在近几十年,神经网络在信号处理、联想记忆、模式识别、定点计算等科学领域有着广泛的用途[1-2].在神经网络的应用方面,由于其信号传输和有限运算放大器切换速度的影响,可能导致神经网络失去稳定或者振动.因此,时滞神经网络的稳定性得到了广泛研究,并取得了重大成果[3-7].众所周知,耗散性理论在动态系统、非线性控制等领域的稳定性分析有着重要的地位[8-9].作为耗散性特例的无源性,不仅仅是系统稳定性的体现,还涉及系统的输入输出存储函数,在分析电子电路、机械系统、非线性系统有着重要的作用[10-11].同时,时滞系统的无源性问题引起了大家的广泛关注,以及时滞神经网络的无源性分析也取得了重大发展.最初时滞独立神经网络的无源性得到了研究,并取得了成果[12-13].相比时滞依赖神经网络,时滞独立神经网络的无源性结果具有更大的保守性,探讨时滞依赖神经网络的无源已成为当代主流,且得到的神经网络无源性的结果保守性也越来越小[14-16].
传统的李雅普诺夫泛函构造方法要求李雅普诺夫泛函中的每个对称矩阵是正定的.文献[17]构造了不需要所有的对阵矩阵是正定的李雅普诺夫泛函,证明了时滞神经网络的无源性.受文献[17]的启发,本文构造一个不需要所有二次项对称矩阵全都正定的李雅普诺夫泛函,通过引入Jensen不等式、Schur补引理及自由权矩阵等方法,证明了李雅普诺夫泛函正定性与李雅普诺夫泛函导数的负定性.通过实验结果的对比,本文得到了比文献[17]保守性更小且满足神经网络无源的结果.
1 问题描述和预备知识考虑时滞和参数不确定的神经网络系统:
| $ \left\{ {\begin{array}{*{20}{l}} {\boldsymbol{\dot x}(t) = - \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{W}(t)\boldsymbol{f}(\boldsymbol{x}(t))}+ \\ {\;\;\;\;\;\;\;\;\; {\boldsymbol{W}_1}(t)\boldsymbol{f}(\boldsymbol{x}(t - \tau (t))) + \boldsymbol{u}(t), {\rm{ }}}\\ {\boldsymbol{y}(t) = \boldsymbol{f}(\boldsymbol{x}(t)), }\\ {\boldsymbol{x}(t) = \boldsymbol{\phi} (t), t \in [\bar \tau, 0].} \end{array}} \right. $ | (1) |
其中
| $ 0 < \tau (t) \leqslant \bar \tau, \dot \tau (t) \leqslant \mu, $ | (2) |
其中
| $ \left\{ \begin{array}{l} \boldsymbol{A}(t) = \boldsymbol{A} + \Delta \boldsymbol{A}(t), \\ \boldsymbol{W}(t) = \boldsymbol{W} + \Delta \boldsymbol{W}(t), \\ {\boldsymbol{W}_1}(t) = {\boldsymbol{W}_1} + \Delta {\boldsymbol{W}_1}(t), \end{array} \right. $ | (3) |
其中
| $ \left\{ \begin{array}{l} \Delta \boldsymbol{A}(t) = {\boldsymbol{H}_1}{\boldsymbol{F}_1}(t){\boldsymbol{E}_1}{\rm{, }}\\ \Delta \boldsymbol{W}(t) = {\boldsymbol{H}_2}{\boldsymbol{F}_2}(t){\boldsymbol{E}_3}, \\ \Delta {\boldsymbol{W}_1}(t) = {\boldsymbol{H}_3}{\boldsymbol{F}_3}(t){\boldsymbol{E}_3}{\rm{, }} \end{array} \right. $ | (4) |
其中Hi和Ei,i=1, 2, 3,是已知常数实矩阵,
| $ {\boldsymbol{F}_i}{(t){\rm{^T}}}{\boldsymbol{F}_i}(t) \leqslant \boldsymbol{I}, i = 1, 2, 3.{\rm{ }} $ | (5) |
假定激活函数满足以下假设.
假设1 (Wang et al.[18]).函数fi(·)连续有界,且满足:
| $ F_i^ - \leqslant \frac{{{f_i}({a_1}) - {f_i}({a_2})}}{{{a_1} - {a_2}}} \leqslant F_i^ +, i = 1, 2, \cdots, n, $ | (6) |
其中
注1:上述假设的激活函数首先在文献[18]提出,该假设比文献[15, 17]更具一般性,因为
为推导本文的结论,首先给出以下定义和引理.
定义1 (Li and Liao[12]).在零初始条件下,对神经网络(1)如果存在一标量γ
| $ 2\int_0^{{t_f}} {\boldsymbol{y}{{(s)}^{\rm{T}}}\boldsymbol{u}(s){\rm{d}}s \geqslant } - \gamma \int_0^{{t_f}} {\boldsymbol{u}{{(s)}^{\rm{T}}}\boldsymbol{u}(s){\rm{d}}s}, $ | (7) |
则神经网络(1)是无源的.
引理1 (Gu[19]).对任意对称正定矩阵
| $ \begin{split}{l} (b - a)\int_a^b {\boldsymbol{\omega }{{(s)}^{\rm{T}}}{\boldsymbol{M}_1}} \boldsymbol{\omega }(s){\rm{d}}s \geqslant \\ {\left[{\int_a^b {\boldsymbol{\omega }(s){\rm{d}}s} } \right]^{\rm{T}}}{\boldsymbol{M}_1}\left[{\int_a^b {\boldsymbol{\omega }(s){\rm{d}}s} } \right]. \end{split} $ | (8) |
引理2 (Park and Ko[20]).对任意矩阵
| $ - (b - a)\int_a^b {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}{\boldsymbol{M}_2}} \boldsymbol{\dot x}(s){\rm{d}}s \leqslant \boldsymbol{\varsigma }{(t)^{\rm{T}}}\boldsymbol{{{\varPi }}\varsigma }(t), $ | (9) |
其中
引理3 (Boyd et al.[21] Schur complement).给定常数矩阵Ω1、Ω2、Ω3满足Ω1=Ω1T和Ω2 > 0,仅当
| $ {\boldsymbol{\varOmega }_1} + {\boldsymbol{\varOmega }_3}{\boldsymbol{\varOmega }_2}^{ - 1}{\boldsymbol{\varOmega }_3} < 0. $ | (10) |
引理4 (Petersen and Hollot[22]).对适当维实矩阵H、E和F(t),F(t)满足F(t)TF(t)
| $ \boldsymbol{HF}(t)\boldsymbol{E} + {(\boldsymbol{HF}(t)\boldsymbol{E})^{\rm{T}}} \leqslant {\varepsilon ^{ - 1}}\boldsymbol{H}{\boldsymbol{H}^{\rm{T}}} + \varepsilon {\boldsymbol{E}^{\rm{T}}}\boldsymbol{E}. $ | (11) |
首先考虑标称神经网络系统如下:
| $ \left\{ {\begin{array}{*{20}{c}} {\boldsymbol{\dot x}(t) = - \boldsymbol{Ax}(t) + \boldsymbol{Wf}(\boldsymbol{x}(t)){\rm{ }}} +\\ {{\boldsymbol{W}_1}\boldsymbol{f}(\boldsymbol{x}(t - \tau (t))) + \boldsymbol{u}(t), }\\ \!{\boldsymbol{y}(t) = \boldsymbol{f}(\boldsymbol{x}(t)), {\rm{ }}}\\ {\boldsymbol{x}(t) = \boldsymbol{\phi}(t), t \in [\bar \tau, 0].{\rm{ }}} \end{array}} \right. $ | (12) |
为方便,本文有以下表示:
| $ \begin{array}{c} {\boldsymbol{K}_1} = {\rm{diag}}\{ F_1^ +, F_2^ +, \cdots, F_n^ + \}, \\ {\boldsymbol{K}_2} = {\rm{diag}}\{ F_1^ -, F_2^ -, \cdots, F_n^ - \}, \\ {\boldsymbol{F}_1} = {\rm{diag}}\{ F_1^ - F_1^ +, F_2^ - F_2^ +, \cdots, F_n^ - F_n^ + \}, \\ {\boldsymbol{F}_2} = {\rm{diag}}\{ \frac{{F_1^ - + F_1^ + }}{2}, \frac{{F_2^ - + F_2^ + }}{2}, \cdots, \frac{{F_n^ - + F_n^ + }}{2}\} . \end{array} $ |
定理1对标称神经网络(12),由假设1,对给定标量
| $ {\boldsymbol{\psi }_1} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1} + {\boldsymbol{F}_1}{\boldsymbol{L}_1}} & {{\boldsymbol{Q}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ * & {{\boldsymbol{Q}_3} + {\boldsymbol{L}_1}} \end{array}} \right] > 0, $ | (13) |
| $ {\boldsymbol{\psi }_2} = \left[{\begin{array}{*{20}{c}} {{{\bar \tau }^{-1}}\boldsymbol{P} + \boldsymbol{Z}} & {-\boldsymbol{Z}} & 0\\ * & {{\boldsymbol{R}_1} + \boldsymbol{Z} + {\boldsymbol{F}_1}{\boldsymbol{L}_2}} & {{\boldsymbol{R}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ * & * & {{\boldsymbol{R}_3} + {\boldsymbol{L}_2}} \end{array}} \right] \geqslant 0, $ | (14) |
| $ {\boldsymbol{\varXi}} \! = \! \left[{\begin{array}{*{20}{c}} {{\boldsymbol{\psi }_{\rm{1}}}}&{{\boldsymbol{\psi }_{\rm{2}}}}&{{\boldsymbol{\psi }_{\rm{3}}}}&{{\boldsymbol{\psi }_{\rm{4}}}}&{S}&{\rm{0}}&{{\boldsymbol{\psi }_{\rm{5}}}}&{{-}\bar \tau \boldsymbol{AZ}} \\ {\rm{*}}&{{\boldsymbol{\psi }_{\rm{6}}}}&{{\boldsymbol{\psi }_{\rm{7}}}}&{{-}{\boldsymbol{F}_{\rm{2}}}{\boldsymbol{L}_{\rm{4}}}}&{\rm{0}}&{\rm{0}}&{{\boldsymbol{\psi }_{\rm{8}}}}&{\bar \tau {\boldsymbol{W}^{\rm{T}}}\boldsymbol{Z}} \\ {\rm{*}}&{\rm{*}}&{{\boldsymbol{\psi }_{\rm{9}}}}&{{\boldsymbol{\psi }_{{\rm{10}}}}}&{\rm{0}}&{\rm{0}}&{\rm{0}}&{\bar \tau {\boldsymbol{W}_{\rm{1}}}^{\rm{T}}\boldsymbol{Z}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{{\boldsymbol{\psi }_{{\rm{11}}}}}&{\boldsymbol{Z}{-}\boldsymbol{S}}&{\rm{0}}&{\rm{0}}&{\rm{0}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }{\boldsymbol{R}_{\rm{1}}}{ - }\boldsymbol{Z}}&{{ - }{\boldsymbol{R}_{\rm{2}}}}&{\rm{0}}&{\rm{0}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }{\boldsymbol{R}_{\rm{3}}}}&{\rm{0}}&{\rm{0}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }\gamma {I}}&{\bar \tau \boldsymbol{Z}} \\ {\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{\rm{*}}&{{ - }\boldsymbol{Z}} \end{array}} \right] \! \leqslant \! 0, $ | (15) |
其中
| $ \begin{split} \begin{array}{l} {\boldsymbol{\varPsi }_1} = - \boldsymbol{A}{(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})^{\rm{T}}} - (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ \;\;\;\;\;\;\;\; {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{A} + {\boldsymbol{Q}_1} + {\boldsymbol{R}_1} - \boldsymbol{Z} - {\boldsymbol{F}_1}{\boldsymbol{L}_1} - {\boldsymbol{F}_1}{\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_2} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{W} + {\boldsymbol{Q}_2} - \boldsymbol{A}({\boldsymbol{D}_1} - {\boldsymbol{D}_2}) + \\ \;\;\;\;\;\;\;\; {\boldsymbol{R}_2} + {\boldsymbol{F}_2}{\boldsymbol{L}_1} + {\boldsymbol{F}_2}{\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_3} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1}){\boldsymbol{W}_1} - {\boldsymbol{F}_2}{\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_4} = {\boldsymbol{F}_1}{\boldsymbol{L}_4} + \boldsymbol{Z} - \boldsymbol{S, }\\ {\boldsymbol{\varPsi }_5} = \boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1}, \\ {\boldsymbol{\varPsi }_6} = ({\boldsymbol{D}_1}\! - \!{\boldsymbol{D}_2})\boldsymbol{W} + {\boldsymbol{W}^{\rm{T}}}({\boldsymbol{D}_1} \!- \!{\boldsymbol{D}_2}) + {\boldsymbol{Q}_3} + {\boldsymbol{R}_3} - {\boldsymbol{L}_1} - {\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_7} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2}){\boldsymbol{W}_1} + {\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_8} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2}) - \boldsymbol{I, }\\ {\boldsymbol{\varPsi }_9} = - (1 - \mu ){\boldsymbol{Q}_3} - {\boldsymbol{L}_3} - {\boldsymbol{L}_4}, \\ {\boldsymbol{\varPsi }_{10}} = - (1 - \mu ){\boldsymbol{Q}_2}^{\rm{T}} + {\boldsymbol{F}_2}{\boldsymbol{L}_4} + {\boldsymbol{F}_2}{\boldsymbol{L}_3}, \\ {\boldsymbol{\varPsi }_{11}} = - (1 - \mu ){\boldsymbol{Q}_1} - 2\boldsymbol{Z} + \boldsymbol{S} + {\boldsymbol{S}^{\rm{T}}} - {\boldsymbol{F}_1}{\boldsymbol{L}_3} - {\boldsymbol{F}_1}{\boldsymbol{L}_4}. \end{array} \end{split} $ |
证明构造以下李雅普诺夫-克拉索夫斯基泛函:
| $ \boldsymbol{V}(\boldsymbol{x}(t)) = {\boldsymbol{V}_1}(\boldsymbol{x}(t)) + {\boldsymbol{V}_2}(\boldsymbol{x}(t)) + {\boldsymbol{V}_3}(\boldsymbol{x}(t)), $ | (16) |
其中
| $ \begin{array}{l} {\boldsymbol{V}_1}(\boldsymbol{x}(t)) = \boldsymbol{x}{(t)^{\rm{T}}}\boldsymbol{Px}(t) + 2\sum\limits_{i = 1}^n {{d_{1i}}\int_0^{{x_i}(t)} {({f_i}(s)} }- \\ \;\;\;\;\;\;\;\;\;\;\;\;\;F_i^ - s){\rm{d}}s + 2\sum\limits_{i = 1}^n {{d_{2i}}\int_0^{{x_i}(t)} {(F_i^ + s - {f_i}(s))} } {\rm{d}}s, \\ {\boldsymbol{V}_2}(\boldsymbol{x}(t)) = \int_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{Q\eta }(s){\rm{d}}s + \int_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{R\eta }(s){\rm{d}}s, \\ {\boldsymbol{V}_3}(\boldsymbol{x}(t)) = \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^T}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta, \\ \boldsymbol{\eta }(s)\! =\! \left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(s)}\\ {\boldsymbol{f}(\boldsymbol{x}(s))} \end{array}} \right], \boldsymbol{Q} \!=\! \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1}}\\ {\boldsymbol{Q}_2^{\rm{T}}} \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{Q}_2}}\\ {{\boldsymbol{Q}_3}} \end{array}} \right], \boldsymbol{R} \!=\! \left[{\begin{array}{*{20}{c}} \!{{\boldsymbol{R}_1}}\!\\ \!{\boldsymbol{R}_2^T}\! \end{array}} \right.\left. {\begin{array}{*{20}{c}} \!{{\boldsymbol{R}_2}}\!\\ \!{{\boldsymbol{R}_3}}\! \end{array}} \right]. \end{array} $ |
证明泛函V(x(t))正定.对任意θ < 0,由引理1得
| $ \begin{split} \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta \geqslant \\ \bar \tau \int\limits_{ - \bar \tau }^0 {\left\{ { - \frac{1}{\theta }{{\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]}^{\rm{T}}}\boldsymbol{Z}\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]} \right\}} {\rm{d}}\theta, \end{split} $ | (17) |
对任意标量θ满足-
| $ \begin{split} \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta \geqslant \\ \bar \tau \int\limits_{ - \bar \tau }^0 {\left\{ { - \frac{1}{\theta }{{\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]}^{\rm{T}}}\boldsymbol{Z}\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]} \right\}} {\rm{d}}\theta \geqslant \\ \int\limits_{ - \bar \tau }^0 {\left\{ {{{\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]}^{\rm{T}}}\boldsymbol{Z}\left[{\int\limits_{t + \theta }^t {\boldsymbol{\dot x}(s){\rm{d}}s} } \right]} \right\}} {\rm{d}}\theta = \\ {\int\limits_{t - \bar \tau }^t {\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(s)} \end{array}} \right]} ^{\rm{T}}}\boldsymbol{\varGamma }\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(s)} \end{array}} \right]{\rm{d}}s, \end{split} $ | (18) |
其中
由假设1,存在任意
| $ \left[{{f_i}({x_i}(t))-F_i^-{x_i}(t)} \right]{l_{1i}}\left[{F_i^ + {x_i}(t)-{f_i}({x_i}(t))} \right] \geqslant 0, $ | (19) |
| $ \left[{{f_i}({x_i}(t))-F_i^-{x_i}(t)} \right]{l_{2i}}\left[{F_i^ + {x_i}(t)-{f_i}({x_i}(t))} \right] \geqslant 0, $ | (20) |
可得
其中
| $ \begin{split}{l} \int\limits_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s + \\ \int\limits_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_2}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ {-{\boldsymbol{L}_2}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s \geqslant 0. \end{split} $ | (21) |
假设1确保
| $ \begin{split}{l} 2\sum\limits_{i = 1}^n {{d_{1i}}\int_0^{{x_i}(t)} {({f_i}(s) - F_i^ - s)} } {\rm{d}}s + \\ 2\sum\limits_{i = 1}^n {{d_{2i}}\int_0^{{x_i}(t)} {(F_i^ + s - {f_i}(s))} } {\rm{d}}s \geqslant 0, \end{split} $ | (22) |
由不等式(17)~(22)得
| $ \begin{array}{l} \boldsymbol{V}(\boldsymbol{x}(t)) \geqslant \boldsymbol{x}{(t)^{\rm{T}}}\boldsymbol{Px}(t) + \int_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{Q\eta }(s){\rm{d}}s + \\ \int_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} \boldsymbol{R\eta }(s){\rm{d}}s + \bar \tau \int\limits_{ - \bar \tau }^0 {\int\limits_{t + \theta }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}} } \boldsymbol{Z\dot x}(s){\rm{d}}s{\rm{d}}\theta - \\ \int\limits_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s - \\ \int\limits_{t - \bar \tau }^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_2}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ {-{\boldsymbol{L}_2}} \end{array}} \right]\boldsymbol{\eta }(s)} {\rm{d}}s \geqslant \\ \int_{t - \tau (t)}^t {\boldsymbol{\eta }{{(s)}^{\rm{T}}}} {\boldsymbol{\psi }_1}\boldsymbol{\eta }(s){\rm{d}}s +\int_{t - \bar \tau }^t {\boldsymbol{\tilde \eta }{{(t, s)}^{\rm{T}}}} {\boldsymbol{\psi }_2}\boldsymbol{\tilde \eta }(t, s){\rm{d}}s, \end{array} $ | (23) |
其中
| $ \begin{array}{l} \boldsymbol{\tilde \eta }(t, s) = {\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}{{(t)}^{\rm{T}}}} & {\boldsymbol{x}{{(s)}^{\rm{T}}}} & {\boldsymbol{f}{{(\boldsymbol{x}(s))}^{\rm{T}}}} \end{array}} \right]^{\rm{T}}}, \\ {\boldsymbol{\psi }_1} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1} + {\boldsymbol{F}_1}{\boldsymbol{L}_1}} & {{\boldsymbol{Q}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ * & {{\boldsymbol{Q}_3} + {\boldsymbol{L}_1}} \end{array}} \right], \\ {\boldsymbol{\psi }_2} = \left[{\begin{array}{*{20}{c}} {{{\bar \tau }^{-1}}\boldsymbol{P} + \boldsymbol{Z}} & {-\boldsymbol{Z}} & 0\\ * & {{\boldsymbol{R}_1} + \boldsymbol{Z} + {\boldsymbol{F}_1}{\boldsymbol{L}_2}} & {{\boldsymbol{R}_2}-{\boldsymbol{F}_2}{\boldsymbol{L}_2}}\\ * & * & {{\boldsymbol{R}_3} + {\boldsymbol{L}_2}} \end{array}} \right]. \end{array} $ |
Ψ1 > 0、Ψ2 > 0即可得V(x(t))正定,证毕.
证明
| $ \begin{split} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{y}{(t)^{\rm{T}}}\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ & \quad {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \\ & \quad \quad \left( {1 - \dot \tau (t)} \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \\ & \quad \quad \quad \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \\ & \quad \quad \quad \quad \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s){\rm{d}}s} - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - \\ & \quad \quad \quad \quad \quad 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t). \end{split} $ | (24) |
由
由
由
| $ \begin{array}{l} - \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) \geqslant \\ - \left( {1 - \dot \tau (t)} \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)). \end{array} $ |
因此
| $ \begin{split} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \!\boldsymbol{u}{(t)\!^{\rm{T}}}\!\boldsymbol{u}(t) - 2\boldsymbol{y}{(t)^{\rm{T}}}\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}\!(\boldsymbol{P} + \\ & \quad{\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \\ & \quad \quad\boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \\ & \quad \quad \quad\boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + \\ & \quad \quad \quad {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s){\rm{d}}s} - \\ & \quad \quad \quad \quad \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t). \end{split} $ | (25) |
由假设1,存在任意
| $ \boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_3}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_3}}\\ {-{\boldsymbol{L}_3}} \end{array}} \right]\boldsymbol{\eta }(t - \tau (t)) \geqslant 0, $ | (26) |
| $ \begin{array}{l} {\left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right]^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_4}}\! & \!{{\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {-{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & {-{\boldsymbol{L}_4}} & { - {\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{L}_4}}\\ * & * \!& { - {\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & * & * & { - {\boldsymbol{L}_4}} \end{array}} \right] \times \\ \left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right] \geqslant 0, \end{array} $ | (27) |
其中
由引理2可得:
| $ \begin{aligned} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{y}(t)\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ & {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \\ & \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \\ & \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \\ & \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s){\rm{d}}s} - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - \\ & 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_1}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_1}}\\ {-{\boldsymbol{L}_1}} \end{array}} \right]\boldsymbol{\eta }(t) + \\ & \boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_3}}\\ * \end{array}} \right.\left. {\begin{array}{*{20}{c}} {{\boldsymbol{F}_2}{\boldsymbol{L}_3}}\\ {-{\boldsymbol{L}_3}} \end{array}} \right]\boldsymbol{\eta }(t - \tau (t)) \!+\! {\left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right]^{\rm{T}}} \times \\ & \left[{\begin{array}{*{20}{c}} {-{\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {-{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & {-{\boldsymbol{L}_4}} & { - {\boldsymbol{F}_2}{\boldsymbol{L}_4}} & {{\boldsymbol{L}_4}}\\ * & * & { - {\boldsymbol{F}_1}{\boldsymbol{L}_4}} & {{\boldsymbol{F}_2}{\boldsymbol{L}_4}}\\ * & * & * & { - {\boldsymbol{L}_4}} \end{array}} \right]\left[{\begin{array}{*{20}{c}} {\boldsymbol{\eta }(t)}\\ {\boldsymbol{\eta }(t-\tau (t))} \end{array}} \right] + \\ & {\left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(t-\tau (t))}\\ {\boldsymbol{x}(t-\bar \tau )} \end{array}} \right]^{\rm{T}}}\left[{\begin{array}{*{20}{c}} {-\boldsymbol{Z}} & {\boldsymbol{Z}-\boldsymbol{S}} & \boldsymbol{S}\\ * & {-2\boldsymbol{Z} + \boldsymbol{S} + {\boldsymbol{S}^T}} & {\boldsymbol{Z} - \boldsymbol{S}}\\ * & * & { - \boldsymbol{Z}} \end{array}} \right] \times \\ & \left[{\begin{array}{*{20}{c}} {\boldsymbol{x}(t)}\\ {\boldsymbol{x}(t-\tau (t))}\\ {\boldsymbol{x}(t-\bar \tau )} \end{array}} \right] = \boldsymbol{\xi }{(t)^{\rm{T}}}(\boldsymbol{\Lambda } + \boldsymbol{\Upsilon} )\boldsymbol{\xi }(t). \end{aligned} $ | (28) |
其中
| $ \begin{array}{l} {\boldsymbol{\zeta }}{\rm{(}}t{\rm{)}}\left[{\begin{array}{*{20}{c}} {x{{{\rm{(}}t{\rm{)}}}^{\rm{T}}}}&{f{{{\rm{(}}x{\rm{(}}t{\rm{))}}}^{\rm{T}}}}&{f{{{\rm{(}}x{\rm{(}}t-\tau {\rm{(}}t{\rm{)))}}}^{\rm{T}}}} \end{array}} \right.\\ {\left. {\begin{array}{*{20}{c}} {{\boldsymbol{x}}{{{\rm{(}}t-\tau {\rm{(}}t{\rm{))}}}^{\rm{T}}}}&{x{{{\rm{(}}t-\bar \tau {\rm{)}}}^{\rm{T}}}}&{f{{{\rm{(}}x{\rm{(}}t - \bar \tau {\rm{))}}}^{\rm{T}}}}&{{\boldsymbol{u}}{{{\rm{(}}t{\rm{)}}}^{\rm{T}}}} \end{array}} \right]^{\rm{T}}, } \end{array} $ |
设
| $ \begin{array}{l} \boldsymbol{V}(\boldsymbol{x}({t_f})) \leqslant \int\limits_0^{{t_f}} {\left[{\boldsymbol{\dot V}(\boldsymbol{x}(t))-\gamma \boldsymbol{u}{{(t)}^{\rm{T}}}\boldsymbol{u}(t)-2\boldsymbol{f}{{(\boldsymbol{x}(t))}^{\rm{T}}}\boldsymbol{u}(t)} \right]} {\rm{d}}t, \end{array} $ |
由引理3知,Ξ < 0可满足(Λ+Υ) < 0,由J(tf)
定理2对参数不确定神经网络(1),在假设1情况下,对给定标量
| $ \left[{\begin{array}{*{20}{c}} \! {{\boldsymbol{\varPsi}}_1} + {\varepsilon _1}\boldsymbol{E}_1^{\rm{T}}{\boldsymbol{E}_1} & {{\boldsymbol{\varPsi}}_3} & {{\boldsymbol{\varPsi}}_4} & {{\boldsymbol{\varPsi}}_2}S & S & 0 & {{\boldsymbol{\varPsi}}_5} &-\bar \tau {\boldsymbol{AZ}} & (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2}-{\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{H} \! \\ \! * & {{\boldsymbol{\varPsi}}_7} &-{\boldsymbol{F}_2}{\boldsymbol{L}_4} & 0 & 0 & 0 & {{\boldsymbol{\varPsi}}_8} & - \bar \tau {\boldsymbol{W}^{\rm{T}}}Z & ({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{H} \! \\ \! * & {{\boldsymbol{\varPsi}}_6} + {\varepsilon _2}\boldsymbol{E}_2^{\rm{T}}{\boldsymbol{E}_2} & {{\boldsymbol{\varPsi}}_9} + {\varepsilon _3}\boldsymbol{E}_3^{\rm{T}}{\boldsymbol{E}_3} & {{\boldsymbol{\varPsi}}_{10}} & 0 & 0 & 0 & \bar \tau \boldsymbol{W}_1^{\rm{T}}\boldsymbol{Z} & 0 \! \\ \! * & * & * & {{\boldsymbol{\varPsi}}_{11}} & \boldsymbol{Z} - \boldsymbol{S} & 0 & 0 & 0 & 0 \! \\ \! * & * & * & * & - {\boldsymbol{R}_1} - \boldsymbol{Z} & - {\boldsymbol{R}_2} & 0 & 0 & 0 \! \\ \! * & * & * & * & * & - {\boldsymbol{R}_3} & 0 & 0 & 0 \! \\ \! * & * & * & * & * & * & - \gamma \boldsymbol{I} & \bar \tau \boldsymbol{Z} & 0 \! \\ \! * & * & * & * & * & * & * & - \boldsymbol{Z} & \bar \tau {\boldsymbol{ZH}} \! \\ \! * & * & * & * & * & * & * & * & - \boldsymbol{N} \! \end{array}} \right] \leqslant 0, $ | (29) |
其中
| $ \begin{aligned} & {\boldsymbol{\sigma }_1} = - \Delta \boldsymbol{A}{(t)^{\rm{T}}}{(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})^{\rm{T}}} - ({\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1} +\\ & \;\;\;\;\;\;\; \boldsymbol{P})\Delta \boldsymbol{A}(t), \\ & {\boldsymbol{\sigma }_2} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\Delta \boldsymbol{W}(t) - \Delta \boldsymbol{A}{(t)^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2}), \\ & {\boldsymbol{\sigma }_3} = (\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - {\boldsymbol{K}_2}{\boldsymbol{D}_1})\Delta {\boldsymbol{W}_1}(t), \\ & {\boldsymbol{\sigma }_4} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\Delta \boldsymbol{W}(t) + \Delta {\boldsymbol{W}^{\rm{T}}}(t)({\boldsymbol{D}_1} - {\boldsymbol{D}_2}), \\ & {\boldsymbol{\sigma }_5} = ({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\Delta {\boldsymbol{W}_1}(t). \end{aligned} $ |
由定理1可得
| $ \begin{aligned} & \boldsymbol{\dot V}(\boldsymbol{x}(t)) - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - 2\boldsymbol{y}{(t)^{\rm{T}}}\boldsymbol{u}(t) \leqslant 2\boldsymbol{x}{(t)^{\rm{T}}}(\boldsymbol{P} + {\boldsymbol{K}_1}{\boldsymbol{D}_2} - \\ & {\boldsymbol{K}_2}{\boldsymbol{D}_1})\boldsymbol{\dot x}(t) + 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}({\boldsymbol{D}_1} - {\boldsymbol{D}_2})\boldsymbol{\dot x}(t) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{Q\eta }(t) - \\ & \left( {1 - \mu } \right)\boldsymbol{\eta }{(t - \tau (t))^{\rm{T}}}\boldsymbol{Q\eta }(t - \tau (t)) + \boldsymbol{\eta }{(t)^{\rm{T}}}\boldsymbol{R\eta }(t) - \\ & \boldsymbol{\eta }{(t - \bar \tau )^{\rm{T}}}\boldsymbol{R\eta }(t - \bar \tau ) + {{\bar \tau }^2}\boldsymbol{\dot x}{(t)^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(t) - \\ & \bar \tau \int\limits_{t - \bar \tau }^t {\boldsymbol{\dot x}{{(s)}^{\rm{T}}}\boldsymbol{{\rm Z}\dot x}(s)ds} - \gamma \boldsymbol{u}{(t)^{\rm{T}}}\boldsymbol{u}(t) - \\ & 2\boldsymbol{f}{(\boldsymbol{x}(t))^{\rm{T}}}\boldsymbol{u}(t) < \varPhi . \end{aligned} $ |
设
由引理4得
综合引理3可得
考虑神经网络(12),选取连接权值矩阵为
| $ \begin{aligned} & \boldsymbol{A} = \left[{\begin{array}{*{20}{c}} {0.113\;7} & 0 \\ 0 & {0.152\;8} \end{array}} \right], \boldsymbol{W} = \left[{\begin{array}{*{20}{c}} {0.627\;7} & {-0.774\;4} \\ {0.926\;6} & {1.405\;0} \end{array}} \right], \\ & {\boldsymbol{W}_1} = \left[{\begin{array}{*{20}{c}} {-0.531\;4} & {1.194\;8} \\ {-0.617\;6} & {-1.617\;0} \end{array}} \right], \end{aligned} $ |
假定激活函数为
| $ {f_i}({x_i}) = 0.5(\left| {{x_i} + 1} \right| - \left| {{x_i} - 1} \right|), i = 1, 2. $ |
选取满足激活函数的参数
|
表 1 不同μ对应 |
在引入新颖李雅普诺夫泛函以及应用更广泛的不等式(6)后,通过把本文得出的结果与文献[17]的结果相比较,得到神经网络(12)无源条件保守性更小.同时假定τ=0.6,μ=0.5,计算满足定理1的矩阵Q与R得:
| $\begin{array}{l} \boldsymbol{Q} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{Q}_1}}&{{\boldsymbol{Q}_2}}\\ {\boldsymbol{Q}_2^{\rm{T}}}&{{\boldsymbol{Q}_3}} \end{array}} \right] = \left[{\begin{array}{*{20}{c}} {0.168\;3}&{0.021\;8}&{-0.306\;6}&{-0.090\;3}\\ {*}&{0.142\;3}&{-0.051\;1}&{ - 0.276\;4}\\ {*}&{*}&{0.046\;7}&{ - 0.130\;3}\\ {*}&{*}&{*}&{1.027\;5} \end{array}} \right], \\ \boldsymbol{R} = \left[{\begin{array}{*{20}{c}} {{\boldsymbol{R}_1}}&{{\boldsymbol{R}_2}}\\ {\boldsymbol{R}_2^{\rm{T}}}&{{\boldsymbol{R}_3}} \end{array}} \right] = \left[{\begin{array}{*{20}{c}} {0.021\;9}&{0.025\;9}&{-0.419\;7}&{0.016\;6}\\ {*}&{-0.110\;3}&{-0.061\;5}&{ - 0.123\;8}\\ {*}&{*}&{3.883\;4}&{ - 0.338\;7}\\ {*}&{*}&{*}&{0.640\;2} \end{array}} \right]. \end{array}$ |
计算矩阵Q的特征值为-0.236 4,0.071 3,0.427 3,1.122 6,R的特征值为-0.135 8,-0.021 8,0.629 2,3.963 6,可得出矩阵Q与R不是正定的,但Q与R确保了李雅普诺夫泛函(16)是正定的,同时满足神经网络(12)无源.
4 结论本文对时滞神经网络及范数有界参数不确定的时滞神经网络的无源性进行了研究,利用LMI方法,构造了不需要所有对阵矩阵是正定的李雅普诺夫泛函,通过引入Jensen不等式、Schur补引理及自由权矩阵等方法,分别得到时滞神经网络无源的条件和参数不确定的时滞神经网络的鲁棒无源条件.仿真实例表明,本文满足神经网络无源性的结果比文献[17]的结果的保守性更小.
| [1] | GUPTA M, JIN L, Homma N. Static and Dynamic Neural Networks:From Fundamentals to Advanced Theory[M]. New York: Wiley-IEEE Press, 2003. |
| [2] |
郑胜林, 彭明明, 潘保昌. 一种基于Hough变换的神经网络字符识别方法[J].
广东工业大学学报, 2003, 20 (4): 73-77.
ZHENG S L, PENG M M, PAN B C. A method for characters recognition based on the hough transform and neural network[J]. Journal of Guangdong University of Technology, 2003, 20 (4): 73-77. |
| [3] | ENSARI T, ARIK S. Global stability of a class of neural networks with time-varying delay[J]. IEEE Transactions on Circuits Systems II:Analog and Digital Signal Processing, 2005, 52 (2): 126-130. |
| [4] | KWON O M, PARK J H, Lee S M. On robust stability for uncertain cellular neural networks with interval time varying delays[J]. IET Control Theory & Applications, 2008, 2 (7): 625-634. |
| [5] | KWON O M, PARK J H. Delay dependent stability for uncertain cellular neural networks with discrete and distribute time-varying delays[J]. Journal of the Franklin Institute, 2008, 345 (7): 766-778. DOI: 10.1016/j.jfranklin.2008.04.011. |
| [6] | ZHU Q X, CAO J D. Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (3): 467-479. DOI: 10.1109/TNNLS.2011.2182659. |
| [7] | ZHANG C K, HE Y, LI J, et al. Delay-dependent stability criteria for generalized neural networks with two delay components[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25 (7): 1263-1276. DOI: 10.1109/TNNLS.2013.2284968. |
| [8] | HILL D, MOYLAN P. The stability of nonlinear dissipative systems[J]. IEEE Transactions on Automatic Control, 1976, 21 (5): 708-711. DOI: 10.1109/TAC.1976.1101352. |
| [9] | LOZANO R, BROGLIATO B, EGELAND O, et al. Dissipative Systems Analysis and Control:Theory and Applications[M]. London, UK.: Springer, 2007. |
| [10] | XIE L H, FU M Y, LI H Z. Passivity analysis and passification for uncertain signal processing systems[J]. IEEE Transactions on Signal Process, 1998, 46 (9): 2394-2403. DOI: 10.1109/78.709527. |
| [11] | WU C W. Synchronization in arrays of coupled nonlinear systems:passivity circle criterion and observer design[J]. IEEE Transactions on Circuits and Systems. I:Fundamental Theory and Applications, 2001, 48 (40): 1257-1261. |
| [12] | LI C G, LIAO X F. Passivity analysis of neural networks with time delay[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 2005, 52 (8): 471-475. DOI: 10.1109/TCSII.2005.849023. |
| [13] | LOU X Y, CUI B T. Passivity analysis of integro-differential neural networks with time-varying delays[J]. Neurocomputing, 2007, 70 (4-6): 1071-1078. DOI: 10.1016/j.neucom.2006.09.007. |
| [14] | ZHU J, LENG Q K, ZHANG Q L. Delay-dependent passivity criterion for hopfield neural networks[C]. 2010 Chinese Control and Decision Conference, Xuzhou, China, 2010:1267-1272. |
| [15] | ZENG H B, HE Y, WU M, et al. Passivity analysis for neural with a time-varying delay[J]. Neurocomputing, 2011, 74 (5): 730-734. DOI: 10.1016/j.neucom.2010.09.020. |
| [16] | ZENG H B, XIAO S P, ZHANG C F, et al. Further results on passivity analysis of neural networks with time-varying delay[C], 26th Chinese Control and Decision Conference (CCDC), Changsha, China, 2014:161-165. |
| [17] | ZHANG B Y, XU S Y, LAM J. Relaxed passivity condition for neural networks with time-varying delays[J]. Neurocomputing, 2014, 142 (1): 299-306. |
| [18] | WANG Z D, LIU Y R, LIU X H. Global exponential stability of generalized recurrent neural networks with discrete and distributed delays[J]. Neural Networks, 2006, 19 (5): 667-675. DOI: 10.1016/j.neunet.2005.03.015. |
| [19] | GU K. An integral inequality in the stability problem of time-delay systems[C]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, 3(3):2805-2810. |
| [20] | PARK P G, KO J W, JEONG C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47 (1): 235-238. DOI: 10.1016/j.automatica.2010.10.014. |
| [21] | BOYD S, GHAOHUI L E, FERON E, et al. Linear matrix inequalities in system and control theory[M]. Philadelp-hiaz: SIAM, 1994. |
| [22] | PETERSEN I R, HOLLOT C V. A Riccati equation approach to the stabilization of uncertain linear systems[J]. Automatica, 1986, 22 (4): 397-411. DOI: 10.1016/0005-1098(86)90045-2. |
2017, Vol. 34