肿瘤是一种严重危害人类生命健康的疾病,特别是恶性肿瘤。近年来,许多学者开始关注肿瘤生长、转移和微环境等相关问题,尤其是在了解肿瘤转移的机制并提供有效治疗策略方面,数学建模成为重要的研究手段之一。肿瘤转移是癌症发展过程中的关键环节,也是治疗失败和恶化的主要原因之一[1]。
肿瘤淋巴管是肿瘤中新形成的血管(tumor angiogenesis),为肿瘤提供营养和氧气,被认为是与肿瘤转移和发展有关的重要因素之一[2]。淋巴管在正常情况下是通过一系列复杂的反应和信号来生成的,但在肿瘤中肿瘤细胞释放特殊的生长因子和化学信号物质,诱导周围的血管和淋巴管内皮细胞增殖和分化,形成新的淋巴管网络[3]。研究肿瘤淋巴管生成对于了解肿瘤的生长、转移和治疗具有重要意义。通过阻断肿瘤淋巴管生成,可以抑制肿瘤的生长和转移,并提高现有抗肿瘤治疗的效果。
在肿瘤淋巴管生成中,内皮细胞生长因子(Vascular Endothelial Growth Factor, VEGF)和细胞外基质(Extracellular Matrix,ECM)重塑是关键因素之一。VEGF在肿瘤发展中起着重要作用,高表达的VEGF与肿瘤的恶性程度和淋巴管生成密切相关[4]。ECM重塑则为肿瘤细胞的转移和淋巴管生成提供了条件[5]。VEGF作为一种主要的血管生成因子,已被广泛研究和证实其在血管新生和肿瘤转移中的作用。先前的研究表明,VEGF是肿瘤淋巴管生成的重要调节因子之一,实验证实干扰VEGF可以有效抑制肿瘤生长和淋巴管生成[6]。曹雪涛院士等[7]的研究综述中指出,肿瘤转移微环境对VEGF的产生和释放具有重要的调节作用,以及和ECM重塑等多方面的协同作用。此外,在过去的几十年里,前人研究中提到基质降解酶(Matrix Metalloproteinases,MMP)也是ECM重塑的一个关键成分[8]。
以往的数学模型主要关注肿瘤生长规律,而忽略了基于肿瘤转移各组分间的相互作用[9-10]。为了更准确地描述肿瘤淋巴管生成过程,本文提出了一个考虑ECM重塑的模型,并且考虑了MMP对肿瘤淋巴管生成的影响。此外,VEGF作为关键的血管生成因子,在模型中起着重要作用。研究发现肿瘤转移微环境对VEGF的产生和释放具有调节作用,这进一步说明了VEGF在肿瘤淋巴管生成中的关键性。
1 数学模型及方程上述考虑肿瘤转移过程中的ECM重塑作用,针对微环境中各种涉及肿瘤淋巴管生成的成分进行建模。至此,用流程图来描述本文提出的模型机制(见图1),由图1可知,内皮细胞的趋化性作用由内皮细胞生长因子VEGF引起。内皮细胞生长因子由肿瘤细胞和ECM分泌,MMP由肿瘤细胞和内皮细胞分泌,MMP的作用是降解ECM。内皮细胞和MMP的趋触性由ECM引起,内皮细胞和MMP会向ECM发生微小转移。
![]() |
图 1 肿瘤淋巴管生成模型示意图 Figure 1 Schematic diagram of generative model of tumor lymphatic vessels |
为了建立肿瘤转移微环境的模型,需要对肿瘤淋巴管生成的机制进行数学描述。本文总结在肿瘤淋巴管生成过程中的主要参与成分,并进行各个因素和变量的确定。根据上述肿瘤淋巴管生成机制的表述,这里设定相关成分:
不同因素之间存在相互作用和调节关系,共同影响和塑造了肿瘤淋巴管生成的环境。因此,本文可以考虑各成分之间作用关系的数学表达,以描述它们之间的相互作用和调节关系。
假设所有成分
![]() |
图 2 关键因素及其相互关系示意图 Figure 2 Schematic diagram of key factors and their interrelationships |
(1) MMP会降解ECM,则ECM的浓度方程为
$ \frac{{\partial m}}{{\partial t}} = - \sigma qm $ | (1) |
式中:t为时间,
(2) 肿瘤细胞会发生增殖和扩散,还会分泌内皮细胞生长因子。因此肿瘤细胞的浓度方程为
$ \frac{{\partial n}}{{\partial t}} = {D_n}{\nabla ^2}n + \lambda {n_0}\left( {1 - \frac{n}{{{n_M}}}} \right) - {\mu _n}n $ | (2) |
式中:等号右边第1项为肿瘤细胞的扩散,
(3) 内皮细胞会发生扩散,并且会对VEGF的刺激发生趋化运动,内皮细胞的受体会与VEGF相结合,另外内皮细胞还会向ECM转移,帮助形成淋巴管结构。内皮细胞的方程为
$ \frac{{\partial c}}{{\partial t}} = {D_c}{\nabla ^2}c - \nabla \left( {\frac{{\theta \rho }}{{1 + \rho }} c\nabla s} \right) - \nabla \left( {c{\chi _c}\nabla m} \right) - {\mu _c}c $ | (3) |
式中:等号右边第1项为肿瘤细胞的扩散,
(4) VEGF由肿瘤细胞和ECM分泌,会与内皮细胞相结合,并且还会发生扩散。VEGF的浓度方程为
$ \frac{{\partial s}}{{\partial t}} = {D_s}{\nabla ^2}s + {\alpha _s}n + {\beta _s}m - \varphi cs $ | (4) |
式中:等号右边第1项为肿瘤细胞的扩散,
(5) MMP由肿瘤细胞和内皮细胞分泌,并发生扩散,并且向基质转移降解ECM。MMP的浓度方程为
$ \frac{{\partial q}}{{\partial t}} = {D_q}{\nabla ^2}q - \nabla \left( {q{\chi _q}\nabla m} \right) + {\alpha _q}n + {\gamma _q}c $ | (5) |
式中:等号右边第1项为肿瘤细胞的扩散,
本文提出一个模型来研究肿瘤淋巴管生成中VEGF的影响。在建立模型之前,基于以下假设:
(a) 假设VEGF是肿瘤淋巴管生成的关键因素之一,其高表达与淋巴管生成的增加密切相关。VEGF的表达受到多个因素的调控,如肿瘤细胞内部信号通路的激活以及外部环境因素的影响,本模型仅考虑VEGF与内皮细胞受体结合后生成淋巴管结构的情况。
(b) 本文假设变量初值满足以下条件:对于
(c) 本文假设系统为封闭的,在边界上不存在物质的输入或输出,内外的物质无法通过边界交换。因此,在理论分析中本文假设各个变量
下面将介绍一些需要用到的引理和记号。首先,本文引入一些记号:
① 记
$ {\varOmega _T} = \left\{ {\left( {x,t} \right) \left| {0 < x < L,0 < t < T} \right.} \right\},L > 0,T > 0$ |
② 定义
${ W_p^{2,1}\left( {{\varOmega _T}} \right) = \left\{ {u,v \in {L^p}\left( {{\varOmega _T}} \right) \left| {{u_t},{v_t},\nabla u,} \right.\nabla v,{\nabla ^2}u,{\nabla ^2}v \in {L^p}\left( {{\varOmega _T}} \right) } \right\}} $ |
对
③ 对于
$ {\left\| \varphi \right\|_{{D_P}\left( {0,1} \right) }}= \{{T}^{-\tfrac{1}{P}}{\Vert u\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }|u\in {W}_{p}^{2,1}\left({\varOmega }_{T}\right) ,u\left(\cdot,0\right) =\varphi \} $ |
由于
④ 记
$ {\left\| u \right\|_{C_{x,t}^{k + \alpha ,\beta }\left( {{\varOmega _T}} \right) }} = \sum\limits_{\left| l \right| = 0}^k {\left[ {\mathop {\sup }\limits_{{\varOmega _T}} \left| {D_x^lu} \right| + \left\langle {D_x^lu} \right\rangle _{x,{\varOmega _T}}^\alpha + \left\langle {D_x^lu} \right\rangle _{t,{\varOmega _T}}^\beta } \right]} $ |
式中:
$ \begin{split} &\left\langle u \right\rangle _{x,{\varOmega _T}}^\alpha = \mathop {\sup }\limits_{\left( {x,t} \right) ,\left( {y,t} \right) \in {\varOmega _T}} \dfrac{{\left| {u\left( {x,t} \right) - u\left( {y,t} \right) } \right|}}{{{{\left| {x - y} \right|}^\alpha }}}\\ &\left\langle u \right\rangle _{t,{\varOmega _T}}^\beta = \mathop {\sup }\limits_{\left( {x,t} \right) ,\left( {x,\tau } \right) \in {\varOmega _T}} \dfrac{{\left| {u\left( {x,t} \right) - u\left( {x,\tau } \right) } \right|}}{{{{\left| {t - \tau } \right|}^\beta }}} \end{split}$ |
下面介绍一些有用的引理。
引理1[11] 假设
$\left\{ \begin{array}{l} \dfrac{{\partial u}}{{\partial t}} = D\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + a\left( {x,t} \right) \dfrac{{\partial u}}{{\partial x}} + b\left( {x,t} \right) u + f\left( {x,t} \right) \\ \left\{ {\left. {\left( {x,t} \right) } \right|0 < x < L,0 < t < T} \right\} \\ x = 0,L:Bu = \varphi ,0 < t < T \\ u\left( {x,0} \right) = {u_0}\left( x \right) ,0 \leqslant x \leqslant L \end{array} \right.$ |
存在唯一解
$ \begin{gathered} {\left\| u \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant \\ {C_P}\left( T \right) \left( {{{\left\| {{u_0}\left( x \right) } \right\|}_{{D_P}\left( {0,L} \right) }} + {{\left\| {\varphi \left( {x,t} \right) } \right\|}_{{W^{2,P}}\left( {0,T} \right) }} + {{\left\| f \right\|}_P}} \right) \\ \end{gathered} $ |
式中:
引理2[12-13] 设
(1) 当
(2) 当
这里的
引理3[14-15] 设
$ {\left\| {u\left( {x,t} \right) - u\left( {x,0} \right) } \right\|_{{C^{1 + \alpha ,{{\left( {1 + \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 + \alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\eta \left( T \right) {\left\| u \right\|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} $ |
式中:
对
$ \begin{split} & {\left\| {m\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M,{\left\| {n\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M \\ & {\left\| {c\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M,{\left\| {s\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M \\ &{\left\| {q\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M \end{split} $ |
记
显然度量空间
$ \frac{{\partial \widetilde m}}{{\partial t}} = - \sigma q\widetilde m $ | (6) |
$ \frac{{\partial \widetilde n}}{{\partial t}} = {D_n}{\nabla ^2}\widetilde n + \lambda {n_0}\left( {1 - \frac{{\widetilde n}}{{{n_M}}}} \right) - {\mu _n}\widetilde n $ | (7) |
$ \frac{{\partial \widetilde c}}{{\partial t}} = {D_c}{\nabla ^2}\widetilde c - \nabla \left( {\frac{{\theta \rho }}{{1 + \rho }} \widetilde c\nabla s} \right) - \nabla \left( {\widetilde c{\chi _c}\nabla m} \right) - {\mu _c}\widetilde c $ | (8) |
$ \frac{{\partial \widetilde s}}{{\partial t}} = {D_s}{\nabla ^2}\widetilde s + {\alpha _s}n + {\beta _s}m - \varphi c\widetilde s $ | (9) |
$ \frac{{\partial \widetilde q}}{{\partial t}} = {D_q}{\nabla ^2}\widetilde q - \nabla \left( {\widetilde q{\chi _q}\nabla m} \right) + {\alpha _q}n + {\gamma _q}c $ | (10) |
(1) 下面先证明
(a) 由引理2可知,问题(1) 存在唯一解
$ {\| {\widetilde m} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\| {\widetilde m} \|_{{C^{2 + \alpha }}\left[ {0,L} \right]}} = {C_1}\left( {T,M} \right) $ |
对于问题(1)再由引理3可得
$ \begin{split} {\| {\widetilde m} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\; {\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}} + {\| {\widetilde m - {m_0}} \|_{C_{x,t}^{2 + \alpha ,{{\left( {1 + \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 + \alpha } \right) } 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \\ &{\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}} + C\eta \left( T \right) {\| {\widetilde m} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \\ & {\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_1}\left( {T,M} \right) \end{split} $ |
同理,对于问题(2) 、(4) 分别有类似上述结论成立,具体为
$ \begin{split} & {\| {\widetilde n} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{n_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_2}\left( {T,M} \right) \\ & {\| {\widetilde s} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{s_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_4}\left( {T,M} \right) \end{split} $ |
(b) 考虑问题(3) ,为方便记
$\begin{split} & {a_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla s - {\chi _c}\nabla m \\ & {b_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}s - {\chi _c}{\nabla ^2}m \\ & {h_c}\left( {x,t} \right) = - {\mu _c}c \end{split} $ |
由(a)的结论可知
$ {\left\| {{a_c}\left( {x,t} \right) } \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} + {\left\| {{b_c}\left( {x,t} \right) } \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\left( T \right) M $ |
计算可知问题(3)可化为
$ \frac{{\partial \widetilde c}}{{\partial t}} = {D_c}{\nabla ^2}\widetilde c + {a_c}\left( {x,t} \right) \nabla \widetilde c + {b_c}\left( {x,t} \right) \widetilde c + {h_c}\left( {x,t} \right) $ |
再由引理2可知,问题(3) 存在唯一解
结合引理3可得
$ {\| {\widetilde c} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{c_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_3}\left( {T,M} \right) $ |
类似地可以得到问题(5)结论为
$ {\| {\widetilde q} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{q_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_5}\left( {T,M} \right) $ |
综上所述,当
$ M = \max \left\{ \begin{array}{l} {\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}},{\left\| {{n_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}},{\left\| {{c_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}, \\ {\left\| {{s_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}},{\left\| {{q_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}} \end{array} \right\} $ |
当
(2) 下面证明映射
记
$ \frac{{\partial {{\widetilde m}^*}}}{{\partial t}} = - \sigma q{\widetilde m^*} + {h_m}\left( {x,t} \right) $ |
式中:
$ \begin{split} & {\| {{{\widetilde m}_1} - {{\widetilde m}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) {\left\| {{h_m}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) ( {\sigma {{\left\| {{q_1} - {q_2}} \right\|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}{{\| {{{\widetilde m}_2}} \|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}} ) \leqslant\\ & C\left( T \right) M \end{split} $ | (11) |
记
$ \frac{{\partial {{\widetilde n}^*}}}{{\partial t}} = {D_n}{\nabla ^2}{\widetilde n^*} - \left( {\frac{{\lambda {n_0}}}{{{n_M}}} + {\mu _n}} \right) {\widetilde n^*} + {h_n}\left( {x,t} \right) $ |
式中:
$ \begin{split} & {\| {{{\widetilde n}_1} - {{\widetilde n}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) {\left\| {{h_n}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) \left( {\frac{{\lambda {n_0}}}{{{n_M}}}{{\| {{{\widetilde n}_2}} \|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} + {\mu _n}{{\| {{{\widetilde n}_2}} \|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}} \right) \leqslant\\ & C\left( T \right) M \end{split} $ | (12) |
记
$ \frac{{\partial {{\widetilde c}^*}}}{{\partial t}} = {D_c}{\nabla ^2}{\widetilde c^*} + {a_c}\left( {x,t} \right) \nabla {\widetilde c^*} + {b_c}\left( {x,t} \right) {\widetilde c^*} + {h_c^\prime} \left( {x,t} \right) $ |
式中:
$\begin{split} & {a_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla s - {\chi _c}\nabla m \\ & {b_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}s - {\chi _c}{\nabla ^2}m \\ & {h_c^\prime} \left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla \left( {{s_1} - {s_2}} \right) - {\chi _c}\nabla \left( {{m_1} - {m_2}} \right) - \\ &\qquad\qquad \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}\left( {{s_1} - {s_2}} \right) - {\chi _c}{\nabla ^2}\left( {{m_1} - {m_2}} \right) - {\mu _c}{{\widetilde c}_2} \end{split} $ |
则由引理2得
$ \begin{split} {\left\| {{{\widetilde c}_1} - {{\widetilde c}_2}} \right\|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\;{C_\alpha }\left( T \right) {\left\| {{h_c^\prime }} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \\ & C\left( T \right) M \end{split} $ | (13) |
记
$ \frac{{\partial {{\widetilde s}^*}}}{{\partial t}} = {D_s}{\nabla ^2}{\widetilde s^*} - \varphi c{\widetilde s^*} + {h_s^\prime} \left( {x,t} \right) $ |
式中:
$\begin{split} & {\| {{{\widetilde s}_1} - {{\widetilde s}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) {\left\| {{h_s^\prime}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) (\varphi {\left\| {{c_1} - {c_2}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}{\| {{{\widetilde s}_2}} \|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} - \\ & {\alpha _s}{\left\| {{n_1} - {n_2}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} - {\beta _s}{\left\| {{m_1} - {m_2}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}) \leqslant\\ & C\left( T \right) M \end{split}$ | (14) |
记
$ \frac{{\partial {{\widetilde q}^*}}}{{\partial t}} = {D_q}{\nabla ^2}{\widetilde q^*} + {a_q}\left( {x,t} \right) \nabla {\widetilde q^*} + {b_q}\left( {x,t} \right) {\widetilde q^*} + {h_q^\prime} \left( {x,t} \right) $ |
式中:
$ \begin{split} & {a_q}\left( {x,t} \right) = - {\chi _q}\nabla m,{b_q}\left( {x,t} \right) = - {\chi _q}{\nabla ^2}m, \\ & {h_q^\prime} \left( {x,t} \right) = - {\chi _q}\nabla \left( {{m_1} - {m_2}} \right) - {\chi _q}{\nabla ^2}\left( {{m_1} - {m_2}} \right) + \\ &\qquad\qquad {\alpha _q}\left( {{n_1} - {n_2}} \right) + {\gamma _q}\left( {{c_1} - {c_2}} \right) \end{split}$ |
则由引理2得
$ \begin{split} {\| {{{\widetilde q}_1} - {{\widetilde q}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\;{C_\alpha }\left( T \right) {\| {{h_q^\prime }} \|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & C\left( T \right) M \end{split} $ | (15) |
综合(11)-(15),再由引理3可得
$\begin{split} {\| {{{\widetilde m}_1} - {{\widetilde m}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\;C\eta (T) {\| {{{\widetilde m}_1} - {{\widetilde m}_2}} \|_{{C^{2 + \alpha ,{{1 + \alpha } \mathord{\left/ {\vphantom {{1 + \alpha } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & \eta \left( T \right) C\left( T \right) \delta \end{split} $ |
式中:
$\begin{split} & {\| {{{\widetilde n}_1} - {{\widetilde n}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \\ & {\| {{{\widetilde c}_1} - {{\widetilde c}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \\ & {\| {{{\widetilde s}_1} - {{\widetilde s}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \\ & {\| {{{\widetilde q}_1} - {{\widetilde q}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \end{split} $ |
取
定理1 存在
引理4 对式(1)~(5)有结论:
证明 对式(2)应用极值原理可得
$ 0 \leqslant n \leqslant C\sup \left( {{n_0}} \right) \equiv {n_M} $ |
同理对于问题(1)、(3)、(4)、(5)中的变量
$ 0 \leqslant X \leqslant C\sup \left( X \right) \equiv {X_M} $ |
则有
引理5 对任意
$\begin{split} &{\Vert m\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) ,{\Vert n\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) \\ &{\Vert c\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) ,{\Vert s\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) \\ &{\Vert q\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) \end{split} $ |
证明 对式(1)和(2)应用极值原理可得
$ {\left\| m \right\|_{{L^k}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) ,{\left\| n \right\|_{{L^k}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) $ | (16) |
在方程(4)两边同时乘以
$\begin{split} & \frac{1}{{k + 1}}\int_0^L {\frac{\partial }{{\partial t}}} \int_0^t {{s^{k + 1}}} {\rm{d}}x{\rm{d}}t + k{D_s}\int_0^t {\int_0^L {{{\left| {\nabla s} \right|}^2}} } {s^{k - 1}}{\rm{d}}x{\rm{d}}t \leqslant\\ & {\alpha _s}\int_0^t {\int_0^L n } {s^k}{\rm{d}}x{\rm{d}}t + {\beta _s}\int_0^t {\int_0^L m } {s^k}{\rm{d}}x{\rm{d}}t \leqslant\\ & {\alpha _s}{\left( {\int_0^t {\int_0^L {{s^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{k}{{k + 1}}}}{\left( {\int_0^t {\int_0^L {{n^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{1}{{k + 1}}}} + \\ & {\beta _s}{\left( {\int_0^t {\int_0^L {{s^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{k}{{k + 1}}}}{\left( {\int_0^t {\int_0^L {{m^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{1}{{k + 1}}}} \end{split} $ | (17) |
将
由Gronwall不等式可得
$ {\phi _s} \leqslant {C_k}(T) $ | (18) |
因此可得
把式(3)和式(5)相加,再两边同时乘以
$\begin{split} & \frac{1}{{k + 1}}\int_0^L {\frac{\partial }{{\partial t}}} \int_0^t {{{\left( {c + q} \right) }^{k + 1}}} {\rm{d}}x{\rm{d}}t + \\ & k{D_{cq}}\int_0^t {\int_0^L {{{\left| {\nabla \left( {c + q} \right) } \right|}^2}} } {\left( {c + q} \right) ^{k - 1}}{\rm{d}}x{\rm{d}}t \leqslant \\ & {\alpha _q}\int_0^t {\int_0^L n } {\left( {c + q} \right) ^k}{\rm{d}}x{\rm{d}}t \leqslant \\ &{\alpha _q}{\left( {\int_0^t {\int_0^L {{{\left( {c + q} \right) }^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\frac{k}{{k + 1}}}}{\left( {\int_0^t {\int_0^L {{n^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{1}{{k + 1}}}} \end{split} $ | (19) |
式中:
$ {\phi _{cq}}\left( t \right) = \int_0^t {\int_0^L {{{\left( {c + q} \right) }^{k + 1}}} {\rm{d}}x{\rm{d}}t} $ |
代入式(19),由式(16)可得
$ \frac{{{\rm{d}}{\phi _{cq}}}}{{{\rm{d}}t}} \leqslant C{\phi _{cq}}^{\tfrac{k}{{k + 1}}} \leqslant {C_k}\left( {{\phi _{cq}} + 1} \right) $ |
则
$ {\left\| c \right\|_{{L^{k + 1}}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) ,{\left\| q \right\|_{{L^{k + 1}}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) $ | (20) |
引理5得证。
引理6 对任意
$ \begin{split} &{\Vert m\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) ,{\Vert n\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) \\ &{\Vert c\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) ,{\Vert s\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) \\ &{\Vert q\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) \end{split} $ |
证明 对于问题(1)、(2)、(4)应用引理1得
$ {\left\| m \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| n \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| s \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) , $ |
又由Sobolev嵌入定理[16]
$ W_p^{2,1}\left( {{\varOmega _T}} \right) \subset \subset C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}( {{{\overline \varOmega }_T}} ) ,\alpha = 2 - \frac{5}{p}\left( {p > \frac{5}{2}} \right) $ |
可得
$\begin{split} & {\left\| m \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| n \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {C_p}\left( T \right) \\ & {\left\| s \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {C_p}\left( T \right) \end{split}$ |
问题(3)可以写成为
$ \frac{{\partial c}}{{\partial t}} = {D_c}{\nabla ^2}c + {a_c}\left( {x,t} \right) \nabla c + {b_c}\left( {x,t} \right) c + {h_c}\left( {x,t} \right) $ |
式中:
$ \begin{split} & {a_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla s - {\chi _c}\nabla m \\ & {b_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}s - {\chi _c}{\nabla ^2}m \\ & {h_c}\left( {x,t} \right) = - {\mu _c}c \end{split}$ |
同理,问题(5)可以写成为
$ \frac{{\partial q}}{{\partial t}} = {D_q}{\nabla ^2}q + {a_q}\left( {x,t} \right) \nabla q + {b_q}\left( {x,t} \right) q + {h_q}\left( {x,t} \right) $ |
式中:
$\begin{split} & {a_q}\left( {x,t} \right) = - {\chi _q}\nabla m,{b_q}\left( {x,t} \right) = - {\chi _q}{\nabla ^2}m, \\ & {h_q}\left( {x,t} \right) = {\alpha _q}n + {\gamma _q}c \end{split}$ |
由引理5可知
$ {b_c}(x,t) + {h_c}(x,t) ,{b_q}(x,t) + {h_q}(x,t) \in {L^p}\left( {{\varOmega _T}} \right) $ |
且
引理7 存在一个依赖于
证明 由引理6和Sobolev嵌入定理[16]
$ W_p^{2,1}\left( {{\varOmega _T}} \right) \subset \subset C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) ,\alpha = 2 - \frac{5}{p}\left( {p > \frac{5}{2}} \right) $ |
则有
则方程(1)~(5)的系数满足引理2,因此可得
由定理1可得解的局部存在性,由引理7可得解的有界性,基于解的有界性,进而可以得到如下定理:
定理2 当条件(b)成立时,任何
为了更直观地体现模型中各成分的关系,本文考虑用差分数值方法求解偏微分方程组(1)~(5),包括二阶中心差分和一阶前后差分。为了说明简单,考虑无量纲化的数值模拟,这里设定模拟区域在
相关参数值为[17]:
通过参数调整和数值方法求解,本文得到了从
![]() |
图 3 从 |
从图3可以看出,随时间从
相较于以往关注肿瘤生长规律的模型,本文在考虑了肿瘤与ECM相互作用的基础上,建立了一个新的肿瘤淋巴管生成模型。本文考虑了多种成分的相互影响,包含肿瘤生长情况以及ECM重塑和肿瘤淋巴管生成的数量情况。通过对该模型进行理论分析,证明了局部解和整体解的存在唯一性,并通过数值模拟验证了模型的可靠性和准确性。
这项研究对于更深入地理解肿瘤转移机制,指导癌症治疗,并推动相关研究的发展具有重要意义。未来,将进一步探索该模型在不同肿瘤类型和治疗方案中的应用,例如关键因素如何影响肿瘤转移等,并进一步优化模型以提高其预测能力和临床实用性,使其更符合真实的生物学环境。
[1] |
DILLEKS H, ROGERS M S, STRAUME O. Are 90% of deaths from cancer caused by metastases?[J].
Cancer Medicine, 2019, 8(12): 5574-5576.
DOI: 10.1002/cam4.2474. |
[2] |
LIU P, DING P, SUN C, et al. Lymphangiogenesis in gastric cancer: function and mechanism[J].
European Journal of Medical Research, 2023, 28(1): 405.
|
[3] |
ALEJANDRA G L, TATIANA V, PETROVA. Development and aging of the lymphatic vascular system[J].
Advanced Drug Delivery Reviews, 2021, 169: 63-78.
DOI: 10.1016/j.addr.2020.12.005. |
[4] |
YANG Y L, CAO Y H. The impact of VEGF on cancer metastasis and systemic disease[J].
Seminars in Cancer Biology, 2022, 86(3): 251-261.
|
[5] |
KAI F B, DRAIN A P, WEAVER V M. The extracellular matrix modulates the metastatic Journey[J].
Developmental Cell, 2019, 49(3): 332-346.
DOI: 10.1016/j.devcel.2019.03.026. |
[6] |
LE X N, NILSSON M, GOLDMAN J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC[J].
Journal of Thoracic Oncology, 2021, 16(2): 205-215.
DOI: 10.1016/j.jtho.2020.10.006. |
[7] |
LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche[J].
Cancer Cell, 2016, 30(5): 668-681.
DOI: 10.1016/j.ccell.2016.09.011. |
[8] |
QUINTERO-FABIÁN S, RODRIGO A, ECERRIL-VILLANUEVA, et al. Role of matrix metalloproteinases in angiogenesis and cancer[J].
Frontiers in Oncology, 2019, 9: 1307.
DOI: 10.3389/fonc.2019.01307. |
[9] |
周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J].
广东工业大学学报, 2021, 38(2): 60-65.
ZHOU Y, WEI X M. A qualitative analysis of a hyperbolic tumor growth model with robin free boundary[J]. Journal of Guangdong University of Technology, 2021, 38(2): 60-65. DOI: 10.12052/gdutxb.200109. |
[10] |
梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J].
广东工业大学学报, 2019, 36(5): 38-42.
LIANG X Z, WEI X M. Existence of the solution to the metabolic model of colon cancer cells[J]. Journal of Guangdong University of Technology, 2019, 36(5): 38-42. DOI: 10.12052/gdutxb.180177. |
[11] |
CUI S B. Analysis of a free boundary problem modeling tumor growth[J].
Acta Mathematica Sinica, 2005, 21(5): 1071-1082.
DOI: 10.1007/s10114-004-0483-3. |
[12] |
LADYZHENSKAYA O A, SOLONNIKOV V A, URAL'TSEVA N N. Linear and quasi-linear equations of parabolic type[M]. Translations of Mathematical Monographs. USA: Am Math Soc, 1968: 23.
|
[13] |
FRIEDMAN A, LOLAS G. Analysis of a mathematical model of tumor lymphangiogenesis[J].
Mathematical Models & Methods in Applied Sciences, 2005, 15(1): 95-107.
|
[14] |
WEI X, CUI S. Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth[J].
Nonlinear Analysis:Real World Applications, 2008, 9(5): 1827-1836.
DOI: 10.1016/j.nonrwa.2007.05.013. |
[15] |
WEI X, GUO C. Global existence for a mathematical model of the immune response to cancer[J].
Nonlinear Analysis Real World Applications, 2010, 11(5): 3903-3911.
DOI: 10.1016/j.nonrwa.2010.02.017. |
[16] |
王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009.
|
[17] |
LAI X, FRIEDMAN A. Combination therapy for melanoma with braf/mek inhibitor and immune checkpoint inhibitor: a mathematical model[J].
BMC Systems Biology, 2017, 11(1): 70.
DOI: 10.1186/s12918-017-0446-9. |