Kirchhoff方程属于微分方程中的重要问题类型,在弹性理论和流体动力学等领域有着广泛的应用,还在解决非线性振动及电磁波传播等现代科学问题中显示出其重要性,因此探究Kirchhoff方程对理解这些领域的物理现象具有深远的意义。
Kirchhoff方程是由Kirchhoff在1883年提出的,是经典波动方程D'Alembert's方程的推广。随后Lions[1]在Kirchhoff方程变分结构方面做出了创新性工作,引起了许多数学家的关注[2-3]。本文主要研究了Kirchhoff方程在扩散情形下规范解的存在问题,如下:
$ \left\{ {\begin{array}{*{20}{l}} { - \left( {a + b\displaystyle\int_{{{\mathbf{R}}^3}} {|\nabla u{|^2}} {\text{d}}x} \right) \Delta u = \lambda u + \mu |u{|^{q - 2}}u + |u{|^{p - 2}}u,} \\ {\displaystyle\int_{{{\mathbf{R}}^3}} {|u{|^2}} {\text{d}}x = c,} \end{array}} \right. $ | (1) |
其中,a, b是正常数,2 < q < p
特殊地,如果a = 1, b = 0,那么问题(1) 就简化成经典的Schrödinger方程。
$ - \Delta u = \lambda u + \mu |u{|^{q - 2}}u + |u{|^{p - 2}}u $ | (2) |
对于Schrödinger方程规范解的研究已经有很全面的结果。Soave等[4-5]给出了p, q在不同情况下问题(2)规范解的存在性和多重性,并提出了多个猜想。
如果
本文考虑
由变分理论[9]知道,研究问题(1) 规范解的存在性,可以转化为考虑下列泛函
$ {E_\mu }(u) : = \dfrac{a}{2}||\nabla u||_2^2 + \dfrac{b}{4}||\nabla u||_2^4 - \dfrac{\mu }{q}||u||_q^q - \dfrac{1}{p}||u||_p^p $ | (3) |
在约束条件下
$ {S_c}: = \{ u \in {H^1}({{\mathbf{R}}^3}) :\displaystyle\int_{{{\mathbf{R}}^3}} {|u{|^2}} {\text{d}}x = c\} $ | (4) |
临界点的存在性。其中
接下来,考虑下面的极小化问题
$ m(c) : = \mathop {\inf }\limits_{{S_c}} {E_\mu }(u) $ | (5) |
如果
$ E_\mu ^\prime (u) = {\lambda _c}u $ |
也就是说
下面介绍本篇文章要用到一些定义。
定义1 一个泛函
定义2 在Banach空间
$ I(u) \leq \underset{k\to \infty }{\mathrm{lim}\;\mathrm{inf}}I\left({u}_{k}\right) $ |
定义3 Banach空间
(1)
(2) 映射
在介绍主要结果之前,首先回顾Gagliardo-Nirenberg[11-12]不等式。
对所有
$ \left|\right|u|{|}_{t}^{t}\leqslant{C}_{t}^{t}||\nabla u|{|}_{2}^{{\gamma }_{t}t}\left|\right|u|{|}_{2}^{\left(1-{\gamma }_{t}\right) t} $ | (6) |
其中,
$ ||\nabla Q||_2^2 = ||Q||_2^2 = 2||Q||_p^p/p $ |
由Gagliardo-Nirenberg不等式确定了
下面介绍本文中的定理。
定理1 假设
注:Carriao等[8]证明了当μ<0, 2<q
在本文中,使用以下符号:
本节给出证明定理1所需要的引理及其对应的证明。
引理1[13] (消失引理) 设
$ \mathop {\sup }\limits_{y \in {{\mathbf{R}}^3}} \displaystyle\int_{B(y,{t_1}) } {{{\left| {{u_n}} \right|}^m}} {\text{d}}x \to 0,n \to \infty $ |
那么
引理2[13] 设
引理3[10] (Brézis-Lieb引理) 设K是
(1)
(2)
有下式成立
$ \mathop {\lim }\limits_{n \to \infty } \left( {||{u_n}||_{{p_1}}^{{p_1}} - ||{u_n} - u||_{{p_1}}^{{p_1}}} \right) = ||u||_{{p_1}}^{{p_1}} $ |
引理4 (Sobolev嵌入定理) 当3
当
$ 0 \lt q{\gamma _q} \lt p{\gamma _p} \lt 2 $ |
引理5 对于指数满足
证明 对于
$ {u_s}(x) : = {c^{1/2}}{s^{3/4}}Q({s^{1/2}}x) /||Q|{|_2} $ |
那么
$\begin{split} &\left\|\nabla u_s\right\|_2^2=c s, \\ &\left\|u_s\right\|_p^p=p c^{p / 2} s^{p \gamma_p / 2} /\left(2\|Q\|_2^{p-2}\right), \\ &\left\|u_s\right\|_q^q=q c^{q / 2} s^{q \gamma_q / 2} /\left(2\|Q\|_2^{q-2}\right) 。\end{split} $ |
由上述结果,可得
$ \begin{split}{e}_{\mu }\left(s\right) :=&{E}_{\mu }({u}_{s}) =\dfrac{a}{2}cs+\dfrac{b}{4}{c}^{2}{s}^{2}-\mu {c}^{\tfrac{q}{2}}{s}^{\tfrac{q{\gamma }_{q}}{2}}/(2|\left|Q\right|{|}_{2}^{q-2}) -\\ &{c}^{\tfrac{p}{2}}{s}^{\tfrac{p{\gamma }_{p}}{2}}/(2|\left|Q\right|{|}_{2}^{p-2}) \end{split} $ |
由
通过Gagliardo-Nirenberg不等式,得出
$ \begin{split}{E}_{\mu }(u) =&\dfrac{a}{2}\left|\right|\nabla u|{|}_{2}^{2}+\dfrac{b}{4}||\nabla u|{|}_{2}^{4}-\dfrac{\mu }{q}\left|\right|u|{|}_{q}^{q}-\dfrac{1}{p}|\left|u\right|{|}_{p}^{p}\geqslant\\ &\dfrac{a}{2}\left|\right|\nabla u|{|}_{2}^{2}+\dfrac{b}{4}||\nabla u|{|}_{2}^{4}-\dfrac{1}{p}\left|\right|u|{|}_{p}^{p}\geqslant\\ &\dfrac{a}{2}\left|\right|\nabla u|{|}_{2}^{2}+\dfrac{b}{4}||\nabla u|{|}_{2}^{4}-\dfrac{1}{p}{C}_{p}^{p}{c}^{\tfrac{p(1-{\gamma }_{p}) }{2}}\left|\right|\nabla u|{|}_{2}^{p{\gamma }_{p}}\end{split} $ |
所以,当
引理6 对于指数满足
证明 要证明
对于
$ {E_\mu }\left( {{u_n}} \right) \lt m\left( {{c_n}} \right) + 1/n \lt 1/n $ |
由泛函
$ \begin{split}& m(c) \leqslant E_\mu\left(\frac{c u_n}{c_n}\right) = \frac{a}{2}\left(\frac{c u_n}{c_n}\right)^2\left\|\nabla u_n\right\|_2^2 + \frac{b}{4}\left(\frac{c u_n}{c_n}\right)^4\left\|\nabla u_n\right\|_2^4 -\\ & \frac{\mu}{q}\left(\frac{c u_n}{c_n}\right)^q\left\|u_n\right\|_q^q-\frac{1}{p}\left(\frac{c u_n}{c_n}\right)^p\left\|u_n\right\|_p^p = E_\mu\left(u_n\right)+o_n(1) <\\ & m\left(c_n\right)+\frac{1}{n}+o_n(1) \end{split} $ |
另一方面,设
$m\left({c}_{n}\right) \leqslant{E}_{\mu }\left(\dfrac{{c}_{n}{v}_{n}}{c}\right) ={E}_{\mu }\left({v}_{n}\right) +{o}_{n}(1) = m(c) +{o}_{n}(1) $ |
因此,
引理7 对于指数满足
$ m(c) \lt m(\alpha ) + m(c - \alpha ) , 其中0 \lt \alpha \lt c $ |
证明 设
接下来断言: 存在一个常数
$ \begin{split}&0 \geqslant{E}_{\mu }\left({u}_{n}\right) =\dfrac{a}{2}\Vert \nabla {u}_{n}{\Vert }_{2}^{2}+\dfrac{b}{4}\Vert \nabla {u}_{n}{\Vert }_{2}^{4}-\dfrac{\mu }{q}\Vert {u}_{n}{\Vert }_{q}^{q}-\\ & \dfrac{1}{p}\Vert {u}_{n}{\Vert }_{p}^{p} \geqslant\dfrac{a}{2}\Vert \nabla {u}_{n}{\Vert }_{2}^{2}+\dfrac{b}{4}\Vert \nabla {u}_{n}{\Vert }_{2}^{4}- \dfrac{{C}_{p}^{p}\Vert \nabla {u}_{n}{\Vert }_{2}^{{\gamma }_{p}p}{c}^{\tfrac{p(1-{\gamma }_{p}) }{2}}}{{p}}\to 0,\end{split} $ |
得到矛盾。故断言成立。
对于每个
$ \begin{split} & m(\theta c) \leqslant E_\mu\left(u_n^\theta\right)=\frac{a}{2} \theta^{\tfrac{1}{3}}\left\|\nabla u_n\right\|_2^2+\frac{b}{4} \theta^{\tfrac{2}{3}}\left\|\nabla u_n\right\|_2^4-\frac{\mu}{q} \theta\left\|u_n\right\|_q^q -\\ & \frac{1}{p} \theta\left\|u_n\right\|_p^p=\theta E_\mu\left(u_n\right) +\theta\bigg[\frac{a}{2}\left(\theta^{-\tfrac{2}{3}}-1\right)\left\|\nabla u_n\right\|_2^2+\\ &\frac{b}{4}\left(\theta^{-\tfrac{1}{3}}-1\right)\left\|\nabla u_n\right\|_2^4\bigg] \leqslant \theta E_\mu\left(u_n\right)+\theta\bigg[\frac{a}{2}\left(\theta^{-\tfrac{2}{3}}-1\right) k_1+\\ &\frac{b}{4}\left(\theta^{-\tfrac{1}{3}}-1\right) k_1^2\bigg] < \theta E_\mu\left(u_n\right), \end{split} $ |
令
$ m(\theta c) \lt \theta m(c)$ | (7) |
由引理2和式(7),可得
设
$ \delta : = \mathop {\lim }\limits_{{\text{n}} \to \infty } \mathop {\sup }\limits_{y \in {{\mathbf{R}}^3}} {\mkern 1mu} \displaystyle\int_{{B_1}(y) } {{{\left| {{u_n}} \right|}^2}} {\text{d}}x > 0 $ |
否则,根据引理1得到
$ 0\leqslant\underset{n\to \infty }{\mathrm{lim}}\left(\dfrac{a}{2}\Vert \nabla {u}_{n}{\Vert }_{2}^{2}+\dfrac{b}{4}\Vert \nabla {u}_{n}{\Vert }_{2}^{4}\right) =\underset{n\to \infty }{\mathrm{lim}}{E}_{\mu }\left({u}_{n}\right) $ |
这与
$ \displaystyle\int_{{B_1}\left( {{y_n}} \right) } {{{\left| {{u_n}} \right|}^2}} {\text{d}}x > \delta > 0 $ |
设
$ \displaystyle\int_{{B_1}} {{{\left| {{v_n}} \right|}^2}} {\text{d}}x \gt \delta $ | (8) |
此外,
设
$ \left\{ \begin{aligned} &{v}_{n}\rightharpoonup {v}_{0}&& {{ H}}^{1}({{\bf{R}}}^{3}) ,\\& {v}_{n}\to {v}_{0}&& \text{ }{L}_{\text{loc}}^{t}({{\bf{R}}}^{3}) ,t\in [1,6) ,\\& {v}_{n}(x) \to {v}_{0}(x) && \text{ }几乎处处x\in {{\bf{R}}}^{3} \end{aligned}\right. $ | (9) |
式(8)表明
$ c = ||{v_n}||_2^2 = ||{v_0}||_2^2 + ||{v_n} - {v_0}||_2^2 + {o_n}(1) $ | (10) |
由式(10)可得
$ \begin{split}&m(c) =\underset{n\to \infty }{\mathrm{lim}}{E}_{\mu }\left({v}_{n}\right) =\underset{n\to \infty }{\mathrm{lim}}(\dfrac{a}{2}||\nabla {v}_{0}|{|}_{2}^{2}+\dfrac{b}{4}\Vert \nabla {v}_{0}{\Vert }_{2}^{4}-\\ &\dfrac{\mu }{q}\left|\right|{v}_{0}|{|}_{q}^{q}-\dfrac{1}{p}|\left|{v}_{0}\right|{|}_{p}^{p}+\dfrac{a}{2}\Vert \nabla ({v}_{n}-{v}_{0}) {\Vert }_{2}^{2}+\dfrac{b}{4}\left|\right|\nabla ({v}_{n}-{v}_{0}) |{|}_{2}^{4}-\\&\dfrac{\mu }{q}||{v}_{n}-{v}_{0}|{|}_{q}^{q}- \dfrac{1}{p}\left|\right|{v}_{n}-{v}_{0}|{|}_{p}^{p}+\dfrac{b}{2}||\nabla {v}_{0}|{|}_{2}^{2}\left|\right|\nabla ({v}_{n}-{v}_{0}) |{|}_{2}^{2})\geqslant \\&{E}_{\mu }\left({v}_{0}\right) +\underset{n\to \infty }{\mathrm{lim}}{E}_{\mu }\left({v}_{n}-{v}_{0}\right) \geqslant m(\alpha ) +m(c-\alpha ) \end{split} $ |
这与引理7相矛盾。所以,
最后,由泛函的弱下半连续性得
$ m(c) \leqslant{E}_{\mu }({v}_{0}) \leqslant\underset{n\to \infty }{\mathrm{lim}}\;\mathrm{inf}{E}_{\mu }({v}_{n}) =m(c) $ |
那么
[1] |
LIONS J L. On some questions in boundary value problems of mathematical physics[J].
North Holland Mathematics Studies, 1978, 30: 284-346.
|
[2] |
ALVES C O, COTTRA F, MA T F. Positive solutions for a quasilinear elliptic equation of kirchhoff type[J].
Computers Mathematics with Applications, 2005, 49(1): 85-93.
DOI: 10.1016/j.camwa.2005.01.008. |
[3] |
LEI C Y, LIAO J F, TANG C L. Multiple positive solutions for kirchhoff type of problems with singularity and critical exponents[J].
Journal of Mathematical Analysis and Applications, 2015, 421(1): 521-538.
DOI: 10.1016/j.jmaa.2014.07.031. |
[4] |
SOAVE N. Normalized ground states for the NLS equation with combined nonlinearities[J]. Journal of Differential Equations. 2020, 269(9) : 6941-6987.
|
[5] |
SOAVE N. Normalized ground states for the NLS equation with combined nonlinearities: the sobolev critical case[J].
Journal of Functional Analysis, 2020, 279(6): 1086-1101.
|
[6] |
LI G B, LUO X, YANG T. Normalized solutions to a class of kirchhoff equations with sobolev critical exponent[J].
Annales Fennici Mathematici, 2022, 47: 895-925.
DOI: 10.54330/afm.120247. |
[7] |
HU J Q, MAO A M. Normalized solutions to the kirchhoff equation with a perturbation term[J].
Differential and Integral Equations, 2023, 36(3/4): 289-312.
|
[8] |
CARRIAO P C, MIYAGAKI O H, VICENTE A. Normalized solutions of kirchhoff equations with critical and subcritical nonlinearities: the defocusing case[J].
Partial Differential Equations and Applications, 2022, 3(5): 64.
DOI: 10.1007/s42985-022-00201-3. |
[9] |
BERNARD D. Introduction to the calculus of variations[M]. Switzerland :World Scientific Publishing Company , 2014.
|
[10] |
WILLEM M. Minimax theorems[M]. Boston: Springer Science Business Media, 1997.
|
[11] |
WEINSTEIN M I. Nonlinear schrödinger equations and sharp interpolation estimates[J].
Communications in Mathematical Physics, 1982, 87: 567-576.
|
[12] |
STUART C A. Bifurcation from the continuous spectrum in the L2 theory of elliptic equations on RN[J]. Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli, 1981, 231-300.
|
[13] |
LIONS P L. The concentration-compactness principle in the calculus of variations, the locally compact case, part 1[J].
Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 1984, 1(2): 109-145.
|