, }} \end{array} \right. $ (4)

其中HiEii=1, 2, 3,是已知常数实矩阵,${\boldsymbol{F}_i}( \cdot ):\boldsymbol{R} \to {\boldsymbol{R}^{k \times l}}, i = 1, 2, 3$,是一个未知时变矩阵函数,满足

$ {\boldsymbol{F}_i}{(t){\rm{^T}}}{\boldsymbol{F}_i}(t) \leqslant \boldsymbol{I}, i = 1, 2, 3.{\rm{ }} $ (5)

假定激活函数满足以下假设.

假设1 (Wang et al.[18]).函数fi(·)连续有界,且满足:

$ F_i^ - \leqslant \frac{{{f_i}({a_1}) - {f_i}({a_2})}}{{{a_1} - {a_2}}} \leqslant F_i^ +, i = 1, 2, \cdots, n, $ (6)

其中${f_i}(0) = 0, {a_1}, {a_2} \in R, {a_1} \ne {a_2}, F_i^ - $$F_i^ + $是已知实标量.

注1:上述假设的激活函数首先在文献[18]提出,该假设比文献[15, 17]更具一般性,因为$F_i^ - $$F_i^ + $可能为正数,零或者负数,即假设1的激活函数可能是非单调,非可微的,无界的.因此,本文的无源条件比文献[15, 17]更弱保守性.

为推导本文的结论,首先给出以下定义和引理.

定义1 (Li and Liao[12]).在零初始条件下,对神经网络(1)如果存在一标量γ$ \geqslant $0在所有tf$ \geqslant $0都满足:

$ 2\int_0^{{t_f}} {\boldsymbol{y}{{(s)}^{\rm{T}}}\boldsymbol{u}(s){\rm{d}}s \geqslant } - \gamma \int_0^{{t_f}} {\boldsymbol{u}{{(s)}^{\rm{T}}}\boldsymbol{u}(s){\rm{d}}s}, $ (7)

则神经网络(1)是无源的.

引理1 (Gu[19]).对任意对称正定矩阵${\boldsymbol{M}_1} \in {R^{n \times n}}$M1 > 0,标量b > a,向量函数$\boldsymbol{\omega }:[a, b] \to {R^n}$,经积分定义得到不等式:

$ \begin{split}{l} (b - a)\int_a^b {\boldsymbol{\omega }{{(s)}^{\rm{T}}}{\boldsymbol{M}_1}} \boldsymbol{\omega }(s){\rm{d}}s \geqslant \\ {\left[{\int_a^b {\boldsymbol{\omega }(s){\rm{d}}s} } \right]^{\rm{T}}}{\boldsymbol{M}_1}\left[{\int_a^b {\boldsymbol{\omega }(s){\rm{d}}s} } \right]. \end{split} $ (8)

引理2 (Park and Ko[20]).对任意矩阵$\left[{\begin{array}{*{20}{c}} {{\boldsymbol{M}_2}} & \boldsymbol{S}\\ * & {{\boldsymbol{M}_2}} \end{array}} \right] \geqslant 0$,标量$\bar \tau$ > 0,τ(t) > 0满0 < τ(t)$ \leqslant $$\bar \tau$,向量函数$\boldsymbol{\dot x}:\left[{-\tau, 0} \right] \to $Rn,即有如下积分的定义:

$ - (b - a)\int_a^b {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}{\boldsymbol{M}_2}} \boldsymbol{\dot x}(s){\rm{d}}s \leqslant \boldsymbol{\varsigma }{(t)^{\rm{T}}}\boldsymbol{{{\varPi }}\varsigma }(t), $ (9)

其中$\boldsymbol{\varsigma }(t) = {\left[{\begin{array}{*{20}{c}}{\boldsymbol{x}{{(t)}^{\rm{T}}}} &\;\;\; {\boldsymbol{x}{{(t-\tau (t))}^{\rm{T}}}} &\;\;\; {\boldsymbol{x}{{(t-\bar \tau )}^T}}\end{array}} \right]^{\rm{T}}}$$\boldsymbol{\varPi } = \left[{\begin{array}{*{20}{c}} {-{\boldsymbol{M}_2}} & {{\boldsymbol{M}_2}-\boldsymbol{S}} & \boldsymbol{S}\\ * & {-2{\boldsymbol{M}_2} + \boldsymbol{S} + {\boldsymbol{S}^T}} & {{\boldsymbol{M}_2} - \boldsymbol{S}}\\ * & * & { - {\boldsymbol{M}_2}} \end{array}} \right].$

引理3 (Boyd et al.[21] Schur complement).给定常数矩阵Ω1Ω2Ω3满足Ω1=Ω1T和Ω2 > 0,仅当$\left[{\begin{array}{*{20}{c}} {{\boldsymbol{\varOmega }_1}} & {{\boldsymbol{\varOmega }_3}^{\rm T}}\\ {{\boldsymbol{\varOmega }_3}} & {-{\boldsymbol{\varOmega }_2}} \end{array}} \right] < 0$$\; \left[{\begin{array}{*{20}{c}} {-{\boldsymbol{\varOmega }_2}} & {{\boldsymbol{\varOmega }_3}}\\ {{\boldsymbol{\varOmega }_3}^T} & {{\boldsymbol{\varOmega }_1}} \end{array}} \right] < 0$时,可得

$ {\boldsymbol{\varOmega }_1} + {\boldsymbol{\varOmega }_3}{\boldsymbol{\varOmega }_2}^{ - 1}{\boldsymbol{\varOmega }_3} < 0. $ (10)

引理4 (Petersen and Hollot[22]).对适当维实矩阵HEF(t),F(t)满足F(t)TF(t)$ \leqslant $I对任意标量ε < 0则有:

$ \boldsymbol{HF}(t)\boldsymbol{E} + {(\boldsymbol{HF}(t)\boldsymbol{E})^{\rm{T}}} \leqslant {\varepsilon ^{ - 1}}\boldsymbol{H}{\boldsymbol{H}^{\rm{T}}} + \varepsilon {\boldsymbol{E}^{\rm{T}}}\boldsymbol{E}. $ (11)

首先考虑标称神经网络系统如下:

$ \left\{ {\begin{array}{*{20}{c}} {\boldsymbol{\dot x}(t) = - \boldsymbol{Ax}(t) + \boldsymbol{Wf}(\boldsymbol{x}(t)){\rm{ }}} +\\ {{\boldsymbol{W}_1}\boldsymbol{f}(\boldsymbol{x}(t - \tau (t))) + \boldsymbol{u}(t), }\\ \!{\boldsymbol{y}(t) = \boldsymbol{f}(\boldsymbol{x}(t)), {\rm{ }}}\\ {\boldsymbol{x}(t) = \boldsymbol{\phi}(t), t \in [\bar \tau, 0].{\rm{ }}} \end{array}} \right. $ (12)

为方便,本文有以下表示:

$ \begin{array}{c} {\boldsymbol{K}_1} = {\rm{diag}}\{ F_1^ +, F_2^ +, \cdots, F_n^ + \}, \\ {\boldsymbol{K}_2} = {\rm{diag}}\{ F_1^ -, F_2^ -, \cdots, F_n^ - \}, \\ {\boldsymbol{F}_1} = {\rm{diag}}\{ F_1^ - F_1^ +, F_2^ - F_2^ +, \cdots, F_n^ - F_n^ + \}, \\ {\boldsymbol{F}_2} = {\rm{diag}}\{ \frac{{F_1^ - + F_1^ + }}{2}, \frac{{F_2^ - + F_2^ + }}{2}, \cdots, \frac{{F_n^ - + F_n^ + }}{2}\} . \end{array} $
2 主要结果

定理1对标称神经网络(12),由假设1,对给定标量$\bar \tau $ > 0和μ,对于任意时滞τ(t)满足0 < τ(t)$ \leqslant $$\bar \tau $$\dot \tau (t) \leqslant \mu $,如果存在对称矩阵P > 0,Z > 0,Ψ1 > 0,Ψ2 > 0,Ξ < 0,$\mathbb{Z} = \left[{\begin{array}{*{20}{c}}\boldsymbol{Z} & \boldsymbol{S}\\* & \boldsymbol{Z}\end{array}} \right] > 0$${\boldsymbol{Q}_1} = {\boldsymbol{Q}_1}^{\rm{T}}, {\boldsymbol{Q}_2}, {\boldsymbol{Q}_3} = {\boldsymbol{Q}_3}^{\rm{T}}, $${\boldsymbol{R}_1} = {\boldsymbol{R}_1}^{\rm{T}}, {\boldsymbol{R}_2}, {\boldsymbol{R}_3} = {\boldsymbol{R}_3}^{\rm{T}}$,对角矩阵Li > 0,其中i=1,2,$cdots$,4,${\boldsymbol{D}_1} = {\rm{diag}}\!\left\{ {{d_{11}}, } \right.\left. {{d_{12}}, \cdots, {d_{1n\!}}} \right\} > 0$${\boldsymbol{D}_2} = {\rm{diag}}\left\{ {{d_{21}}, {d_{22}}, } \right.$$\left. \cdots, {{d_{2n}}} \right\} > 0$,标量γ $ \geqslant $0,则神经网络(12)是无源的.

$ {\boldsymbol{\psi }_1} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1} + {\boldsymbol{F}_1}{\boldsymbol{L}_1}} & {{\boldsymbol{Q}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ * & {{\boldsymbol{Q}_3} + {\boldsymbol{L}_1}} \end{array}} \right] > 0, $ (13)
$ {\boldsymbol{\psi }_2} = \left[{\begin{array}{*{20}{c}} {{{\bar \tau }^{-1}}\boldsymbol{P} + \boldsymbol{Z}} & {-\boldsymbol{Z}} & 0\\ * & {{\boldsymbol{R}_1} + \boldsymbol{Z} + {\boldsymbol{F}_1}{\boldsymbol{L}_2}} & {{\boldsymbol{R}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ * & * & {{\boldsymbol{R}_3} + {\boldsymbol{L}_2}} \end{array}} \right] \geqslant 0, $ (14)
$ {\boldsymbol{\varXi}} \! = \! \left[{\begin{array}{*{20}{c}} {{\boldsymbol{\psi }_{\rm{1}}}}&{{\boldsymbol{\psi }_{\rm{2}}}}&{{\boldsymbol{\psi }_{\rm{3}}}}&{{\boldsymbol{\psi }_{\rm{4}}}}&{S}&{\rm{0}}&{{\boldsymbol{\psi }_{\rm{5}}}}&{{-}\bar \tau \boldsymbol{AZ}} \\ {\rm{*}}&{{\boldsymbol{\psi }_{\rm{6}}}}&{{\boldsymbol{\psi }_{\rm{7}}}}&{{-}{\boldsymbol{F}_{\rm{2}}}{\boldsymbol{L}_{\rm{4}}}}&{\rm{0}}&{\rm{0}}&{{\boldsymbol{\psi }_{\rm{8}}}}&{\bar \tau {\boldsymbol{W}^{\rm{T}}}\boldsymbol{Z}} \\ {\rm{*}}&{\rm{*}}&{{\boldsymbol{\psi }_{\rm{9}}}}&{{\boldsymbol{\psi }_{{\rm{10}}}}}&{\rm{0}}&{\rm{0}}&{\rm{0}}&{\bar \tau {\boldsymbol{W}_{\rm{1}}}^{\rm{T}}\boldsymbol{Z}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{{\boldsymbol{\psi }_{{\rm{11}}}}}&{\boldsymbol{Z}{-}\boldsymbol{S}}&{\rm{0}}&{\rm{0}}&{\rm{0}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }{\boldsymbol{R}_{\rm{1}}}{ - }\boldsymbol{Z}}&{{ - }{\boldsymbol{R}_{\rm{2}}}}&{\rm{0}}&{\rm{0}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }{\boldsymbol{R}_{\rm{3}}}}&{\rm{0}}&{\rm{0}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }\gamma {I}}&{\bar \tau \boldsymbol{Z}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }\boldsymbol{Z}} \end{array}} \right] \! \leqslant \! 0, $ (15)

其中

$ \begin{split} \begin{array}{l} {\boldsymbol{\varPsi }_1} = - \boldsymbol{A}{(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})^{\rm{T}}} - (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ \;\;\;\;\;\;\;\; {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{A} + {\boldsymbol{Q}_1} + {\boldsymbol{R}_1} - \boldsymbol{Z} - {\boldsymbol{F}_1}{\boldsymbol{L}_1} - {\boldsymbol{F}_1}{\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_2} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{W} + {\boldsymbol{Q}_2} - \boldsymbol{A}({\boldsymbol{D}_1} - {\boldsymbol{D}_2}) + \\ \;\;\;\;\;\;\;\; {\boldsymbol{R}_2} + {\boldsymbol{F}_2}{\boldsymbol{L}_1} + {\boldsymbol{F}_2}{\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_3} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1}){\boldsymbol{W}_1} - {\boldsymbol{F}_2}{\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_4} = {\boldsymbol{F}_1}{\boldsymbol{L}_4} + \boldsymbol{Z} - \boldsymbol{S, }\\ {\boldsymbol{\varPsi }_5} = \boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1}, \\ {\boldsymbol{\varPsi }_6} = ({\boldsymbol{D}_1}\! - \!{\boldsymbol{D}_2})\boldsymbol{W} + {\boldsymbol{W}^{\rm{T}}}({\boldsymbol{D}_1} \!- \!{\boldsymbol{D}_2}) + {\boldsymbol{Q}_3} + {\boldsymbol{R}_3} - {\boldsymbol{L}_1} - {\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_7} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2}){\boldsymbol{W}_1} + {\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_8} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2}) - \boldsymbol{I, }\\ {\boldsymbol{\varPsi }_9} = - (1 - \mu ){\boldsymbol{Q}_3} - {\boldsymbol{L}_3} - {\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_{10}} = - (1 - \mu ){\boldsymbol{Q}_2}^{\rm{T}} + {\boldsymbol{F}_2}{\boldsymbol{L}_4} + {\boldsymbol{F}_2}{\boldsymbol{L}_3}, \\ {\boldsymbol{\varPsi }_{11}} = - (1 - \mu ){\boldsymbol{Q}_1} - 2\boldsymbol{Z} + \boldsymbol{S} + {\boldsymbol{S}^{\rm{T}}} - {\boldsymbol{F}_1}{\boldsymbol{L}_3} - {\boldsymbol{F}_1}{\boldsymbol{L}_4}. \end{array} \end{split} $

证明构造以下李雅普诺夫-克拉索夫斯基泛函:

$ \boldsymbol{V}(\boldsymbol{x}(t)) = {\boldsymbol{V}_1}(\boldsymbol{x}(t)) + {\boldsymbol{V}_2}(\boldsymbol{x}(t)) + {\boldsymbol{V}_3}(\boldsymbol{x}(t)), $ (16)

其中

$ \begin{array}{l} {\boldsymbol{V}_1}(\boldsymbol{x}(t)) = \boldsymbol{x}{(t)^{\rm{T}}}\boldsymbol{Px}(t) + 2\sum\limits_{i = 1}^n {{d_{1i}}\int_0^{{x_i}(t)} {({f_i}(s)} }- \\ \;\;\;\;\;\;\;\;\;\;\;\;\;F_i^ - s){\rm{d}}s + 2\sum\limits_{i = 1}^n {{d_{2i}}\int_0^{{x_i}(t)} {(F_i^ + s - {f_i}(s))} } {\rm{d}}s, \\ {\boldsymbol{V}_2}(\boldsymbol{x}(t)) = \int_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{Q\eta }(s){\rm{d}}s + \int_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{R\eta }(s){\rm{d}}s, \\ {\boldsymbol{V}_3}(\boldsymbol{x}(t)) = \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^T}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta, \\ \boldsymbol{\eta }(s)\! =\! \left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(s)}\\ {\boldsymbol{f}(\boldsymbol{x}(s))} \end{array}} \right], \boldsymbol{Q} \!=\! \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1}}\\ {\boldsymbol{Q}_2^{\rm{T}}} \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{Q}_2}}\\ {{\boldsymbol{Q}_3}} \end{array}} \right], \boldsymbol{R} \!=\! \left[{\begin{array}{*{20}{c}} \!{{\boldsymbol{R}_1}}\!\\ \!{\boldsymbol{R}_2^T}\! \end{array}} \right.\left. {\begin{array}{*{20}{c}} \!{{\boldsymbol{R}_2}}\!\\ \!{{\boldsymbol{R}_3}}\! \end{array}} \right]. \end{array} $

证明泛函V(x(t))正定.对任意θ < 0,由引理1得

$ \begin{split} \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta \geqslant \\ \bar \tau \int\limits_{ - \bar \tau }^0 {\left\{ { - \frac{1}{\theta }{{\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]}^{\rm{T}}}\boldsymbol{Z}\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]} \right\}} {\rm{d}}\theta, \end{split} $ (17)

对任意标量θ满足-$\bar \tau$$ \leqslant $θ < 0,即$ - \displaystyle{\frac{{\bar \tau }}{\theta }} \geqslant 1 > 0$,得

$ \begin{split} \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta \geqslant \\ \bar \tau \int\limits_{ - \bar \tau }^0 {\left\{ { - \frac{1}{\theta }{{\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]}^{\rm{T}}}\boldsymbol{Z}\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]} \right\}} {\rm{d}}\theta \geqslant \\ \int\limits_{ - \bar \tau }^0 {\left\{ {{{\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]}^{\rm{T}}}\boldsymbol{Z}\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]} \right\}} {\rm{d}}\theta = \\ {\int\limits_{t - \bar \tau }^t {\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(s)} \end{array}} \right]} ^{\rm{T}}}\boldsymbol{\varGamma }\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(s)} \end{array}} \right]{\rm{d}}s, \end{split} $ (18)

其中$\boldsymbol{\varGamma } = \left[{\begin{array}{*{20}{c}} \boldsymbol{Z} & {-\boldsymbol{Z}}\\ {-\boldsymbol{Z}} & \boldsymbol{Z} \end{array}} \right]$.

由假设1,存在任意${l_{1i}} \geqslant 0, {l_{2i}} \geqslant 0, i = 1, 2, \cdots, n, $满足不等式

$ \left[{{f_i}({x_i}(t))-F_i^-{x_i}(t)} \right]{l_{1i}}\left[{F_i^ + {x_i}(t)-{f_i}({x_i}(t))} \right] \geqslant 0, $ (19)
$ \left[{{f_i}({x_i}(t))-F_i^-{x_i}(t)} \right]{l_{2i}}\left[{F_i^ + {x_i}(t)-{f_i}({x_i}(t))} \right] \geqslant 0, $ (20)

可得$\boldsymbol{\eta }{(t)^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_i}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_i}}\\ {-{\boldsymbol{L}_i}} \end{array}} \right]\boldsymbol{\eta }(t) \geqslant 0, i = 1, 2$.

其中${\boldsymbol{L}_1} = {\rm{diag}}\{ {l_{11}}, {l_{12}}, \cdots, {l_{1n}}\} $${L_2} = {\rm{diag}}\left\{ {{l_{21}}, {l_{22}}, \cdots, } \right.$${\left. {{l_{2n}}} \right\}}$.综合式(19)与(20)得

$ \begin{split}{l} \int\limits_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s + \\ \int\limits_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_2}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ {-{\boldsymbol{L}_2}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s \geqslant 0. \end{split} $ (21)

假设1确保

$ \begin{split}{l} 2\sum\limits_{i = 1}^n {{d_{1i}}\int_0^{{x_i}(t)} {({f_i}(s) - F_i^ - s)} } {\rm{d}}s + \\ 2\sum\limits_{i = 1}^n {{d_{2i}}\int_0^{{x_i}(t)} {(F_i^ + s - {f_i}(s))} } {\rm{d}}s \geqslant 0, \end{split} $ (22)

由不等式(17)~(22)得

$ \begin{array}{l} \boldsymbol{V}(\boldsymbol{x}(t)) \geqslant \boldsymbol{x}{(t)^{\rm{T}}}\boldsymbol{Px}(t) + \int_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{Q\eta }(s){\rm{d}}s + \\ \int_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{R\eta }(s){\rm{d}}s + \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta - \\ \int\limits_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s - \\ \int\limits_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_2}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ {-{\boldsymbol{L}_2}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s \geqslant \\ \int_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} {\boldsymbol{\psi }_1}\boldsymbol{\eta }(s){\rm{d}}s +\int_{t - \bar \tau }^t {\boldsymbol{\tilde \eta }{{(t, s)}^{\rm{T}}}} {\boldsymbol{\psi }_2}\boldsymbol{\tilde \eta }(t, s){\rm{d}}s, \end{array} $ (23)

其中

$ \begin{array}{l} \boldsymbol{\tilde \eta }(t, s) = {\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}{{(t)}^{\rm{T}}}} & {\boldsymbol{x}{{(s)}^{\rm{T}}}} & {\boldsymbol{f}{{(\boldsymbol{x}(s))}^{\rm{T}}}} \end{array}} \right]^{\rm{T}}}, \\ {\boldsymbol{\psi }_1} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1} + {\boldsymbol{F}_1}{\boldsymbol{L}_1}} & {{\boldsymbol{Q}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ * & {{\boldsymbol{Q}_3} + {\boldsymbol{L}_1}} \end{array}} \right], \\ {\boldsymbol{\psi }_2} = \left[{\begin{array}{*{20}{c}} {{{\bar \tau }^{-1}}\boldsymbol{P} + \boldsymbol{Z}} & {-\boldsymbol{Z}} & 0\\ * & {{\boldsymbol{R}_1} + \boldsymbol{Z} + {\boldsymbol{F}_1}{\boldsymbol{L}_2}} & {{\boldsymbol{R}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ * & * & {{\boldsymbol{R}_3} + {\boldsymbol{L}_2}} \end{array}} \right]. \end{array} $

Ψ1 > 0、Ψ2 > 0即可得V(x(t))正定,证毕.

证明$\boldsymbol{\dot V}(\boldsymbol{x}(t))$负定.由式(16)可得,

$ \begin{split} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{y}{(t)^{\rm{T}}}\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ & \quad {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \\ & \quad \quad \left( {1 - \dot \tau (t)} \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \\ & \quad \quad \quad \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \\ & \quad \quad \quad \quad \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s){\rm{d}}s} - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - \\ & \quad \quad \quad \quad \quad 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t). \end{split} $ (24)

${\boldsymbol{\psi }_1} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1} + {\boldsymbol{F}_1}{\boldsymbol{L}_1}} & {{\boldsymbol{Q}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ * & {{\boldsymbol{Q}_3} + {\boldsymbol{L}_1}} \end{array}} \right] > 0, $$\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}$${\boldsymbol{\psi }_1}\boldsymbol{\eta }(t - \tau (t)) > 0.$

$\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(t - \tau (t)) \geqslant 0$,可得$\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) > 0$.

$\dot \tau (t) \leqslant \mu $,可得

$ \begin{array}{l} - \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) \geqslant \\ - \left( {1 - \dot \tau (t)} \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)). \end{array} $

因此

$ \begin{split} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \!\boldsymbol{u}{(t)\!^{\rm{T}}}\!\boldsymbol{u}(t) - 2\boldsymbol{y}{(t)^{\rm{T}}}\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}\!(\boldsymbol{P} + \\ & \quad{\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \\ & \quad \quad\boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \\ & \quad \quad \quad\boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + \\ & \quad \quad \quad {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s){\rm{d}}s} - \\ & \quad \quad \quad \quad \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t). \end{split} $ (25)

由假设1,存在任意${l_{3i}} \geqslant 0, {l_{4i}} \geqslant 0, i = 1, 2, \cdots, n, $满足不等式$\left[{{f_i}({x_i}(t-\tau (t)))-F_i^-{x_i}(t - \tau (t))} \right] \times $ $ {l_{3i}} \left[{F_i^ + {x_i}(t-\tau (t))} \right.\left. {-{f_i}({x_i}(t-\tau (t)))} \right] \geqslant 0, $可得

$ \boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_3}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_3}}\\ {-{\boldsymbol{L}_3}} \end{array}} \right]\boldsymbol{\eta }(t - \tau (t)) \geqslant 0, $ (26)

$\left[{{f_i}({x_i}(t)) \;-\; {f_i}({x_i}(t \;-\; \tau (t)))-F_i^ - ({x_i}(t)} \right. - {x_i}(t\left. { - \tau (t)))} \right] \times $$ {l_{4i}} [F_i^ + {x_i}(t) \!-\! {x_i}(t-\tau (t)))\!-{f_i}({x_i}(t))\left. { \!-\! {f_i}({x_i}(t \!-\! \tau (t)))} \right]0, $可得

$ \begin{array}{l} {\left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right]^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_4}}\! & \!{{\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {-{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & {-{\boldsymbol{L}_4}} & { - {\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{L}_4}}\\ * & * \!& { - {\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & * & * & { - {\boldsymbol{L}_4}} \end{array}} \right] \times \\ \left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right] \geqslant 0, \end{array} $ (27)

其中${\boldsymbol{L}_3}\!=\!{\rm{diag}}\{ {l_{31}}, {l_{32}}, \! \cdots \!, {l_{3n}}\} $${\boldsymbol{L}_4}\!=\!{\rm{diag}}\{ {l_{41}}, {l_{42}}, \! \cdots \!, $${l_{4n}}\} $.

由引理2可得:

$ \begin{aligned} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{y}(t)\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ & {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \\ & \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \\ & \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \\ & \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s){\rm{d}}s} - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - \\ & 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(t) + \\ & \boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_3}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_3}}\\ {-{\boldsymbol{L}_3}} \end{array}} \right]\boldsymbol{\eta }(t - \tau (t)) \!+\! {\left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right]^{\rm{T}}} \times \\ & \left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {-{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & {-{\boldsymbol{L}_4}} & { - {\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{L}_4}}\\ * & * & { - {\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & * & * & { - {\boldsymbol{L}_4}} \end{array}} \right]\left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right] + \\ & {\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(t-\tau (t))}\\ {\boldsymbol{x}(t-\bar \tau )} \end{array}} \right]^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-\boldsymbol{Z}} & {\boldsymbol{Z}-\boldsymbol{S}} & \boldsymbol{S}\\ * & {-2\boldsymbol{Z} + \boldsymbol{S} + {\boldsymbol{S}^T}} & {\boldsymbol{Z} - \boldsymbol{S}}\\ * & * & { - \boldsymbol{Z}} \end{array}} \right] \times \\ & \left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(t-\tau (t))}\\ {\boldsymbol{x}(t-\bar \tau )} \end{array}} \right] = \boldsymbol{\xi }{(t)^{\rm{T}}}(\boldsymbol{\Lambda } + \boldsymbol{\Upsilon} )\boldsymbol{\xi }(t). \end{aligned} $ (28)

其中

$ \begin{array}{l} {\boldsymbol{\zeta }}{\rm{(}}t{\rm{)}}\left[{\begin{array}{*{20}{c}} {x{{{\rm{(}}t{\rm{)}}}^{\rm{T}}}}&{f{{{\rm{(}}x{\rm{(}}t{\rm{))}}}^{\rm{T}}}}&{f{{{\rm{(}}x{\rm{(}}t-\tau {\rm{(}}t{\rm{)))}}}^{\rm{T}}}} \end{array}} \right.\\ {\left. {\begin{array}{*{20}{c}} {{\boldsymbol{x}}{{{\rm{(}}t-\tau {\rm{(}}t{\rm{))}}}^{\rm{T}}}}&{x{{{\rm{(}}t-\bar \tau {\rm{)}}}^{\rm{T}}}}&{f{{{\rm{(}}x{\rm{(}}t - \bar \tau {\rm{))}}}^{\rm{T}}}}&{{\boldsymbol{u}}{{{\rm{(}}t{\rm{)}}}^{\rm{T}}}} \end{array}} \right]^{\rm{T}}, } \end{array} $

$\boldsymbol{J}({t_f}) = \int\limits_0^{{t_f}} {\left[{-\gamma \boldsymbol{u}{{(t)}^{\rm{T}}}\boldsymbol{u}(t)-2\boldsymbol{f}{{(\boldsymbol{x}(t))}^{\rm{T}}}\boldsymbol{u}(t)} \right]} {\rm{d}}t$,其中tf$ \leqslant $0,在零初始条件下,满足

$ \begin{array}{l} \boldsymbol{V}(\boldsymbol{x}({t_f})) \leqslant \int\limits_0^{{t_f}} {\left[{\boldsymbol{\dot V}(\boldsymbol{x}(t))-\gamma \boldsymbol{u}{{(t)}^{\rm{T}}}\boldsymbol{u}(t)-2\boldsymbol{f}{{(\boldsymbol{x}(t))}^{\rm{T}}}\boldsymbol{u}(t)} \right]} {\rm{d}}t, \end{array} $

由引理3知,Ξ < 0可满足(Λ+Υ) < 0,由J(tf)$ \leqslant $0可得神经网络(12)是无源的.

定理2对参数不确定神经网络(1),在假设1情况下,对给定标量$\bar \tau$ > 0和μ,对于任意时滞τ(t)满足0 < τ(t)$ \leqslant $$\bar \tau$$\dot \tau (t) \leqslant \mu $,如果存在对称矩阵,P > 0,Z > 0,Ψ1 > 0,Ψ2 > 0,$\mathbb{Z} = \left[{\begin{array}{*{20}{c}} \boldsymbol{Z} & \boldsymbol{S}\\ * & \boldsymbol{Z} \end{array}} \right] > 0$$\boldsymbol{\varXi } + \boldsymbol{\delta }{\boldsymbol{N}^{ - 1}}{\boldsymbol{\delta }^{\rm{T}}} + {\boldsymbol{E}^{\rm{T}}}\boldsymbol{NE} < 0$${\boldsymbol{Q}_1} = {\boldsymbol{Q}_1}^{\rm{T}}, $${\boldsymbol{Q}_2}, {\boldsymbol{Q}_3} = {\boldsymbol{Q}_3}^{\rm{T}}$${\boldsymbol{R}_1} = {\boldsymbol{R}_1}^{\rm{T}}, {\boldsymbol{R}_2}, {\boldsymbol{R}_3} = {\boldsymbol{R}_3}^{\rm{T}}$,对角矩阵Li > 0,其中i=1, 2,$\cdots$, 4,${\boldsymbol{D}_1} = {\rm{diag}}\left\{ {{d_{11}}, {d_{12}}, \! \cdots \!, {d_{1n}}} \right\} > 0$${\boldsymbol{D}_2} = {\rm{diag}}\left\{ {{d_{21}}, {d_{22}}, } \right.\left. {\! \cdots \!, {d_{2n}}} \right\} > 0$,标量γ$ \leqslant $0神经网络(1)是鲁棒无源的.

$ \left[{\begin{array}{*{20}{c}} \! {{\boldsymbol{\varPsi}}_1} + {\varepsilon _1}\boldsymbol{E}_1^{\rm{T}}{\boldsymbol{E}_1} & {{\boldsymbol{\varPsi}}_3} & {{\boldsymbol{\varPsi}}_4} & {{\boldsymbol{\varPsi}}_2}S & S & 0 & {{\boldsymbol{\varPsi}}_5} &-\bar \tau {\boldsymbol{AZ}} & (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2}-{\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{H} \! \\ \! * & {{\boldsymbol{\varPsi}}_7} &-{\boldsymbol{F}_2}{\boldsymbol{L}_4} & 0 & 0 & 0 & {{\boldsymbol{\varPsi}}_8} & - \bar \tau {\boldsymbol{W}^{\rm{T}}}Z & ({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{H} \! \\ \! * & {{\boldsymbol{\varPsi}}_6} + {\varepsilon _2}\boldsymbol{E}_2^{\rm{T}}{\boldsymbol{E}_2} & {{\boldsymbol{\varPsi}}_9} + {\varepsilon _3}\boldsymbol{E}_3^{\rm{T}}{\boldsymbol{E}_3} & {{\boldsymbol{\varPsi}}_{10}} & 0 & 0 & 0 & \bar \tau \boldsymbol{W}_1^{\rm{T}}\boldsymbol{Z} & 0 \! \\ \! * & * & * & {{\boldsymbol{\varPsi}}_{11}} & \boldsymbol{Z} - \boldsymbol{S} & 0 & 0 & 0 & 0 \! \\ \! * & * & * & * & - {\boldsymbol{R}_1} - \boldsymbol{Z} & - {\boldsymbol{R}_2} & 0 & 0 & 0 \! \\ \! * & * & * & * & * & - {\boldsymbol{R}_3} & 0 & 0 & 0 \! \\ \! * & * & * & * & * & * & - \gamma \boldsymbol{I} & \bar \tau \boldsymbol{Z} & 0 \! \\ \! * & * & * & * & * & * & * & - \boldsymbol{Z} & \bar \tau {\boldsymbol{ZH}} \! \\ \! * & * & * & * & * & * & * & * & - \boldsymbol{N} \! \end{array}} \right] \leqslant 0, $ (29)

其中

$ \begin{aligned} & {\boldsymbol{\sigma }_1} = - \Delta \boldsymbol{A}{(t)^{\rm{T}}}{(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})^{\rm{T}}} - ({\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1} +\\ & \;\;\;\;\;\;\; \boldsymbol{P})\Delta \boldsymbol{A}(t), \\ & {\boldsymbol{\sigma }_2} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\Delta \boldsymbol{W}(t) - \Delta \boldsymbol{A}{(t)^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2}), \\ & {\boldsymbol{\sigma }_3} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\Delta {\boldsymbol{W}_1}(t), \\ & {\boldsymbol{\sigma }_4} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\Delta \boldsymbol{W}(t) + \Delta {\boldsymbol{W}^{\rm{T}}}(t)({\boldsymbol{D}_1} - {\boldsymbol{D}_2}), \\ & {\boldsymbol{\sigma }_5} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\Delta {\boldsymbol{W}_1}(t). \end{aligned} $

由定理1可得

$ \begin{aligned} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{y}{(t)^{\rm{T}}}\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ & {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \\ & \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \\ & \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \\ & \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s)ds} - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - \\ & 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t) < \varPhi . \end{aligned} $

$\delta = \left[{\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2}-{\boldsymbol{K}_2}\boldsymbol{D}\;{\boldsymbol{D}_1}-{\boldsymbol{D}_2}\;0\;0\;0\;0\;0\;\bar \tau \boldsymbol{Z}} \right]\boldsymbol{H}$,其中H=[H1H2H3],$\boldsymbol{E}=\left[\begin{aligned} {\boldsymbol{E}_1}\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\;0\\ 0\;\;\;{\boldsymbol{E}_2}\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\;0\\ 0\;\;\;0\;\;\;{\boldsymbol{E}_3}\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\;0 \end{aligned} \right]$,可得$\boldsymbol{\varPhi } = \boldsymbol{\varXi } + \boldsymbol{\delta FE} + {(\boldsymbol{\delta FE})^{\rm{T}}}$$\boldsymbol{F} = {\rm{diag}}\left\{ {({\boldsymbol{F}_1}(t), {\boldsymbol{F}_2}(t), } \right.$$\left. {{\boldsymbol{F}_3}(t))} \right\}$.

由引理4得$\boldsymbol{\varPhi } = \boldsymbol{\varXi } + \boldsymbol{\delta FE} + {(\boldsymbol{\delta FE})^{\rm{T}}} \leqslant \boldsymbol{\varXi } + \boldsymbol{\delta }{\boldsymbol{N}^{ - 1}}{\boldsymbol{\delta }^{\rm{T}}} +$$ {\boldsymbol{E}^{\rm{T}}}\boldsymbol{{N}E}$$\boldsymbol{N} = {\rm diag}\left\{ {{\varepsilon _1}\boldsymbol{I}, {\varepsilon _2}\boldsymbol{I}, {\varepsilon _3}\boldsymbol{I}} \right\}.$

综合引理3可得$\boldsymbol{\varXi } + \boldsymbol{\delta }{\boldsymbol{{N}}^{ - 1}}{\boldsymbol{\delta }^{\rm{T}}} + {\boldsymbol{E}^{\rm{T}}}\boldsymbol{{N}E} < 0$,即当Φ < 0则神经网络(1)鲁棒无源.证毕.

3 仿真实例

考虑神经网络(12),选取连接权值矩阵为

$ \begin{aligned} & \boldsymbol{A} = \left[{\begin{array}{*{20}{c}} {0.113\;7} & 0 \\ 0 & {0.152\;8} \end{array}} \right], \boldsymbol{W} = \left[{\begin{array}{*{20}{c}} {0.627\;7} & {-0.774\;4} \\ {0.926\;6} & {1.405\;0} \end{array}} \right], \\ & {\boldsymbol{W}_1} = \left[{\begin{array}{*{20}{c}} {-0.531\;4} & {1.194\;8} \\ {-0.617\;6} & {-1.617\;0} \end{array}} \right], \end{aligned} $

假定激活函数为

$ {f_i}({x_i}) = 0.5(\left| {{x_i} + 1} \right| - \left| {{x_i} - 1} \right|), i = 1, 2. $

选取满足激活函数的参数$F_1^ - = 0.05, F_2^ - = 0.01$$F_1^ + = 0.15, F_2^ + = 0.5$,通过以上参数可计算出满足定理1在定值μτ最大值,对不同μ值所得结果如表 1所示。

表 1 不同μ对应$\bar \tau$允许的最大上界值 Table 1 Allowable upper bounds of $\bar \tau$ for differentμ

在引入新颖李雅普诺夫泛函以及应用更广泛的不等式(6)后,通过把本文得出的结果与文献[17]的结果相比较,得到神经网络(12)无源条件保守性更小.同时假定τ=0.6,μ=0.5,计算满足定理1的矩阵QR得:

$\begin{array}{l} \boldsymbol{Q} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1}}&{{\boldsymbol{Q}_2}}\\ {\boldsymbol{Q}_2^{\rm{T}}}&{{\boldsymbol{Q}_3}} \end{array}} \right] = \left[{\begin{array}{*{20}{c}} {0.168\;3}&{0.021\;8}&{-0.306\;6}&{-0.090\;3}\\ {*}&{0.142\;3}&{-0.051\;1}&{ - 0.276\;4}\\ {*}&{*}&{0.046\;7}&{ - 0.130\;3}\\ {*}&{*}&{*}&{1.027\;5} \end{array}} \right], \\ \boldsymbol{R} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{R}_1}}&{{\boldsymbol{R}_2}}\\ {\boldsymbol{R}_2^{\rm{T}}}&{{\boldsymbol{R}_3}} \end{array}} \right] = \left[{\begin{array}{*{20}{c}} {0.021\;9}&{0.025\;9}&{-0.419\;7}&{0.016\;6}\\ {*}&{-0.110\;3}&{-0.061\;5}&{ - 0.123\;8}\\ {*}&{*}&{3.883\;4}&{ - 0.338\;7}\\ {*}&{*}&{*}&{0.640\;2} \end{array}} \right]. \end{array}$

计算矩阵Q的特征值为-0.236 4,0.071 3,0.427 3,1.122 6,R的特征值为-0.135 8,-0.021 8,0.629 2,3.963 6,可得出矩阵QR不是正定的,但QR确保了李雅普诺夫泛函(16)是正定的,同时满足神经网络(12)无源.

4 结论

本文对时滞神经网络及范数有界参数不确定的时滞神经网络的无源性进行了研究,利用LMI方法,构造了不需要所有对阵矩阵是正定的李雅普诺夫泛函,通过引入Jensen不等式、Schur补引理及自由权矩阵等方法,分别得到时滞神经网络无源的条件和参数不确定的时滞神经网络的鲁棒无源条件.仿真实例表明,本文满足神经网络无源性的结果比文献[17]的结果的保守性更小.

参考文献
[1] GUPTA M, JIN L, Homma N. Static and Dynamic Neural Networks:From Fundamentals to Advanced Theory[M]. New York: Wiley-IEEE Press, 2003.
[2] 郑胜林, 彭明明, 潘保昌. 一种基于Hough变换的神经网络字符识别方法[J]. 广东工业大学学报, 2003, 20 (4): 73-77.
ZHENG S L, PENG M M, PAN B C. A method for characters recognition based on the hough transform and neural network[J]. Journal of Guangdong University of Technology, 2003, 20 (4): 73-77.
[3] ENSARI T, ARIK S. Global stability of a class of neural networks with time-varying delay[J]. IEEE Transactions on Circuits Systems II:Analog and Digital Signal Processing, 2005, 52 (2): 126-130.
[4] KWON O M, PARK J H, Lee S M. On robust stability for uncertain cellular neural networks with interval time varying delays[J]. IET Control Theory & Applications, 2008, 2 (7): 625-634.
[5] KWON O M, PARK J H. Delay dependent stability for uncertain cellular neural networks with discrete and distribute time-varying delays[J]. Journal of the Franklin Institute, 2008, 345 (7): 766-778. DOI: 10.1016/j.jfranklin.2008.04.011.
[6] ZHU Q X, CAO J D. Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (3): 467-479. DOI: 10.1109/TNNLS.2011.2182659.
[7] ZHANG C K, HE Y, LI J, et al. Delay-dependent stability criteria for generalized neural networks with two delay components[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25 (7): 1263-1276. DOI: 10.1109/TNNLS.2013.2284968.
[8] HILL D, MOYLAN P. The stability of nonlinear dissipative systems[J]. IEEE Transactions on Automatic Control, 1976, 21 (5): 708-711. DOI: 10.1109/TAC.1976.1101352.
[9] LOZANO R, BROGLIATO B, EGELAND O, et al. Dissipative Systems Analysis and Control:Theory and Applications[M]. London, UK.: Springer, 2007.
[10] XIE L H, FU M Y, LI H Z. Passivity analysis and passification for uncertain signal processing systems[J]. IEEE Transactions on Signal Process, 1998, 46 (9): 2394-2403. DOI: 10.1109/78.709527.
[11] WU C W. Synchronization in arrays of coupled nonlinear systems:passivity circle criterion and observer design[J]. IEEE Transactions on Circuits and Systems. I:Fundamental Theory and Applications, 2001, 48 (40): 1257-1261.
[12] LI C G, LIAO X F. Passivity analysis of neural networks with time delay[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 2005, 52 (8): 471-475. DOI: 10.1109/TCSII.2005.849023.
[13] LOU X Y, CUI B T. Passivity analysis of integro-differential neural networks with time-varying delays[J]. Neurocomputing, 2007, 70 (4-6): 1071-1078. DOI: 10.1016/j.neucom.2006.09.007.
[14] ZHU J, LENG Q K, ZHANG Q L. Delay-dependent passivity criterion for hopfield neural networks[C]. 2010 Chinese Control and Decision Conference, Xuzhou, China, 2010:1267-1272.
[15] ZENG H B, HE Y, WU M, et al. Passivity analysis for neural with a time-varying delay[J]. Neurocomputing, 2011, 74 (5): 730-734. DOI: 10.1016/j.neucom.2010.09.020.
[16] ZENG H B, XIAO S P, ZHANG C F, et al. Further results on passivity analysis of neural networks with time-varying delay[C], 26th Chinese Control and Decision Conference (CCDC), Changsha, China, 2014:161-165.
[17] ZHANG B Y, XU S Y, LAM J. Relaxed passivity condition for neural networks with time-varying delays[J]. Neurocomputing, 2014, 142 (1): 299-306.
[18] WANG Z D, LIU Y R, LIU X H. Global exponential stability of generalized recurrent neural networks with discrete and distributed delays[J]. Neural Networks, 2006, 19 (5): 667-675. DOI: 10.1016/j.neunet.2005.03.015.
[19] GU K. An integral inequality in the stability problem of time-delay systems[C]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, 3(3):2805-2810.
[20] PARK P G, KO J W, JEONG C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47 (1): 235-238. DOI: 10.1016/j.automatica.2010.10.014.
[21] BOYD S, GHAOHUI L E, FERON E, et al. Linear matrix inequalities in system and control theory[M]. Philadelp-hiaz: SIAM, 1994.
[22] PETERSEN I R, HOLLOT C V. A Riccati equation approach to the stabilization of uncertain linear systems[J]. Automatica, 1986, 22 (4): 397-411. DOI: 10.1016/0005-1098(86)90045-2.