广东工业大学学报  2023, Vol. 40Issue (5): 88-93.  DOI: 10.12052/gdutxb.220155.
0

引用本文 

胡然, 彭世国. 基于脉冲观测器的多智能体系统的领导跟随一致性[J]. 广东工业大学学报, 2023, 40(5): 88-93. DOI: 10.12052/gdutxb.220155.
Hu Ran, Peng Shi-guo. Impulsive Observer-based Leader-following Consensus for Multi-agent Systems[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2023, 40(5): 88-93. DOI: 10.12052/gdutxb.220155.

基金项目:

国家自然科学基金资助项目(61973092) ;广东省基础与应用基础研究基金资助项目(2019A1515012104)

作者简介:

胡然(1994–) ,女,硕士研究生,主要研究方向为脉冲观测器的分析与设计、多智能体系统协同控制问题,E-mail:huran613@163.com

通信作者

彭世国(1967–),男,教授,博士生导师,主要研究方向为复杂系统随机控制理论,E-mail:sgpeng@gdut.edu.cn

文章历史

收稿日期:2022-10-13
基于脉冲观测器的多智能体系统的领导跟随一致性
胡然, 彭世国    
广东工业大学 自动化学院, 广东 广州 510006
摘要: 本文研究了只有部分跟随者可获取领导者信息的多智能体系统的领导跟随一致性问题。对于不能获得领导者信息的部分跟随者,需要估计领导者的状态。另外,鉴于在某些条件下只能获得智能体的不连续的输出信息,引入脉冲观测器来减少多智能体系统的采样次数。本文的目的是设计一种基于脉冲观测器的控制器来实现领导跟随多智能体系统的一致性。首先,设计了可以估计领导者状态的分布式脉冲全维观测器以及一致性协议。其次,推导出误差系统的动力学方程,并利用误差变量构造合适的Lyapunov函数。最后,利用Lyapunov稳定性理论结合线性矩阵不等式研究误差系统的稳定性问题,得到多智能体系统领导跟随一致性问题的充分条件,并用数值仿真验证了结果的有效性。
关键词: 多智能体系统    脉冲观测器    线性矩阵不等式    一致性    
Impulsive Observer-based Leader-following Consensus for Multi-agent Systems
Hu Ran, Peng Shi-guo    
School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract: In this paper, we investigate the problem of consensus in leader-following multi-agent system, where the information of the leader is only accessed by a subset of the following agents. For the part of the follower who cannot obtain the leader’s information, the state of the leader need to be estimated. In addition, considering the discontinuity of obtaining the output information of agents under certain conditions, an impulsive observer is introduced to reduce the sampling times among multiple agents. To achieve this, this paper aims to design a controller based on impulsive observer to achieve the consensus of leader-following multi-agent systems. Firstly, an impulsive full-order observer and a consensus protocol are designed for each follower, so that the follower can use the observer to estimate the leader. Secondly, the dynamic equation of the error system is derived, and the appropriately Lyapunov function is constructed by using the error variables. Finally, the stability of error systems is studied by using the Lyapunov stability theory combining with the linear matrix inequalities, so that the sufficient conditions for the leader-following consensus problem of multi-agent systems can be obtained. Numerical simulation results clearly show the effectiveness of the proposed controller.
Key words: multi-agent systems    impulsive observer    linear matrix inequality    consensus    

多智能体系统的协同控制因其在无人机作战、机器人编队等方面的广泛应用而得到关注。作为其中一个重要的研究分支,领导跟随一致性问题在近几年取得了大量的研究成果[1-6]

多智能体系统中大多数一致性控制算法是根据各智能体状态信息设计的,当这些信息不可用时,此类控制器的设计将会受到限制。为解决上述问题,基于状态观测器的控制方法被提出,如文献[7]根据滑模观测器估计的状态信息构建了分布式控制协议。类似地,如果在领导跟随多智能体系统中领导者状态信息不可用时,需要设计相应的观测器来观测[8]。值得注意的是,上述观测器的设计依赖于输出向量的连续测量,这样会造成信道的拥堵和较高的控制成本。

输出向量是否能够只在某些离散时刻获取,同时设计出相应的观测器?答案是肯定的。脉冲观测器于2007年首次被Raff [9]提出,它只需要观测器状态在离散时刻进行更新。相比连续测量的观测器,这大大减少了观测器与系统之间的信息交互,节省了通信带宽。近年来,脉冲观测器逐步得到重视。例如,为实现时滞系统的稳定,文献[10]设计了一类基于脉冲观测器的脉冲控制器;文献[11]对不确定线性系统给出了基于脉冲观测器的镇定方法;文献[12]研究了不确定交换信息的带有脉冲观测器的神经网络的同步;文献[13]研究了基于脉冲观测器的时滞多智能体系统的一致性问题。虽然脉冲观测器的前景较好,但是基于此的多智能体系统一致性控制的相关研究成果仍然较少。

本文旨在设计合适的多智能体脉冲观测器以估计领导者的信息,再根据估计的信息设计相应的控制方法,实现系统的领导跟随一致性。通过构造合适的Lyapunov函数和线性矩阵不等式理论,给出了系统实现领导跟随一致性的充分条件。

1 预备知识及问题描述 1.1 图论

多智能体系统可用有向图 $ {\boldsymbol{M}}({\boldsymbol{A}}) = ({\boldsymbol{V}},{\boldsymbol{E}},{\boldsymbol{A}}) $ 表示,其中 ${\boldsymbol{V}} = \{ {s_1},{s_2},\cdots,{s_N}\}$ 表示多智能体系统节点的集合, ${{\boldsymbol{E}}} = \{ {e_{ij}} = ({s_i},{s_j}) \} \subset {{\boldsymbol{V}}} \times {{\boldsymbol{V}}}$ 描述智能体之间的连接关系。 ${{\boldsymbol{L}}} = {[{l_{ij}}]_{N \times N}}$ 表示多智能体的邻接矩阵。如果 $({s_i},{s_j}) \in {{\boldsymbol{E}}}$ ,则 $ {l_{ij}} > 0 $ ,否则 $ {l_{ij}} = 0 $ 。对具有领导者的多智能体系统,令 ${\boldsymbol{H}} = {\boldsymbol{L}} + {\boldsymbol{D}}$ ,其中 ${\boldsymbol{D}}{ = }{\rm{diag}}{(}{{d}_1}{,}{{d}_{2}}{,}\cdots{,}{{d}_N}{) } \in {\mathbf{R}^{N \times N}}$ 表示领导者和跟随者之间的连接矩阵, ${{d}_{i}}{(}{i = }1,2,\cdots, {N}{) }$ 表示领导者与跟随者之间边的权值,跟随者接收领导者发送的状态信息时 $ {{d}_{i}} > 0 $ ,否则 $ {{d}_{i}} = 0 $ 。在有向图 ${\boldsymbol{M}}$ 中,若某个节点到其他任何节点都存在路径连接,则称图 ${\boldsymbol{M}}$ 具有一棵以该节点为根节点的有向生成树。

1.2 模型

考虑具有一个领导者和 $ N $ 个跟随者的领导跟随多智能体系统,该领导者的动态方程描述为

$ \left\{ \begin{gathered} {{{\dot {\boldsymbol{x}}}}_0}(t) = {{{{\boldsymbol{A}}}{{{\boldsymbol{x}}}}}_0}(t) + {{\boldsymbol{B}}}{{{\boldsymbol{u}}}_0}(t) \\ {{{\boldsymbol{y}}}_0}(t) = {{\boldsymbol{C}}}{{{\boldsymbol{x}}}_0}(t) \\ \end{gathered} \right. $ (1)

式中: ${{\boldsymbol{x}}_0}({t}) \in {\mathbf{R}^{n}}$ 为领导者的状态信息; ${{\boldsymbol{y}}_0}({t}) \in {\mathbf{R}^{p}}$ ${{\boldsymbol{u}}_0}({t}) \in {\mathbf{R}^{m}}$ 分别为领导者的输出和输入信息。此外,跟随者 $i = 1,2,\cdots,N$ 的动态方程为

$ \left\{ \begin{gathered} {{{\dot {\boldsymbol{x}}}}_i}(t) = {{\boldsymbol{A}}}{{{\boldsymbol{x}}}_i}(t) + {{\boldsymbol{B}}}{{{\boldsymbol{u}}}_i}(t) \\ {{{\boldsymbol{y}}}_i}(t) = {{\boldsymbol{C}}}{{{\boldsymbol{x}}}_i}(t) \\ \end{gathered} \right. $ (2)

式中: ${{\boldsymbol{x}}_{i}}({t}) \in {\mathbf{R}^{n}}$ 为跟随者 $ {i} $ 的状态; ${{\boldsymbol{y}}_{i}}({t}) \in {\mathbf{R}^{p}}$ ${{\boldsymbol{u}}_{i}}({t}) \in {\mathbf{R}^{m}}$ 分别为跟随者 $ i $ 的输出和输入信息。

令序列 $ \{ {t_k}\} $ 为本文的采样序列,该序列满足 $0 \leqslant {t_{0}} \lt {t_1} \lt \cdots \lt {t_{k}} \lt {t_{{k + }{1}}} \lt \cdots$ $ \mathop {\lim }\limits_{k \to + \infty } {t_k} = + \infty $ 。为了让所有跟随者都能估计得到领导者的状态信息,设计脉冲全维观测器为

$ \left\{ \begin{array}{l} {{\dot{ \hat {\boldsymbol{x}}}}_{{i}}}( {t}) = {\boldsymbol{A}}{{\hat {\boldsymbol{x}}}_{i}}( {t}) + {\boldsymbol{B}}{{\boldsymbol{u}}_0}({t}) {\rm{, }} \; {t} \ne { {t}_{k}}\\ {{\hat {\boldsymbol{x}}}_{i}}({t}_{k}^ { + }) = {{\hat {\boldsymbol{x}}}_{i}}({t}_{k}^{ - }) + {\boldsymbol{G}}\left[{l_{ {ij}}}({{\hat y}_{i}}({t}_ {k}^{ - }) - {{\hat y}_{j}}({t}_{k}^{ - }) ) + \right. \\ \left. \quad\qquad{{\boldsymbol{d}}_{i}}({{\hat {\boldsymbol{y}}}_ {i}}( {t}_{k}^{ - }) - {{\boldsymbol{y}}_0}({t}_ {k}^ { - }) ) \right]{\rm{, }}\;{t} = {{t}_{k}}\\ {{\hat {\boldsymbol{y}}}_{i}}({t}) = {\boldsymbol{C}}{{\hat {\boldsymbol{x}}}_{i}}( {t}) \end{array} \right. $ (3)

式中: ${\hat {\boldsymbol{x}}_{i}}({t})$ 为跟随者 $ i $ 对领导者状态的估计值; ${{\boldsymbol{G}}}$ 为脉冲观测器的观测增益矩阵; ${\hat {\boldsymbol{x}}_{i}}({t}_{k}^{ - }) = \mathop {\lim }\limits_{{s} \to {0^ + }} {\hat {\boldsymbol{x}}_{i}}({{t}_{k}} - {s})$ ${\hat {\boldsymbol{x}}_{i}}({t}_{k}^{ + }) = \mathop {\lim }\limits_{{s} \to {0^ + }} {\hat {\boldsymbol{x}}_{i}}({{t}_{k}} + {s})$ 。此外,本文假设 ${\hat {\boldsymbol{x}}_{i}}({t})$ 是右连续的,即 ${\hat {\boldsymbol{x}}_{i}}({t}_{k}^{ + }) = {\hat {\boldsymbol{x}}_{i}}({{t}_{k}})$

本文的一致性控制协议设计为

$ {{\boldsymbol{u}}_{i}}({t}) = {{\boldsymbol{u}}_{0}}({t}) - {\boldsymbol{K}}({{\boldsymbol{x}}_{i}}({t}) - {\hat {\boldsymbol{x}}_{i}}({t}) ) $ (4)

式中: ${{\boldsymbol{K}}} \in {\mathbf{R}^{{m} \times {n}}}$ 为系统(2) 的控制增益矩阵。

定义 ${{\boldsymbol{\varepsilon}} _{i}}({t}) = {{\boldsymbol{x}}_{i}}({t}) - {{\boldsymbol{x}}_{0}}({t})$ 为跟随者 $ i $ 对领导者的追踪误差; ${{\boldsymbol{e}}_{i}}({t}) = {\hat {\boldsymbol{x}}_{i}}({t}) - {{\boldsymbol{x}}_{0}}({t})$ 为跟随者 $ i $ 对领导者状态的观测误差。结合(1) ~(4) ,可得到误差动力学模型为

$ \left\{ \begin{gathered} {{\dot {\boldsymbol{\varepsilon}} }_{i}}({t}) = ({{\boldsymbol{A}}} - {{\boldsymbol{BK}}}) {{\boldsymbol{\varepsilon}} _{i}}({t}) + {\boldsymbol{BK}}{{\boldsymbol{e}}_{i}}({t}) ,\quad {t} \ne {{t}_{k}} \\ {{\dot {\boldsymbol{e}}}_{i}}({t}) = {\boldsymbol{A}}{{\boldsymbol{e}}_{i}}({t}) {\text{ }} \\ {{\boldsymbol{\varepsilon}} _{i}}({t}_{k}^{ + }) = {{\boldsymbol{\varepsilon}} _{i}}({t}_{k}^{ - }) ,\quad {t} = {{t}_{k}} \\ {{\boldsymbol{e}}_{i}}({t}_{k}^{ + }) = {{\boldsymbol{e}}_{i}}({t}_{k}^ - ) + {\boldsymbol{GC}}\sum\limits_{{j = 1}}^{N} {\big[({{\boldsymbol{l}}_{{ij}}}({{\boldsymbol{e}}_{i}}({t}_{k}^ - ) } - {{\boldsymbol{e}}_{j}}({t}_{k}^ - ) + {{\boldsymbol{d}}_{i}}{{\boldsymbol{e}}_{i}}({t}_{k}^ - ) \big] \\ \end{gathered} \right. $ (5)

此外,基于引理3,上述误差动力学模型可改写为

$ \left\{ \begin{gathered} \dot {\boldsymbol{\varepsilon}} ({t}) = \left[{{\boldsymbol{I}}_{N}} \otimes \left({\boldsymbol{A}} - {\boldsymbol{BK}}\right) \right]{\boldsymbol{\varepsilon}} ({t}) + ({{\boldsymbol{I}}_{N}} \otimes {\boldsymbol{BK}}) {\boldsymbol{e}}({t}) \\ \dot {\boldsymbol{e}}({t}) = ({{\boldsymbol{I}}_{N}} \otimes {\boldsymbol{A}}) {\boldsymbol{e}}({t}) ,{\text{ }}{t} \ne {{t}_{k}} \\ {\boldsymbol{\varepsilon}} ({t}_{k}^{ + }) = {\boldsymbol{\varepsilon}} ({{t}_{k}}) \\ {\boldsymbol{e}}({t}_{k}^{ + }) = [{{\boldsymbol{I}}_{{Nn}}} + {\boldsymbol{GC}} \otimes {\boldsymbol{H}}]{\boldsymbol{e}}({t}_{k}^ - ) ,{\text{ }}{t = }{{t}_{k}} \\ \end{gathered} \right. $ (6)

式中: ${\boldsymbol{\varepsilon}} ({t})$ ${\boldsymbol{e}}({t})$ 定义分别为

$ \begin{gathered} {\boldsymbol{\varepsilon}} ({t}) = {[{\boldsymbol{\varepsilon}} _{1}^{{\rm{{\rm{T}}}}}({t}) ,{\boldsymbol{\varepsilon}} _{2}^{{\rm{T}}}({t}) ,\cdots,{\boldsymbol{\varepsilon}} _{N}^{{\rm{T}}}({t}) ]^{{\rm{T}}}} \\ {\boldsymbol{e}}({t}) = {[{\boldsymbol{e}}_{1}^{{\rm{T}}}({t}) ,{\boldsymbol{e}}_{2}^{{\rm{T}}}({t}) ,\cdots,{\boldsymbol{e}}_{N}^{{\rm{T}}}({t}) ]^{{\rm{T}}}} \\ \end{gathered} $

以下是本文所需要用到的定义、引理和假设。

定义1  如果对系统(1) ~(2)的任意初始条件,有下式成立:

$ \mathop {\lim }\limits_{{t} \to + \infty } ||{\boldsymbol{e}}({t}) || = 0 $

则称领导跟随多智能体系统(1) ~(2)实现了领导跟随一致。

引理1[14]  给定对称矩阵 ${{\boldsymbol{X}}} \in {\mathbf{R}^{n \times n}}$

$ {{\boldsymbol{{\boldsymbol{X}}}}} = \left[ {\begin{array}{*{20}{c}} {{{{\boldsymbol{X}}}_{11}}}&{{{{\boldsymbol{X}}}_{12}}} \\ {{{\boldsymbol{X}}}_{12}^{\rm{T}}}&{{{{\boldsymbol{X}}}_{22}}} \end{array}} \right] $

${{{\boldsymbol{X}}}_{11}} \in {\mathbf{R}^{r \times r}}$ ,则下列3个条件等价:

(1) ${\boldsymbol{X}} < 0$

(2) ${{{\boldsymbol{X}}}_{11}} \lt 0,{{{\boldsymbol{X}}}_{22}} - {{\boldsymbol{X}}}_{12}^{\rm{T}}{{\boldsymbol{X}}}_{11}^{ - 1}{{{\boldsymbol{X}}}_{12}} \lt 0$ ;

(3) ${{{\boldsymbol{X}}}_{22}} \lt 0,{{{\boldsymbol{X}}}_{11}} - {{{\boldsymbol{X}}}_{12}}{{\boldsymbol{X}}}_{22}^{ - 1}{{\boldsymbol{X}}}_{{12}}^{{\rm{T}}} \lt 0$

引理2[15]  若矩阵 ${\boldsymbol{A}} \in {{\boldsymbol{M}}_{n}}$ ${{\boldsymbol{M}}_{n}}$ $ n $ 阶实矩阵的集合,那么A的所有特征值满足:

$ {\lambda _{\min }} = {\lambda _1} \leqslant {\lambda _2} \leqslant \cdots \leqslant {\lambda _{n - 1}} \leqslant {\lambda _n} = {\lambda _{\max }} $

则对任意 ${\boldsymbol{x}} \in {\mathbf{R}^{n}}$ ,有 ${{\lambda }_1}{{\boldsymbol{x}}^{{\rm{T}}}}{\boldsymbol{x}} \leqslant {{\boldsymbol{x}}^{{\rm{T}}}}{\boldsymbol{Ax}} \leqslant {{\lambda }_{n}}{{\boldsymbol{x}}^{{\rm{T}}}}{\boldsymbol{x}}$

引理3[16]  符号“ $ \otimes $ ”表示kronecker积。对任意 $a \in \mathbf{R}$ 和矩阵 ${{\boldsymbol{A}}}、{\boldsymbol{B}}、{\boldsymbol{C}}、{\boldsymbol{D}}$ ,有下列运算性质:

(1) $(a{{\boldsymbol{A}}}) \otimes {{\boldsymbol{B}}} = {{\boldsymbol{A}}} \otimes (a{{\boldsymbol{B}}})$ ;

(2) $({{\boldsymbol{A}}} + {{\boldsymbol{B}}}) \otimes {{\boldsymbol{C}}} = {{\boldsymbol{A}}} \otimes {\boldsymbol{C}} + {{\boldsymbol{B}}} \otimes {{\boldsymbol{C}}}$ ;

(3) $({{\boldsymbol{A}}} \otimes {{\boldsymbol{B}}}) ({{\boldsymbol{C}}} \otimes {{\boldsymbol{D}}}) = ({{\boldsymbol{AC}}}) \otimes ({{\boldsymbol{BD}}})$ ;

(4) ${({{\boldsymbol{A}}} \otimes {{\boldsymbol{B}}}) ^{\rm{T}}} = {{{\boldsymbol{A}}}^{\rm{T}}} \otimes {{{\boldsymbol{B}}}^{\rm{T}}}$

假设1   $({{\boldsymbol{A}}},{{\boldsymbol{B}}},{{\boldsymbol{C}}})$ 是可镇定和可观测的。

假设2  领导跟随多智能体系统的通信拓扑具有一棵以领导者为根节点的有向生成树。

2 主要结果

本节定义了一个分段连续函数 $ \phi (t) $ ,并在此基础上构造了分段Lyapunov函数,利用LMI技术给出了误差动力系统(6)实现指数稳定的充分条件,即系统(1) ~(2)实现了领导跟随一致性。

定义函数:

$ {\phi _k}(t) = \frac{c}{{{{({t_{k + 1}} - {t_k}) }^2}}}\left(1 - \frac{1}{\mu }\right) {\left(t - {t_k}\right) ^2} + \frac{c}{\mu },{\text{ }}t \in \left[{t_k},{t_{k + 1}}\right] $

和分段连续函数

$ \phi (t) = \left\{ \begin{gathered} {\phi _k}(t) ,{\text{ }}t \in ({t_k},{t_{k + 1}}) \\ \phi (t_k^ + ) = {\phi _k}({t_k}) ,{\text{ }}t = {t_k} \\ \end{gathered} \right. $

则对任意 $ t \in [{t_k},{t_{k + 1}}) , $

$ \phi ({t_k}) = \frac{c}{\mu },\quad \phi \left(t_{k + 1}^ - \right) = c $ (7)

此外, $ \phi $ $ \dot \phi $ 的边界满足

$ \phi ({t_k}) \leqslant \phi (t) \leqslant \phi \left(t_{k + 1}^ - \right) $ (8)
$ 0 \leqslant \dot \phi (t) \leqslant \frac{{2c}}{h}\left(1 - \frac{1}{\mu }\right) $ (9)

式中: $h \leqslant {\inf _{k \in {\bf{N}}}}\left\{ {t_{k + 1}} - {t_k}\right\}$ $ c > 0 $ $ \mu \geqslant 1 $ $k \in {\bf{N}}$

定理1  在假设1和2成立的情况下,如果存在 $ c > 0 $ $ \mu \geqslant 1 $ $ {\delta _0} < 0 $ $h \leqslant {\inf _{k \in {\bf{N}}}}\{ {t_{k + 1}} - {t_k}\}$ 和正定矩阵 ${{{\boldsymbol{P}}}_1}$ ${{{\boldsymbol{P}}}_2}$ ${{{\boldsymbol{W}}}_1}$ ${{{\boldsymbol{W}}}_2}$ ,使下述不等式成立。

$ \left[ {\begin{array}{*{20}{c}} { - \mu {{{\bar {\boldsymbol{P}}}}_2}}&{{{\left({{{\boldsymbol{I}}}_{Nn}} + {{\boldsymbol{GC}}} \otimes {{\boldsymbol{H}}}\right) }^{\rm{T}}}{{{\bar {\boldsymbol{P}}}}_2}} \\ &{ - {{{\bar {\boldsymbol{P}}}}_2}} \end{array}} \right] < 0 $ (10)
$ {{\boldsymbol{\varPsi}} } = \left[ {\begin{array}{*{20}{c}} {{{{\boldsymbol{\varGamma}} }_1}}&0&{{{{\boldsymbol{\varGamma}} }_3}}&{{{{\bar {\boldsymbol{P}}}}_1}{\bar {\boldsymbol{B}}\bar {\boldsymbol{K}}}} \\ &{{{{\boldsymbol{\varGamma}} }_2}}&0&{{{{\bar {\boldsymbol{P}}}}_2}{\bar {\boldsymbol{A}}} + \left(\dfrac{c}{2} + \dfrac{c}{{2\mu }}\right) {{{\boldsymbol{W}}}_2}} \\ & &{ - {{{\boldsymbol{W}}}_1}}&0 \\ & & &{ - {{{\boldsymbol{W}}}_2}} \end{array}} \right] < 0 $ (11)

式中: ${{\bar {\boldsymbol{P}}}_1} = {{{\boldsymbol{I}}}_N} \otimes {{{\boldsymbol{P}}}_1}$ ${{\bar {\boldsymbol{P}}}_2} = {{{\boldsymbol{I}}}_N} \otimes {{{\boldsymbol{P}}}_2}$ ${\bar {\boldsymbol{A}}} = {{{\boldsymbol{I}}}_N} \otimes {{\boldsymbol{A}}}$ ${\bar {\boldsymbol{B}}} = {{{\boldsymbol{I}}}_N} \otimes {{\boldsymbol{B}}}$ ${\bar {\boldsymbol{K}}} = {{{\boldsymbol{I}}}_N} \otimes {{\boldsymbol{K}}}$ ,以及

$ {{{\boldsymbol{\varGamma}} }_1} = \frac{{2c}}{h}\left(1 - \frac{1}{\mu }\right) {{\bar {\boldsymbol{P}}}_1} - \frac{{{c^2}}}{\mu }{{{\boldsymbol{W}}}_1} $
$ {{{\boldsymbol{\varGamma}} }_2} = \frac{{2c}}{h}\left(1 - \frac{1}{\mu }\right) {{\bar {\boldsymbol{P}}}_2} - \frac{{{c^2}}}{\mu }{{{\boldsymbol{W}}}_2} $
$ {{{\boldsymbol{\varGamma}} }_3} = {{\bar {\boldsymbol{P}}}_1}\left({\bar {\boldsymbol{A}}} - {\bar {\boldsymbol{B}}\bar {\boldsymbol{K}}}\right) + \left(\frac{c}{2} + \frac{c}{{2\mu }}\right) {{{\boldsymbol{W}}}_1} $

则多智能体系统(1) ~(2)在脉冲观测器(3)和控制器(4)的作用下实现了领导跟随一致。

证明  选取Lyapunov函数:

$ V(t) = {e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{\bar {\boldsymbol{P}}}_1}{{\boldsymbol{\varepsilon}} }(t) + {{{e}}^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{\bar {\boldsymbol{P}}}_2}{{\boldsymbol{e}}}(t) $ (12)

式中: $ {\delta _0} < 0 $ 。当 $ t = {t_k} $ 时,由式(7) ~(10) 可得

$ \begin{gathered} V(t_k^ + ) = {e^{{\delta _0}{t_k}}}\phi (t_k^ + ) {{{\boldsymbol{\varepsilon }}}^{\rm{{\rm{T}}}}}(t_k^ + ) {{{\bar {\boldsymbol{{\boldsymbol{P}}}}}}_1}{{\boldsymbol{\varepsilon}} }(t_k^ + ) + {e^{{\delta _0}{t_k}}}\phi (t_k^ + ) {{{\boldsymbol{e}}}^{\rm{T}}}(t_k^ + ) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t_k^ + ) = \\ \quad\quad\quad\; {e^{{\delta _0}{t_k}}}\phi ({t_k}) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t_k^ - ) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t_k^ - ) + {e^{{\delta _0}{t_k}}}\phi ({t_k}) {{{\boldsymbol{e}}}^{\rm{T}}}(t_k^ - ) ({{{\boldsymbol{I}}}_{Nn}} + \\ \quad\quad\quad\; {{\boldsymbol{GC}}} \otimes {{\boldsymbol{H}}}{) ^{\rm{T}}}{{{\bar {\boldsymbol{P}}}}_2}({{{\boldsymbol{I}}}_{Nn}} + {{\boldsymbol{GC}}} \otimes {{\boldsymbol{H}}}) {{\boldsymbol{e}}}(t_k^ - ) \leqslant {e^{{\delta _0}{t_k}}} \times \frac{c}{\mu } \times \mu \times \\ \quad\quad\quad\; ({{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t_k^ - ) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t_k^ - ) + {{{\boldsymbol{e}}}^{\rm{T}}}(t_k^ - ) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t_k^ - ) ) {\text{ = }}V(t_k^ - ) \\ \end{gathered} $

即对任意 $t = {t_k},\forall k \in {\bf{N}}$ ,有

$ V(t_k^ + ) \leqslant V(t_k^ - ) $ (13)

另一方面,当 $t \in \left({t_k},{t_{k + 1}}\right)$ 时,

$ \begin{gathered} {D^ + }V(t) - {\delta _0}V(t) = {\delta _0}{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t) + {e^{{\delta _0}t}}\dot \phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t) + \\ \quad\quad\quad 2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{\dot {\boldsymbol{\varepsilon}} }(t) - {\delta _0}{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t) + \\ \quad\quad\quad {\delta _0}{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t) + {e^{{\delta _0}t}}\dot \phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t) + \\ \quad\quad\quad 2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{\dot {\boldsymbol{e}}}(t) - {\delta _0}{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t) = \\ \quad\quad\quad {e^{{\delta _0}t}}\dot \phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t) + 2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{\dot {\boldsymbol{\varepsilon}} }(t) + \\ \quad\quad\quad {e^{{\delta _0}t}}\dot \phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t) + 2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{\dot {\boldsymbol{e}}}(t) \leqslant {e^{{\delta _0}t}} \times \\ \quad\quad\quad \frac{{2c}}{h} \times \left(1 - \frac{1}{\mu }\right) \times {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t) + \\ \quad\quad\quad 2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_1}\left[({\bar {\boldsymbol{A}}} - {\bar {\boldsymbol{B}}\bar {\boldsymbol{K}}}) {{\boldsymbol{\varepsilon}} }(t) + {\bar {\boldsymbol{B}}\bar {\boldsymbol{Ke}}}(t) \right] + \\ \quad\quad\quad {e^{{\delta _0}t}} \times \frac{{2c}}{h} \times \left(1 - \frac{1}{\mu }\right) \times {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{{\boldsymbol{e}}}(t) + \\ \quad\quad\quad 2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\bar {\boldsymbol{P}}}}_2}{\bar {\boldsymbol{Ae}}}(t) \\ \end{gathered} $

因为

$ \begin{gathered} \left(c - \phi (t) \right) \left(\phi (t) - \frac{c}{\mu }\right) {{{\boldsymbol{\varepsilon}} }^{\rm{T}}}(t) {{{\boldsymbol{W}}}_1}{{\boldsymbol{\varepsilon}} }(t) \geqslant 0 \\ \left(c - \phi (t) \right) \left(\phi (t) - \frac{c}{\mu }\right) {{{\boldsymbol{e}}}^{\rm{T}}}(t) {{{\boldsymbol{W}}}_2}{{\boldsymbol{e}}}(t) \geqslant 0 \\ \end{gathered} $

故有

$ \begin{gathered} {D^ + }V(t) - {\delta _0}V(t) \leqslant {e^{{\delta _0}t}} \times \dfrac{{2c}}{h} \times \left(1 - \dfrac{1}{\mu }\right) \times {{{\boldsymbol{\varepsilon}} }^{{\rm{T}}}}(t) {{{\bar {\boldsymbol{P}}}}_1}{{\boldsymbol{\varepsilon}} }(t) + \\ \quad\quad\quad 2{e^{{\delta _0}t}} \times \phi (t) \times {{{\boldsymbol{\varepsilon}} }^{{\rm{T}}}}(t) {{{\bar {\boldsymbol{P}}}}_1}\left[({\bar {\boldsymbol{A}}} - {\bar {\boldsymbol{B}}\bar {\boldsymbol{K}}}) {{\boldsymbol{\varepsilon}} }(t) + {\bar {\boldsymbol{B}}\bar {\boldsymbol{Ke}}}(t) \right] + \\ \quad\quad\quad \left(c + \dfrac{c}{\mu }\right) \times \phi (t) \times {e^{{\delta _0}t}} \times {{{\boldsymbol{\varepsilon}} }^{{\rm{T}}}}(t) {{{\boldsymbol{W}}}_{1}}{{\boldsymbol{\varepsilon}} }(t) - \dfrac{{{c^2}}}{\mu } \times \\ \quad\quad\quad {e^{{\delta _0}t}} \times {{{\boldsymbol{\varepsilon}} }^{{\rm{T}}}}(t) {{{\boldsymbol{W}}}_{1}}{{\boldsymbol{\varepsilon}} }(t) + {e^{{\delta _0}t}} \times \dfrac{{2c}}{h} \times \left(1 - \dfrac{1}{\mu }\right) \times \\ \quad\quad\quad {{{\boldsymbol{e}}}^{{\rm{T}}}}(t) {{{\bar {\boldsymbol{P}}}}_{2}}{{\boldsymbol{e}}}(t) +2{e^{{\delta _0}t}}\phi (t) {{{\boldsymbol{e}}}^{{\rm{T}}}}(t) {{{\bar {\boldsymbol{P}}}}_{2}}{\bar {\boldsymbol{Ae}}}(t) + \\ \quad\quad\quad \left(c + \dfrac{c}{\mu }\right) \phi (t) \times {e^{{\delta _0}t}} \times{{{\boldsymbol{e}}}^{{\rm{T}}}}(t) {{{\boldsymbol{W}}}_{2}}{{\boldsymbol{e}}}(t) -\dfrac{{{c^2}}}{\mu } \times \\ \quad\quad\quad {e^{{\delta _0}t}} \times {{{\boldsymbol{e}}}^{{\rm{T}}}}(t) {{{\boldsymbol{W}}}_{2}}{{\boldsymbol{e}}}(t) ={e^{{\delta _0}t}}{{{\boldsymbol{\zeta}} }^{{\rm{T}}}}(t) {{\boldsymbol{\varPsi}} {\boldsymbol{\zeta}} }(t) \lt 0 \\ \end{gathered} $

式中: ${{\boldsymbol{\zeta}} }(t) = [ {\boldsymbol{\varepsilon}} ^{\rm{T}}(t) ,{\boldsymbol{e}}^{\rm{T}}(t) ,\phi (t) {\boldsymbol{\varepsilon}} ^{\rm{T}}(t) ,\phi (t) {\boldsymbol{e}}^{\rm{T}}(t) ]^{\rm{T}}$

因此,对任意 $t \in [{t_k},{t_{k + 1}}) ,\forall k \in N$ ,有

$ V(t) \leqslant {e^{{\delta _0}(t - {t_k}) }}V({t_k}) $ (14)

对任意 $ t \in [{t_0},{t_1}) $ ,根据式(14)可得

$ V(t) \leqslant V({t_0}) {e^{{\delta _0}(t - {t_0}) }} \leqslant {\lambda _2}||{{\boldsymbol{\eta}} }({t_0}) |{|^2}{e^{{\delta _0}t}} $ (15)

式中:

$ \begin{gathered} {{\boldsymbol{\eta}} }(t) = {[{{{\boldsymbol{\varepsilon}} }^{{\rm{T}}}}(t) ,{{{\boldsymbol{e}}}^{{\rm{T}}}}(t) ]^{{\rm{T}}}} \\ {\lambda _2} = c\, \max ({\lambda _{\max }}({{{\boldsymbol{P}}}_1}) ,{\lambda _{\max }}({{{\boldsymbol{P}}}_2}) ) \\ \end{gathered} $

对任意 $ t \in [{t_1},{t_2}) $ ,根据式(13) ~(14)可得

$ \begin{gathered} V(t) \leqslant V({t_1}) {e^{{\delta _0}(t - {t_1}) }} \leqslant V(t_1^ - ) {e^{{\delta _0}(t - {t_1}) }} \leqslant V({t_0}) {e^{{\delta _0}({t_1} - {t_0}) }}{e^{{\delta _0}(t - {t_1}) }} = \\ \qquad\qquad\quad V({t_0}) {e^{{\delta _0}(t - {t_0}) }} \leqslant {\lambda _2}||{{\boldsymbol{\eta}} }({t_0}) |{|^2}{e^{{\delta _0}t}} \\ \end{gathered} $ (16)

假设对任意 $t \in [{t_{k - 1}},{t_k}) ,\forall k \geqslant 2$ ,有下式成立

$ V(t) \leqslant V(t_{k - 1}^ - ) {e^{{\delta _0}(t - {t_{k - 1}}) }} \leqslant V({t_0}) {e^{{\delta _0}(t - {t_0}) }} \leqslant {\lambda _2}||{{\boldsymbol{\eta}} }({t_0}) |{|^2}{e^{{\delta _0}t}} $

现证明对任意 $ t \in [{t_k},{t_{k + 1}}) $ ,同样有

$ V(t) \leqslant {\lambda _2}||{{\boldsymbol{\eta}} }({t_0}) |{|^2}{e^{{\delta _0}t}} $ (17)

对任意 $ t \in [{t_k},{t_{k + 1}}) $ ,根据式(13) ~(14)可得

$ \begin{aligned} V(t) \leqslant & V({t_k}) {e^{{\delta _0}(t - {t_k}) }} \leqslant V(t_k^ - ) {e^{{\delta _0}(t - {t_k}) }} \leqslant V({t_{k - 1}}) {e^{{\delta _0}(t - {t_{k - 1}}) }} \leqslant \\ &V(t_{k - 1}^ - ) {e^{{\delta _0}(t - {t_k}) }} \leqslant \cdots \leqslant V({t_0}) {e^{{\delta _0}(t - {t_0}) }} \leqslant {\lambda _2}||{{\boldsymbol{\eta}} }({t_0}) |{|^2}{e^{{\delta _0}t}} \\ \end{aligned} $

即有式(17)成立。由式(14) ~(17) ,通过数学归纳法可得,对任意 $ t \in [{t_k},{t_{k + 1}}) $ ,有 $V(t) \leqslant {\lambda _2}||{{\boldsymbol{\eta}} }({t_0}) |{|^2}{e^{{\delta _0}t}}$ 成立。由于 $ {\delta _0} < 0 $ ,故当 $ t \to \infty $ 时,有 $ V(t) \to 0 $ ,即误差动力学系统(6)在脉冲观测器(3)和控制器(4)的作用下可实现指数稳定,证毕。

注解1  与文献[10]中单个系统的分析不同,本文为基于网络交流的智能体系统的协同控制提供了一种有效的方案。

注解2  在多智能体系统的实际应用中,基于连续测量的观测器会造成较高的资源负载[6-7]。为了克服这一缺点,脉冲技术被采纳到观测器的设计中。脉冲观测器有效地减少了智能体间的通信负担,因为该观测器只需要智能体在 $ t = {t_k} $ 时刻与其相邻智能体交换信息并更新相应的一致性协议。而在脉冲时刻之间,即任意 $t \in ({t_k},{t_{k + 1}}) ,\forall k \in {\bf{N}}$ ,脉冲观测器将仅仅依赖自身的动力学运行。在此 ${{\boldsymbol{u}}_0} = 0$ 过程中,其通信资源的占用率几乎为零。

定理1是在假设矩阵KG已知的情况下得到的。如果这些矩阵事先不可得知,则难以应用该定理。对此,本文给出定理2。该定理可设计合适的矩阵KG,并基于脉冲观测器(3)与控制器(4),实现多智能体系统(1) ~(2)领导跟随一致。

定理2  在假设1和2成立的情况下,如果存在 $ \mu \geqslant 1 $ , $ c > 0 $ , $ {\delta _0} < 0 $ $h \leqslant {\inf _{k \in {\bf{N}}}}\{ {t_{k + 1}} - {t_k}\}$ ,正定矩阵 $ {{\boldsymbol{X}}} $ $ {{{\boldsymbol{P}}}_2} $ $ {{{\boldsymbol{W}}}_1} $ $ {{\bar {\boldsymbol{W}}}_1} $ $ {{{\boldsymbol{W}}}_{2}} $ ,以及矩阵 $ {{\boldsymbol{Y}}} $ $ {{\boldsymbol{Z}}} $ ,使得下述不等式成立:

$ \left[ {\begin{array}{*{20}{c}} { - \mu {{{\bar {\boldsymbol{P}}}}_2}}&{{{{\bar {\boldsymbol{P}}}}_2} + {{{\boldsymbol{C}}}^{{\rm{T}}}}{{\boldsymbol{Z}}} \otimes {{{\boldsymbol{H}}}^{{\rm{T}}}}} \\ &{ - {{{\bar {\boldsymbol{P}}}}_2}} \end{array}} \right] \lt 0 $ (18)
$ \left[ {\begin{array}{*{20}{c}} {{{{\bar {\boldsymbol{\varGamma}} }}_1}}&0&{{{{\bar {\boldsymbol{\varGamma}} }}_3}}&{{\bar {\boldsymbol{B}}\bar {\boldsymbol{K}}}} \\ &{{{{\boldsymbol{\varGamma}} }_2}}&0&{{{{\bar {\boldsymbol{P}}}}_2}{\bar {\boldsymbol{A}}} + \left(\dfrac{c}{2} + \dfrac{c}{{2\mu }}\right) {{{\boldsymbol{W}}}_2}} \\ & &{ - {{{\bar {\boldsymbol{W}}}}_1}}&0 \\ & & &{ - {{{\boldsymbol{W}}}_2}} \end{array}} \right] \lt 0 $ (19)

式中:

$ {{\bar {\boldsymbol{\varGamma}} }_1} = \frac{{2c}}{h}\left(1 - \frac{1}{\mu }\right) {{\boldsymbol{X}}} - \frac{{{c^2}}}{\mu }{{\bar {\boldsymbol{W}}}_1} $
$ {{{\boldsymbol{\varGamma}} }_2} = \frac{{2c}}{h}\left(1 - \frac{1}{\mu }\right) {{\bar {\boldsymbol{P}}}_2} - \frac{{{c^2}}}{\mu }{{{\boldsymbol{W}}}_2} $
$ {{\bar {\boldsymbol{\varGamma}} }_3} = {\bar {\boldsymbol{A}}{\boldsymbol{X}}} - {\bar {\boldsymbol{B}}{\boldsymbol{Y}}} + \left(\frac{c}{2} + \frac{c}{{2\mu }}\right) {{\bar {\boldsymbol{W}}}_1} $

则多智能体系统(1) ~(2) 在脉冲观测器(3) 和控制器(4) 的作用下可实现领导跟随一致。

证明  令 ${\bar {\boldsymbol{P}}} = {{{\boldsymbol{X}}}^{ - 1}}$ $ {{\bar {\boldsymbol{W}}}_1} = {{\boldsymbol{X}}}{{{\boldsymbol{W}}}_1}{{\boldsymbol{X}}} $ $ {{\boldsymbol{Y}}} = {\bar {\boldsymbol{K}}{\boldsymbol{X}}} $ 。若在式(19)左右两侧同乘以 $ {{\rm{diag}}}\left\{ {{{{\boldsymbol{P}}}_1}^{ - 1},{{\boldsymbol{I}}},{{{\boldsymbol{P}}}_1}^{ - 1},{{\boldsymbol{I}}}} \right\} $ ,则可得到式(11) 。

另外,令 ${{\boldsymbol{Z}}} = {{{\boldsymbol{G}}}^{{\rm{T}}}}{{{\boldsymbol{P}}}_2}$ ,则由式(18)可得式(10)。因此,通过定理1可知,多智能体系统(1) ~(2)在脉冲观测器的作用下可实现领导跟随一致。证毕。

3 数值算例

考虑3个跟随者和1个领导者组成的线性多智能体系统,其拓扑图如图1所示。

图 1 线性多智能体系统拓扑图 Figure 1 Topology of the linear multi-agent system

图1可知,Laplacian矩阵 $ {\boldsymbol{L}} $ 及连接矩阵 ${\boldsymbol{ D}} $

$ {\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1} \\ { - 1}&1&0 \\ 0&{ - 1}&1 \end{array}} \right] \text{,} {\boldsymbol{D}} = \left[ {\begin{array}{*{20}{c}} 0&0&0 \\ 0&1&0 \\ 0&0&0 \end{array}} \right] $

则有

$ {\boldsymbol{H}} = {\boldsymbol{L}} + {\boldsymbol{D}} = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1} \\ { - 1}&2&0 \\ 0&{ - 1}&1 \end{array}} \right] $

各智能体状态初值在 $ [ - 5,5] $ 内随机选取,系统参数为

$ {\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} { - 1}&0 \\ 0&{ - 1.5} \end{array}} \right],\quad {\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} { - 0.5} \\ { - 0.5} \end{array}} \right],\quad {\boldsymbol{C}} = [\begin{array}{*{20}{c}} {1.2}&{2.1} \end{array}] $

选择 $ c = 10,\; \mu = 1.05,\; h = 1 $ ,用MATLAB中LMI工具箱求解式(18) ~(19)的可行解,得到

$ {{\boldsymbol{X}}} = {\text{1}}{{\text{0}}^3}\left[ \begin{gathered} {\text{1}}{\text{.634\;4 }}\quad{\text{1.049\;6}} \\ {\text{1}}{\text{.049\;6 }}\quad{\text{0.677\;7}} \\ \end{gathered} \right] $
$ {{\boldsymbol{Y}}} = {\text{1}}{{\text{0}}^3}\left[ {{\text{2}}{\text{.944\;4 }}\quad{\text{1.894\;9}}} \right] $
$ {{\boldsymbol{Z}}} = \left[ { - {\text{0}}{\text{.604\;3 }} \quad -{\text{1}}{\text{.035\;0}}} \right] $
$ {{{\boldsymbol{P}}}_2} = \left[ \begin{gathered} {\text{6}}{\text{.759\;1 }}\quad {\text{0.698\;3}} \\ {\text{0}}{\text{.698\;3 }}\quad {\text{5.659\;7}} \\ \end{gathered} \right] $

另外,由 $ {{\boldsymbol{K}}} = {{\boldsymbol{Y}}}{{{\boldsymbol{X}}}^{ - 1}} $ $ {{\boldsymbol{G}}} = {{{\boldsymbol{P}}}_2}^{ - 1}{{{\boldsymbol{Z}}}^{\rm{T}}} $ 分别可知

$ \begin{gathered} {{\boldsymbol{K}}} = [{\text{1}}{\text{.089\;2 }}\quad {\text{1.109\;3}}] \\ {{\boldsymbol{G}}} = \left[ {\begin{array}{*{20}{c}} { - {\text{0}}{\text{.071\;4}}} \\ { - {\text{0}}{\text{.174\;1}}} \end{array}} \right] \\ \end{gathered} $

假设脉冲观测器的观测频率是周期的, $ {t_{k + 1}} - {t_k} \equiv 1 $ ,得到的仿真图如图2~5所示。

图 2 观测误差 ${{\boldsymbol{e}}_{i1}} = {{\boldsymbol{x}}_{i1}} - {{\boldsymbol{x}}_{01}}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ ) Figure 2 The observaion error ${{\boldsymbol{e}}_{i1}} = {{\boldsymbol{x}}_{i1}} - {{\boldsymbol{x}}_{01}}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ )
图 3 观测误差 ${{\boldsymbol{e}}_{i2}} = {{\boldsymbol{x}}_{i2}} - {{\boldsymbol{x}}_{02}}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ ) Figure 3 The observaion error ${{\boldsymbol{e}}_{i2}} = {{\boldsymbol{x}}_{i2}} - {{\boldsymbol{x}}_{02}}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ )
图 4 追踪误差 ${{\boldsymbol{\varepsilon}} _1} = {{\boldsymbol{x}}_1} - {{\boldsymbol{x}}_0}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ ) Figure 4 The tracking error ${{\boldsymbol{\varepsilon}} _1} = {{\boldsymbol{x}}_1} - {{\boldsymbol{x}}_0}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ )
图 5 追踪误差 ${{\boldsymbol{\varepsilon}} _2} = {{\boldsymbol{x}}_2} - {{\boldsymbol{x}}_0}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ ) Figure 5 The tracking error ${{\boldsymbol{\varepsilon}} _2} = {{\boldsymbol{x}}_2} - {{\boldsymbol{x}}_0}$ ( $ {t_{k + 1}} - {t_k} \equiv 1 $ )

$ {t_{k + 1}} - {t_k} \equiv 1 $ (此时 $ h = {\inf _{k \in {\bf{N}}}}\{ {t_{k + 1}} - {t_k}\} $ ) 时,由图2~5可知,观测误差收敛,所设计的脉冲观测器可以准确观测领导者信息,多智能体系统可以实现领导跟随一致。

4 结论

本文设计了可估计领导者状态的脉冲全维观测器,并在此基础上解决了领导跟随一致性问题,利用分段Lyapunov函数和线性矩阵不等式理论,给出了跟随者准确估计领导者状态且系统实现领导跟随一致性的条件。未来,将对事件触发脉冲观测器进行深入研究。

参考文献
[1]
ZOU W, ZHOU C, XIANG Z. Sampled-data leader-following consensus of nonlinear multi-agent systems subject to impulsive perturbations[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104884. DOI: 10.1016/j.cnsns.2019.104884.
[2]
SHI Y, YIN Y, WANG S, et al. Distributed leader-following consensus of nonlinear multi-agent systems with nonlinear input dynamics[J]. Neurocomputing, 2018, 286: 193-197. DOI: 10.1016/j.neucom.2018.01.059.
[3]
WANG Y, CHENG Z, XIAO M. UAVs’ formation keeping control based on multi-agent system consensus[J]. IEEE Access, 2020, 8: 49000-49012. DOI: 10.1109/ACCESS.2020.2979996.
[4]
张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(2): 75-80.
ZHANG Z H, PENG S G. Leader-following consensus of second-order multi-agent systems with switching topology[J]. Journal of Guangdong University of Technology, 2018, 35(2): 75-80.
[5]
HU X, ZHANG Z, LI C, et al. Leader-following consensus of multi-agent systems via a hybrid protocol with saturation effects[J]. International Journal of Control, Automation and Systems, 2021, 19(1): 124-136. DOI: 10.1007/s12555-019-1042-0.
[6]
ZHANG Y, LI R, ZHAO W, et al. Stochastic leader-following consensus of multi-agent systems with measurement noises and communication time-delays[J]. Neurocomputing, 2018, 282: 136-145. DOI: 10.1016/j.neucom.2017.12.024.
[7]
JIANG Y, ZHANG Y, WANG H, et al. Sliding-mode observers based distributed consensus control for nonlinear multi-agent systems with disturbances[J]. Complex & Intelligent Systems, 2022, 8(3): 1889-1897.
[8]
HONG Y, CHEN G, BUSHNELL L. Distributed observers design for leader-following control of multi-agent networks[J]. Automatica, 2008, 44(3): 846-850. DOI: 10.1016/j.automatica.2007.07.004.
[9]
RAFF T, ALLGOWER F. An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time[C]//2007 Mediterranean Conference on Control & Automation. Athens: IEEE, 2007: 1-3.
[10]
WANG Y, LI X. Impulsive observer and impulsive control for timedelay systems[J]. Journal of the Franklin Institute, 2020, 357(13): 8529-8542. DOI: 10.1016/j.jfranklin.2020.05.009.
[11]
CHEN W H, YANG W, LU X. Impulsive observer-based stabilisation of uncertain linear systems[J]. IET Control Theory & Applications, 2014, 8(3): 149-159.
[12]
RAO H, LIU F, PENG H, et al. Observer-based impulsive synchronization for neural networks with uncertain exchanging information[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(10): 3777-3787.
[13]
QIN W, LIU Z, CHEN Z. Impulsive observer-based consensus control for multi-agent systems with time delay[J]. International Journal of Control, 2015, 88(9): 1789-1804. DOI: 10.1080/00207179.2015.1017738.
[14]
BOYD S, GHAOUI L, FERON E, et al. Linear matrix inequalities in system and control theory[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1994.
[15]
HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge:Cambridge University Press, 2012.
[16]
MERINO D I. Topics in matrix analysis[M]. Baltimore:The Johns Hopkins University, 1992.